首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Structurally complex habitats provide cover and may hinder the movement of animals. In predator–prey relationships, habitat structure can decrease predation risk when it provides refuges for prey or hinders foraging activity of predators. However, it may also provide shelter, supporting structures and perches for sit-and-wait predators and hence increase their predation rates. We tested the effect of habitat structure on prey mortality in aquatic invertebrates in short-term laboratory predation trials that differed in the presence or absence of artificial vegetation. The effect of habitat structure on prey mortality was context dependent as it changed with predator and prey microhabitat use. Specifically, we observed an ‘anti-refuge’ effect of added vegetation: phytophilous predators that perched on the plants imposed higher predation pressure on planktonic prey, while mortality of benthic prey decreased. Predation by benthic and planktonic predators on either type of prey remained unaffected by the presence of vegetation. Our results show that the effects of habitat structure on predator–prey interactions are more complex than simply providing prey refuges or cover for predators. Such context-specific effects of habitat complexity may alter the coupling of different parts of the ecosystem, such as pelagic and benthic habitats, and ultimately affect food web stability through cascading effects on individual life histories and trophic link strengths.  相似文献   

2.
Conspecific prey individuals often exhibit persistent differences in behavior (i.e., animal personality) and consequently vary in their susceptibility to predation. How this form of selection varies across environmental contexts is essential to predicting ecological and evolutionary dynamics, yet remains currently unresolved. Here, we use three separate predator–prey systems (sea star–snail, wolf spider–cricket, and jumping spider–cricket) to independently examine how habitat structural complexity influences the selection that predators impose on prey behavioral types. Prior to conducting staged predator–prey interaction encounters, we ran prey individuals through multiple behavioral assays to determine their average activity level. We then allowed individual predators to interact with groups of prey in either open or structurally complex habitats and recorded the number and individual identity of prey that were eaten. Habitat complexity had no effect on overall predation rates in any of the three predator–prey systems. Despite this, we detected a pervasive interaction between habitat structure and individual prey activity level in determining individual prey survival. In open habitats, all predators imposed strong selection on prey behavioral types: sea stars preferentially consumed sedentary snails, while spiders preferentially consumed active crickets. Habitat complexity dampened selection within all three systems, equalizing the predation risk that active and sedentary prey faced. These findings suggest a general effect of habitat complexity that reduces the importance of prey activity level in determining individual predation risk. We reason this occurs because activity level (i.e., movement) is paramount in determining risk within open environments, whereas in complex habitats, other behavioral traits (e.g., escape ability to a refuge) may take precedence.  相似文献   

3.
1. Behavioural adaptations to avoid and evade predators are common. Many studies have investigated population divergence in response to changes in predation regime within species, but studies exploring interspecific patterns are scant. Studies on interspecific divergence can infer common outcomes from evolutionary processes and highlight the role of environmental constraints in shaping species traits. 2. Species of the dragonfly genus Leucorrhinia underwent well‐studied shifts from habitats being dominated by predatory fish (fish lakes) to habitat being dominated by predatory invertebrates (dragonfly lakes). This change in top predators resulted in a set of adaptive trait modifications in response to the different hunting styles of both predator types: whereas predatory fish actively search and pursue prey, invertebrate predator follow a sit‐and‐wait strategy, not pursuing prey. 3. Here it is shown that the habitat shift‐related change in selection regime on larval Leucorrhinia caused species in dragonfly lakes to evolve increased larval foraging and activity, and results suggest that they lost the ability to recognise predatory fish. 4. The results of the present study highlight the impact of predators on behavioural trait diversification with habitat‐specific predation regimes selecting for distinct behavioural expression.  相似文献   

4.
Warfe DM  Barmuta LA 《Oecologia》2004,141(1):171-178
We investigated the role of freshwater macrophytes as refuge by testing the hypothesis that predators capture fewer prey in more dense and structurally complex habitats. We also tested the hypothesis that habitat structure not only affects the prey-capture success of a single predator in isolation, but also the effectiveness of two predators combined, particularly if it mediates interactions between the predators. We conducted a fully crossed four-factorial laboratory experiment using artificial plants to determine the separate quantitative (density) and qualitative (shape) components of macrophyte structure on the prey-capture success of a predatory damselfly, Ischnura heterosticta tasmanica, and the southern pygmy perch, Nannoperca australis. Contrary to our expectations, macrophyte density had no effect on the prey-capture success of either predator, but both predators were significantly less effective in the structurally complex Myriophyllum analogue than in the structurally simpler Triglochin and Eleocharis analogues. Furthermore, the greater structural complexity of Myriophyllum amplified the impact of the negative interaction between the predators on prey numbers; the habitat use by damselfly larvae in response to the presence of southern pygmy perch meant they captured less prey in Myriophyllum. These results demonstrate habitat structure can influence multiple predator effects, and support the mechanism of increased prey refuge in more structurally complex macrophytes.  相似文献   

5.
Johan Ahlgren  Christer Brönmark 《Oikos》2012,121(9):1501-1506
Prey species are often exposed to multiple predators, which presents several difficulties to prey species. This is especially true when the response to one predator influences the prey’s susceptibility to other predators. Predator‐induced defences have evolved in a wide range of prey species, and experiments involving predators with different hunting strategies allow researchers to evaluate how prey respond to multiple threats. Freshwater snails are known to respond to a variety of predators with both morphological and behavioural defences. Here we studied how freshwater snails Radix balthica responded behaviourally to fish and leech predators, both separately and together. Our aim was to explore whether conflicting predator‐induced responses existed and, if so, what effect they had on snail survival when both predatory fish and leeches were present. We found that although R. balthica increased refuge use when exposed to predatory fish, they decreased refuge use when exposed to predatory leeches. When both predators were present, snails showed a stronger response towards leech than fish and responded by leaving the refuge. This response made the snails more susceptible to fish predation, which increased snail mortality when exposed to both fish and leech compared to fish only. We show that predators that have a relatively low predation rate can substantially increase mortality rates by indirect effects. By forcing snails out of refuges such as rock and macrophyte habitats, leeches can indirectly increase predation from molluscivorous fish and may thus affect snail densities.  相似文献   

6.
Many large, fishery‐targeted predatory species have attained very high relative densities as a direct result of protection by no‐take marine reserves. Indirect effects, via interactions with targeted species, may also occur for species that are not themselves targeted by fishing. In some temperate rocky reef ecosystems, indirect effects have caused profound changes in community structure, notably the restoration of predator–urchin–macroalgae trophic cascades. Yet, indirect effects on small benthic reef fishes remain poorly understood, perhaps because of behavioral associations with complex, refuge‐providing habitats. Few, if any, studies have evaluated any potential effects of marine reserves on habitat associations in small benthic fishes. We surveyed densities of small benthic fishes, including some endemic species of triplefin (Tripterygiidae), along with fine‐scale habitat features in kelp forests on rocky reefs in and around multiple marine reserves in northern New Zealand over 3 years. Bayesian generalized linear mixed models were used to evaluate evidence for (1) main effects of marine reserve protection, (2) associations with habitat gradients, including complexity, and (3) differences in habitat associations inside versus outside reserves. No evidence of overall main effects of marine reserves on species richness or densities of fishes was found. Both richness and densities showed strong associations with gradients in habitat features, particularly habitat complexity. In addition, some species exhibited reserve‐by‐habitat interactions, having different associations with habitat gradients inside versus outside marine reserves. Two species (Ruanoho whero and Forsterygion flavonigrum) showed stronger positive associations with habitat complexity inside reserves. These results are consistent with the presence of a behavioral risk effect, whereby prey fishes are more strongly attracted to habitats that provide refuge from predation in areas where predators are more abundant. This work highlights the importance of habitat structure and the potential for fishing to affect behavioral interactions and the interspecific dynamic attributes of community structure beyond simple predator–prey consumption and archetypal trophic cascades.  相似文献   

7.
Environmental light conditions are of general importance in predator–prey interactions. In aquatic systems, prey individuals experience different levels of predation risk depending on the properties of the visual environment, such as structural complexity or water transparency. To reduce the threat of predation, prey should move to habitats providing better protection against visual predators. We studied the role of UV wavelengths in habitat choice behaviour under predation risk in a fish, the three-spined stickleback (Gasterosteus aculeatus) that uses UV signals in different contexts of intraspecific communication. In a laboratory experiment sticklebacks were exposed to a predatory threat and given the choice between two escape habitats, one providing full-spectrum conditions including UV light (UV+) and one without UV wavelengths (UV−). Fish from two rearing treatments were tested, one group had been raised under natural lighting conditions (UV+), the other group under UV-deficient lighting conditions (UV−). Sticklebacks from the UV+ group preferred the UV− habitat as a refuge which suggests that predator avoidance behaviour is UV-related in this species with UV− conditions presumably being advantageous for prey fish. However, individuals from the UV− treatment group were equally attracted to both presented light habitats. It is possible that these fish could not discriminate between the two light habitats due to physiological limitations caused by their rearing conditions. Further control trials with neutral-density filters revealed that the UV− habitat preference of UV+ fish in the main experiment was rather not influenced by a difference in achromatic brightness between the UV+ and UV− habitat.  相似文献   

8.
There should be intense selection for predation avoidance mechanisms when prey live in close proximity to their predators. Prey individuals that can learn to associate habitat features with high levels of predation risk should experience increased survival if they subsequently avoid those habitats. We tested whether or not habitat learning occurred in a benthic stream community consisting of adult Oklahoma salamander (Eurycea tynerensis) prey and a syntopic predatory fish, the banded sculpin (Cottus carolinae). We exposed individual salamanders to chemical stimuli from sculpin, non‐predatory tadpoles, or a blank control in training tanks containing either rocks or grass. Two days later, the salamanders were tested in tanks that offered a choice of rocks or grass. Salamanders showed significant avoidance of the habitat where they had previously encountered chemical cues from sculpin in comparison to the non‐predatory controls. Learning to avoid dangerous habitats may be particularly important for prey whose predators are visually cryptic ambush foragers, such as sculpin.  相似文献   

9.
Marine fishes are often associated with structurally complex microhabitats that are believed to provide a refuge from predation. However, the effects of habitat complexity on predator foraging success can be strongly modified by predator and prey behaviors. We conducted a series of laboratory experiments to evaluate the effects of sea floor habitat complexity on juvenile fish survivorship using multiple predator (striped searobin and summer flounder) and prey (winter flounder, scup, and black sea bass) species to identify potentially important species-habitat interactions. Three habitats of varying complexity (bare sand, shell, and sponge) common to coastal marine environments were simulated in large aquaria (2.4 m diameter, 2400 L volume). Prey survivorship increased significantly with greater habitat complexity for each species combination tested. However, examination of multiple prey and predator species across habitats revealed important effects of predator × habitat and prey × habitat interactions on prey survival, which appeared to be related to species-specific predator and prey behavior in complex habitats. Significant species × habitat interactions imply that the impact of reduced seafloor habitat complexity may be more severe for some species than others. Our results indicate that the general effects of seafloor habitat complexity on juvenile fish survivorship may be broadly applicable, but that the interaction of particular habitats with search tactics of predators as well as habitat affinities and avoidance responses of prey can produce differences among species that contribute to variable mortality.  相似文献   

10.
Is there safety‐in‐numbers for prey?   总被引:4,自引:0,他引:4  
Sean D. Connell 《Oikos》2000,88(3):527-532
The abundance of prey affects the rate of predation, but little consensus exists on whether this enhances or reduces per capita mortality. Studies of aggregating prey in marine habitats generally emphasise that the probability of predation of any individual is the reciprocal of the number of prey within a school. A field experiment tested the alternative hypotheses that predation by predatory fish on schooling prey (1) increased with an increase in the number of prey per school and that this caused (2) survival to be lower in schools with more individuals. The number of prey (juvenile Acanthochromis polyacanthus ) per school was manipulated in replicate treatments with natural densities of large predatory fish (open plots) and treatments without large predatory fish (exclusion cages). Large predatory fish preyed on juveniles in a density-dependent manner and this was the key source of density-dependent mortality in plots open to all predators. There was some suggestion that small predatory fish also prey on juveniles in a density-dependent manner, but this was weak and did not translate into density-dependent mortality of juveniles. It would appear that aggregation of prey may be a successful strategy against predation from some predators, but not always every predator, or all predators in combination.  相似文献   

11.
Predation risk effects on fitness related measures in a resident bird   总被引:1,自引:0,他引:1  
Predation risk is thought to be highly variable in space and time. However, breeding avian predators may create locally fixed and spatially fairly predictable predation risk determined by the distance to their nest. From the prey perspective, this creates predation risk gradients that potentially have an effect on fitness and behavioural decisions of prey. We studied how breeding avian predators affect habitat selection (nest location) and the resulting fitness consequences in a northern population of resident willow tit ( Parus montanus ). Data included 429 willow tit nests over a four year period in a landscape containing a total of 33 avian predator nests. Willow tit nests were located randomly in the landscape and no predator avoidance in habitat selection or emptying of territories in proximity to predators was observed. Nestling size, however, was positively associated with distance from predator nests (n=252). Nestling mass and wing length were about 4.5% smaller close to predator nests compared to nestlings raised far from predator nests. Tarsus length also exhibited a positive relationship with increasing distance from predator nest but this was limited to habitats of young forests and pine bogs or dense mixed forests (4% increase). It is likely that habitat structural complexity influenced the perception of predation risk in different habitats. Our results indicate that willow tits do not provide reliable cues of predator free habitats for settling migrants. Nonetheless, breeding avian predators may create predictable predation risk in the landscape which is an important factor affecting reproductive success and potentially the demography of prey populations.  相似文献   

12.
Understanding how animals weigh habitat features, exposure to predators and access to resources is important to determining their life history and distribution across the landscape. For example, when predators accumulate in structurally complex habitats, they face an environment with different competitive interactions, foraging opportunities and predatory risks. The wolf spider Pardosa milvina inhabits the soil surface of highly disturbed habitats such as agricultural fields throughout eastern North America. Pardosa displays effective antipredator behavior in the presence of chemical cues produced by a larger coexisting wolf spider, Hogna helluo . We used those cues to simulate predation risk in laboratory and field experiments designed to test the effects of habitat substrate and predation risk on site selection and prey consumption of Pardosa . In general, Pardosa preferred more complex substrates over bare dirt but those preferences were eliminated or reversed when cues from Hogna were present. Feeding trials revealed that substrate alone had few effects on Pardosa prey consumption, which we measured by documenting the change in the abdomen width. Although the presence of Hogna cues reduced prey consumption overall in field feeding trials, the negative effect of predation risk on prey consumption was only observed in grass and bare dirt substrates in the laboratory. We also found that prey capture was negatively affected by habitat complexity for both spider species but that same complexity offered Pardosa protection from predation by Hogna. This study provides insight into how two predator species interact to balance site selection and feeding in order to avoid predation. Shifts in foraging and distributional patterns of predators can have profound implications for their role in the food web.  相似文献   

13.
1. We hypothesised that adult insects actively monitor potential habitats for the presence of fish by means of chemical cues and avoid sites that pose significant risks. This was examined by quantifying colonisation of insects in outdoor pools with no fish (controls), fish (direct predation effect) or caged fish (chemical predator cues).
2. A significant direct effect of predation was found, but no indirect effect (avoidance of chemical cue pools), on the total biomass of colonising insects. However, predatory insects avoided fish-cue pools, thus releasing non-predatory insects from predation. This resulted in significantly greater biomass of non-predatory insects in fish-cue pools than control pools.
3. Fish reduced the number of species of colonising insects in pools through predation. This negative influence of fish implies that caution is necessary when stocking wetlands and ponds with fish if the goal is to maximise biodiversity.
4. Our data suggest that although predatory aquatic insects may use chemical signals to assess the quality of potential habitats with respect to predation risk, direct predation is the main method by which fish affect insect assemblages in ponds. Because fish and invertebrate predators may both have strong effects on prey mortality, behavioural adjustment by insects to the actual predator regime within a habitat should be more important than avoiding colonisation of habitats with fish.  相似文献   

14.
Douglas W. Morris 《Oikos》2005,109(2):239-254
Current research contrasting prey habitat use has documented, with virtual unanimity, habitat differences in predation risk. Relatively few studies have considered, either in theory or in practice, simultaneous patterns in prey density. Linear predator–prey models predict that prey habitat preferences should switch toward the safer habitat with increasing prey and predator densities. The density‐dependent preference can be revealed by regression of prey density in safe habitat versus that in the riskier one (the isodar). But at this scale, the predation risk can be revealed only with simultaneous estimates of the number of predators, or with their experimental removal. Theories of optimal foraging demonstrate that we can measure predation risk by giving‐up densities of resource in foraging patches. The foraging theory cannot yet predict the expected pattern as predator and prey populations covary. Both problems are solved by measuring isodars and giving‐up densities in the same predator–prey system. I applied the two approaches to the classic predator–prey dynamics of snowshoe hares in northwestern Ontario, Canada. Hares occupied regenerating cutovers and adjacent mature‐forest habitat equally, and in a manner consistent with density‐dependent habitat selection. Independent measures of predation risk based on experimental, as well as natural, giving‐up densities agreed generally with the equal preference between habitats revealed by the isodar. There was no apparent difference in predation risk between habitats despite obvious differences in physical structure. Complementary studies contrasting a pair of habitats with more extreme differences confirmed that hares do alter their giving‐up densities when one habitat is clearly superior to another. The results are thereby consistent with theories of adaptive behaviour. But the results also demonstrate, when evaluating differences in habitat, that it is crucial to let the organisms we study define their own habitat preference.  相似文献   

15.
Guidetti P 《Oecologia》2007,154(3):513-520
Indirect effects of predators in the classic trophic cascade theory involve the effects of basal species (e.g. primary producers) mediated by predation upon strongly interactive consumers (e.g. grazers). The diversity and density of predators, and the way in which they interact, determine whether and how the effects of different predators on prey combine. Intraguild predation, for instance, was observed to dampen the effects of predators on prey in many ecosystems. In marine systems, species at high trophic levels are particularly susceptible to extinction (at least functionally). The loss of such species, which is mainly attributed to human activities (mostly fishing), is presently decreasing the diversity of marine predators in many areas of the world. Experimental studies that manipulate predator diversity and investigate the effects of this on strongly interactive consumers (i.e. those potentially capable of causing community-wide effects) in marine systems are scant, especially in the rocky sublittoral. I established an experiment that utilised cage enclosures to test whether the diversity and density of fish predators (two sea breams and two wrasses) would affect predation upon juvenile and adult sea urchins, the most important grazers in Mediterranean sublittoral rocky reefs. Changes in species identity (with sea breams producing major effects) and density of predators affected predation upon sea urchins more than changes in species richness per se. Predation upon adult sea urchins decreased in the presence of multiple predators, probably due to interference competition between sea breams and wrasses. This study suggests that factors that influence both fish predator diversity and density in Mediterranean rocky reefs (e.g. fishing and climate change) may have the potential to affect the predators' ability to control sea urchin population density, with possible repercussions for the whole benthic community structure.  相似文献   

16.
Finke DL  Denno RF 《Oecologia》2006,149(2):265-275
The ability of predators to elicit a trophic cascade with positive impacts on primary productivity may depend on the complexity of the habitat where the players interact. In structurally-simple habitats, trophic interactions among predators, such as intraguild predation, can diminish the cascading effects of a predator community on herbivore suppression and plant biomass. However, complex habitats may provide a spatial refuge for predators from intraguild predation, enhance the collective ability of multiple predator species to limit herbivore populations, and thus increase the overall strength of a trophic cascade on plant productivity. Using the community of terrestrial arthropods inhabiting Atlantic coastal salt marshes, this study examined the impact of predation by an assemblage of predators containing Pardosa wolf spiders, Grammonota web-building spiders, and Tytthus mirid bugs on herbivore populations (Prokelisia planthoppers) and on the biomass of Spartina cordgrass in simple (thatch-free) and complex (thatch-rich) vegetation. We found that complex-structured habitats enhanced planthopper suppression by the predator assemblage because habitats with thatch provided a refuge for predators from intraguild predation including cannibalism. The ultimate result of reduced antagonistic interactions among predator species and increased prey suppression was enhanced conductance of predator effects through the food web to positively impact primary producers. Behavioral observations in the laboratory confirmed that intraguild predation occurred in the simple, thatch-free habitat, and that the encounter and capture rates of intraguild prey by intraguild predators was diminished in the presence of thatch. On the other hand, there was no effect of thatch on the encounter and capture rates of herbivores by predators. The differential impact of thatch on the susceptibility of intraguild and herbivorous prey resulted in enhanced top-down effects in the thatch-rich habitat. Therefore, changes in habitat complexity can enhance trophic cascades by predator communities and positively impact productivity by moderating negative interactions among predators.  相似文献   

17.
Predator–prey size (PPS) relationships are determined by predator behaviour, with the likelihood of prey being eaten dependent on their size relative to that of the consumer. Published PPS relationships for 30 pelagic or benthic marine fish species were analysed using quantile regression to determine how median, lower and upper prey sizes varied with predator size and habitat. Habitat effects on predator foraging activity/mode, morphology, growth and natural mortality are quantified and the effects on PPS relationships explored. Pelagic species are more active, more likely to move by caudal fin propulsion and grow more rapidly but have higher mortality rates than benthic species, where the need for greater manoeuvrability when foraging in more physically complex habitats favours ambush predators using pectoral fin propulsion. Prey size increased with predator size in most species, but pelagic species ate relatively smaller prey than benthic predators. As pelagic predators grew, lower prey size limits changed little, and prey size range increased but median relative prey size declined, whereas the lower limit increased and median relative prey size was constant or increased in benthic species.  相似文献   

18.
Latitudinal gradients in the strength of biotic interactions have long been proposed, but empirical evidence for the expectation of more intense predation, herbivory and competition at low latitudes has been mixed. Here, we use a meta‐analysis to test the prediction that predation pressure on sea urchins, a group of consumers with a particularly strong influence on community structure in the world's oceans, is strongest in the tropics. We then examine which biotic and abiotic factors best correlate with biogeographic and within habitat patterns in sea urchin responses to predation. Consistent with expectations, predator impacts on sea urchins were highest in tropical coral reefs and decreased towards the poles in rocky reef habitats (> 25° absolute latitude). However, latitude and temperature were weakly correlated with effect sizes, and the strongest predictor of predator impacts was sea urchin species. This suggests an important role of prey identity (i.e. traits including behaviour, physical, and chemical defences) rather than large scale abiotic factors in determining variation in interaction strengths. Ecosystem‐shaping sea urchins such as Tripneustes gratilla, Diadema savignyi and Centrostephanus rodgersii were strongly impacted by consumers, indicating a tight coupling between predators of these species and their boom and bust prey. Anthropogenic activities such as over‐fishing, climate change and habitat destruction are causing rapid environmental change, and understanding how predation pressure varies with temperature, across habitats and among prey species, will aid in predicting the likelihood of ecosystem wide effects (via trophic cascades).  相似文献   

19.
Spatial variation in habitat riskiness has a major influence on the predator–prey space race. However, the outcome of this race can be modulated if prey shares enemies with fellow prey (i.e., another prey species). Sharing of natural enemies may result in apparent competition, and its implications for prey space use remain poorly studied. Our objective was to test how prey species spend time among habitats that differ in riskiness, and how shared predation modulates the space use by prey species. We studied a one‐predator, two‐prey system in a coastal dune landscape in the Netherlands with the European hare (Lepus europaeus) and European rabbit (Oryctolagus cuniculus) as sympatric prey species and red fox (Vulpes vulpes) as their main predator. The fine‐scale space use by each species was quantified using camera traps. We quantified residence time as an index of space use. Hares and rabbits spent time differently among habitats that differ in riskiness. Space use by predators and habitat riskiness affected space use by hares more strongly than space use by rabbits. Residence time of hare was shorter in habitats in which the predator was efficient in searching or capturing prey species. However, hares spent more time in edge habitat when foxes were present, even though foxes are considered ambush predators. Shared predation affected the predator–prey space race for hares positively, and more strongly than the predator–prey space race for rabbits, which were not affected. Shared predation reversed the predator–prey space race between foxes and hares, whereas shared predation possibly also released a negative association and promoted a positive association between our two sympatric prey species. Habitat riskiness, species presence, and prey species’ escape mode and foraging mode (i.e., central‐place vs. noncentral‐place forager) affected the prey space race under shared predation.  相似文献   

20.
Hughes AR  Grabowski JH 《Oecologia》2006,149(2):256-264
Despite increasing evidence that habitat structure can shape predator–prey interactions, few studies have examined the impact of habitat context on interactions among multiple predators and the consequences for combined foraging rates. We investigated the individual and combined effects of stone crabs (Menippe mercenaria) and knobbed whelks (Busycon carica) when foraging on two common bivalves, the hard clam (Mercenaria mercenaria) and the ribbed mussel (Geukensia demissa) in oyster reef and sand flat habitats. Because these species co-occur across these and other estuarine habitats of varying physical complexity, this system is ideal for examining how habitat context influences foraging rates and the generality of predator interactions. Consistent with results from previous studies, consumption rates of each predator in isolation from the other were higher in the sand flat than in the more structurally complex oyster reef habitat. However, consumption by the two predators when combined surprisingly did not differ between the two habitats. This counterintuitive result probably stems from the influence of habitat structure on predator–predator interactions. In the sand-flat habitat, whelks significantly reduced their consumption of their less preferred prey when crabs were present. However, the structurally more complex oyster reef habitat appeared to reduce interference interactions among predators, such that consumption rates when the predators co-occurred did not differ from predation rates when alone. In addition, both habitat context and predator–predator interactions increased resource partitioning by strengthening predator dietary selectivity. Thus, an understanding of how habitat characteristics such as physical complexity influence interactions among predators may be critical to predicting the effects of modifying predator populations on their shared prey.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号