首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The objective of this study was to test whether elevated [CO2], [O3] and nitrogen (N) fertility altered leaf mass per area (LMPA), non‐structural carbohydrate (TNC), N, lignin (LTGA) and proanthocyanidin (PA) concentrations in cotton (Gossypium hirsutum L.) leaves and roots. Cotton was grown in 14 dm3 pots with either sufficient (0·8 g N dm ? 3) or deficient (0·4 and 0·2 g N dm ? 3) N fertilization, and treated in open‐top chambers with either ambient or elevated ( + 175 and + 350 μ mol mol ? 1) [CO2] in combination with either charcoal‐filtered air (CF) or non‐filtered air plus 1·5 times ambient [O3]. At about 50 d after planting, LMPA, starch and PA concentrations in canopy leaves were as much as 51–72% higher in plants treated with elevated [CO2] compared with plants treated with ambient [CO2], whereas leaf N concentration was 29% lower in elevated [CO2]‐treated plants compared with controls. None of the treatments had a major effect on LTGA concentrations on a TNC‐free mass basis. LMPA and starch levels were up to 48% lower in plants treated with elevated [O3] and ambient [CO2] compared with CF controls, although the elevated [O3] effect was diminished when plants were treated concurrently with elevated [CO2]. On a total mass basis, leaf N and PA concentrations were higher in samples treated with elevated [O3] in ambient [CO2], but the difference was much reduced by elevated [CO2]. On a TNC‐free basis, however, elevated [O3] had little effect on tissue N and PA concentrations. Fertilization treatments resulted in higher PA and lower N concentrations in tissues from the deficient N fertility treatments. The experiment showed that suppression by elevated [O3] of LMPA and starch was largely prevented by elevated [CO2], and that interpretation of [CO2] and [O3] effects should include comparisons on a TNC‐free basis. Overall, the experiment indicated that allocation to starch and PA may be related to how environmental factors affect source–sink relationships in plants, although the effects of elevated [O3] on secondary metabolites differed in this respect.  相似文献   

2.
Strawberry (Fragaria × ananassa) plants were grown in field plots at the current ambient [CO2], and at ambient + 300 and ambient + 600 μmol mol−1 [CO2]. Approximately weekly measurements were made of single leaf gas exchange of upper canopy leaves from early spring through fall of two years, in order to determine the temperature dependence of the stimulation of photosynthesis by elevated [CO2], whether growth at elevated [CO2] resulted in acclimation of photosynthesis, and whether any photosynthetic acclimation was reduced when fruiting created additional demand for the products of photosynthesis. Stimulation of photosynthetic CO2 assimilation by short-term increases in [CO2] increased strongly with measurement temperature. The stimulation exceeded that predicted from the kinetic characteristics of ribulose-1,5-bisphosphate carboxylase at all temperatures. Acclimation of photosynthesis to growth at elevated [CO2] was evident from early spring through summer, including the fruiting period in early summer, with lower rates under standard measurement conditions in plants grown at elevated [CO2]. The degree of acclimation increased with growth [CO2]. However, there were no significant differences between [CO2] treatments in total nitrogen per leaf area, and photosynthetic acclimation was reversed one day after switching the [CO2] treatments. Tests showed that acclimation did not result from a limitation of photosynthesis by triose phosphate utilization rate at elevated [CO2]. Photosynthetic acclimation was not evident during dry periods in midsummer, when the elevated [CO2] treatments conserved soil water and photosynthesis declined more at ambient than at elevated [CO2]. Acclimation was also not evident during the fall, when plants were vegetative, despite wet conditions and continued higher leaf starch content at elevated [CO2]. Stomatal conductance responded little to short-term changes in [CO2] except during drought, and changed in parallel with photosynthetic acclimation through the seasons in response to the long-term [CO2] treatments. The data do not support the hypothesis that source-sink balance controls the seasonal occurrence of photosynthetic acclimation to elevated [CO2] in this species. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
An important question with respect to plant performance in future climatic scenarios is whether the offspring of mature trees that have experienced lifelong exposure to elevated [CO2] show altered physiological responses to elevated [CO2] compared with those originating from current ambient CO2 concentrations. To investigate this question, acorns were collected from two seed sources, denoted as ‘control’ and ‘spring’, from Quercus ilex mother trees grown at ambient (36 Pa) and at about twice ambient CO2 concentrations, respectively, close to a natural CO2 spring, Laiatico, central Italy. The seedlings were raised for 8 months under controlled conditions at ambient and elevated [CO2] in a reciprocal experimental design and were used for the determination of biomass, photosynthesis and foliar carbohydrate concentrations, as well as the accumulation of structural biomass and lignin during leaf maturation. Under ambient [CO2], biomass and foliar carbon acquisition in control progeny were not significantly different from spring progeny. However, under elevated [CO2], spring seedlings showed less CO2 acclimation than control seedlings but no significant differences in non‐structural carbohydrate concentrations and structural biomass per unit leaf dry mass. Developmental lignin accumulation in leaves was delayed under elevated [CO2] compared with ambient [CO2], but only in control progeny. Under elevated [CO2], whole‐plant biomass, leaf area and stem diameter were significantly increased in Quercus ilex seedlings from both seed sources but with a higher stimulation of above‐ground biomass in spring than in control seedlings and a higher stimulation of below‐ground biomass in control seedlings. These results indicate that life history and/or progeny may determine the species‐specific CO2 response and suggest that positive CO2 acclimation is possible.  相似文献   

4.
Recent work has suggested that the photosynthetic rate of certain C4 species can be stimulated by increasing CO2 concentration, [CO2], even under optimal water and nutrients. To determine the basis for the observed photosynthetic stimulation, we tested the hypothesis that the CO2 leak rate from the bundle sheath would be directly related to any observed stimulation in single leaf photosynthesis at double the current [CO2]. Three C4 species that differed in the reported degree of bundle sheath leakiness to CO2, Flaveria trinervia, Panicum miliaceum, and Panicum maximum, were grown for 31–48 days after sowing at a [CO2] of 350 μl l?1 (ambient) or 700 μl l?1 (elevated). Assimilation as a function of increasing [CO2] at high photosynthetic photon flux density (PPFD, 1 600 μmol m?2 s?1) indicated that leaf photosynthesis was not saturated under current ambient [CO2] for any of the three C4 species. Assimilation as a function of increasing PPFD also indicated that the response of leaf photosynthesis to elevated [CO2] was light dependent for all three C4 species. The stimulation of leaf photosynthesis at elevated [CO2] was not associated with previously published values of CO2 leak rates from the bundle sheath, changes in the ratio of activities of PEP-carboxylase to RuBP carboxylase/oxgenase, or any improvement in daytime leaf water potential for the species tested in this experiment. In spite of the simulation of leaf photosynthesis, a significant increase in growth at elevated [CO2] was only observed for one species, F. trinervia. Results from this study indicate that leaf photosynthetic rates of certain C4 species can respond directly to increased [CO2] under optimal growth conditions, but that the stimulation of whole plant growth at elevated carbon dioxide cannot be predicted solely on the response of individual leaves.  相似文献   

5.
The C4 cereal Sorghum bicolor was grown under either ambient (350 μmol mol?1) or elevated (700 μmol mol?1) [CO2] in either the presence or absence of the C3 obligate root hemi-parasites Striga hermonthica or S. asiatica. Both uninfected and infected sorghum plants were taller and had greater biomass, photosynthetic rates, water-use efficiencies and leaf areas under elevated compared with ambient [CO2]. There was no evidence of any downregula-tion of photosynthesis in sorghum grown at elevated [CO2]. Biomass of infected sorghum was lower under both ambient and elevated [CO2], and although infected plants were larger under elevated [CO2] the relative impact of infection on host biomass was either the same (S. asiatica) or only slightly less (S. hermonthica) than under ambient [CO2]. In contrast, biomass of S. hermonthica and S. asiatica per host was lower under elevated than ambient [CO2], although rates of photosynthesis were higher at elevated [CO2] and parasite stomatal conductance was not responsive to [CO2]. Parasites emerged above-ground and flowered earlier under ambient compared with elevated [CO2]. It appears that the mechanism(s) by which the parasites affect host growth is (are) relatively insensitive to increased atmospheric [CO2], although the parasites themselves were adversely affected by growth at elevated [CO2].  相似文献   

6.
Soil moisture profiles can affect species composition and ecosystem processes, but the effects of increased concentrations of atmospheric carbon dioxide ([CO2]) on the vertical distribution of plant water uptake have not been studied. Because plant species composition affects soil moisture profiles, and is likely to shift under elevated [CO2], it is also important to test whether the indirect effects of [CO2] on soil water content may depend on species composition. We examined the effects of elevated [CO2] and species composition on soil moisture profiles in an annual grassland of California. We grew monocultures and a mixture of Avena barbata and Hemizonia congesta– the dominant species of two phenological groups – in microcosms exposed to ambient (~370 μmol mol?1) and elevated (~700 μmol mol?1) [CO2]. Both species increased intrinsic and yield‐based water use efficiency under elevated [CO2], but soil moisture increased only in communities with A. barbata, the dominant early‐season annual grass. In A. barbata monocultures, the [CO2] treatment did not affect the depth distribution of soil water loss. In contrast to communities with A. barbata, monocultures of H. congesta, a late‐season annual forb, did not conserve water under elevated [CO2], reflecting the increased growth of these plants. In late spring, elevated [CO2] also increased the efficiency of deep roots in H. congesta monocultures. Under ambient [CO2], roots below 60 cm accounted for 22% of total root biomass and were associated with 9% of total water loss, whereas in elevated [CO2], 16% of total belowground biomass was associated with 34% of total water loss. Both soil moisture and isotope data showed that H. congesta monocultures grown under elevated [CO2] began extracting water from deep soils 2 weeks earlier than plants in ambient [CO2].  相似文献   

7.
The atmospheric [CO2] in which crops grow today is greater than at any point in their domestication history and represents an opportunity for positive effects on seed yield that can counteract the negative effects of greater heat and drought this century. In order to maximize yields under future atmospheric [CO2], we need to identify and study crop cultivars that respond most favorably to elevated [CO2] and understand the mechanisms contributing to their responsiveness. Soybean (Glycine max Merr.) is a widely grown oilseed crop and shows genetic variation in response to elevated [CO2]. However, few studies have studied the physiological basis for this variation. Here, we examined canopy light interception, photosynthesis, respiration and radiation use efficiency along with yield and yield parameters in two cultivars of soybean (Loda and HS93‐4118) previously reported to have similar seed yield at ambient [CO2], but contrasting responses to elevated [CO2]. Seed yield increased by 26% at elevated [CO2] (600 μmol/mol) in the responsive cultivar Loda, but only by 11% in HS93‐4118. Canopy light interception and leaf area index were greater in HS93‐4118 in ambient [CO2], but increased more in response to elevated [CO2] in Loda. Radiation use efficiency and harvest index were also greater in Loda than HS93‐4118 at both ambient and elevated [CO2]. Daily C assimilation was greater at elevated [CO2] in both cultivars, while stomatal conductance was lower. Electron transport capacity was also greater in Loda than HS93‐4118, but there was no difference in the response of photosynthetic traits to elevated [CO2] in the two cultivars. Overall, this greater understanding of leaf‐ and canopy‐level photosynthetic traits provides a strong conceptual basis for modeling genotypic variation in response to elevated [CO2].  相似文献   

8.
Over time, the relative effects of elevated [CO2] on the aboveground photosynthesis, growth and development of rice (Oryza sativa L.) are likely to be changed with increasing duration of CO2 exposure, but the resultant effects on rice belowground responses remain to be evaluated. To investigate the impacts of elevated [CO2] on seasonal changes in root growth, morphology and physiology of rice, a free‐air CO2 enrichment (FACE) experiment was performed at Wuxi, Jiangsu, China, in 2002–2003. A japonica cultivar with large panicle was exposed to two [CO2] (ambient [CO2], 370 μmol mol−1; elevated [CO2], 570 μmol mol−1) at three levels of nitrogen (N): low (LN, 15 g N m−2), medium (MN, 25 g N m−2) and high N (HN, 35 g N m−2). Elevated [CO2] increased cumulative root volume, root dry weight, adventitious root length and adventitious root number at all developmental stages by 25–71%, which was mainly associated with increased root growth rate during early growth period (EGP) and lower rate of root senescence during late growth period (LGP), while a slight inhibition of root growth rate occurred during middle growth period (MGP). For individual adventitious roots, elevated [CO2] increased average length, volume, diameter and dry weight early in the season, but the effects gradually disappeared in subsequent stages. Total surface area and active adsorption area per unit root dry weight reached their maxima 10 days earlier in FACE vs. ambient plants, but both of them together with root oxidation ability per unit root dry weight declined with elevated [CO2] during MGP and LGP, the decline being larger during MGP than LGP. The CO2‐induced decreases in specific root activities during MGP and LGP were associated with a larger amount of root accumulation during EGP and lower N concentration and higher C/N ratio in roots during MGP and LGP in FACE vs. ambient plants. The results suggest that most of the CO2‐induced increases in shoot growth of rice are similarly associated with increased root growth.  相似文献   

9.
J. He  L. Qin  S. K. Lee 《Photosynthetica》2013,51(3):330-340
Effects of elevated root-zone (RZ) CO2 concentration (RZ [CO2]) and RZ temperature (RZT) on photosynthesis, productivity, nitrate (NO3 ?), total reduced nitrogen (TRN), total leaf soluble and Rubisco proteins were studied in aeroponically grown lettuce plants in a tropical greenhouse. Three weeks after transplanting, four different RZ [CO2] concentrations (ambient, 360 ppm, and elevated concentrations of 2,000; 10,000; and 50,000 ppm) were imposed on plants at 20°C-RZT or ambient(A)-RZT (24–38°C). Elevated RZ [CO2] resulted in significantly higher light-saturated net photosynthetic rate, but lower light-saturated stomatal conductance. Higher elevated RZ [CO2] also protected plants from both chronic and dynamic photoinhibition (measured by chlorophyll fluorescence Fv/Fm ratio) and reduced leaf water loss. Under each RZ [CO2], all these variables were significantly higher in 20°C-RZT plants than in A-RZT plants. All plants accumulated more biomass at elevated RZ [CO2] than at ambient RZ [CO2]. Greater increases of biomass in roots than in shoots were manifested by lower shoot/root ratios at elevated RZ [CO2]. Although the total biomass was higher at 20°C-RZT, the increase in biomass under elevated RZ [CO2] was greater at A-RZT. Shoot NO3 ? and TRN concentrations, total leaf soluble and Rubisco protein concentrations were higher in all elevated RZ [CO2] plants than in plants under ambient RZ [CO2] at both RZTs. Under each RZ [CO2], total leaf soluble and Rubisco protein concentrations were significantly higher at 20°C-RZT than at A-RZT. Our results demonstrated that increased P Nmax and productivity under elevated [CO2] was partially due to the alleviation of midday water loss, both dynamic and chronic photoinhibition as well as higher turnover of Calvin cycle with higher Rubisco proteins.  相似文献   

10.
In order to predict the potential impacts of global change, it is important to understand the impact of increasing global atmospheric [CO2] on the growth and yield of crop plants. The objectives of this study were to determine the interaction of N fertilization rates and atmospheric [CO2] on radiation interception and radiation-use efficiency of rice (Oryza sativa L. cv. IR72) grown under tropical field conditions. Rice plants were grown inside open top chambers in a lowland rice field at the International Rice Research Institute in the Philippines at ambient (about 350 μmol mol-1) or elevated (about 600 μmol mol-1 during the 1993 wet season and 700 μmol mol-1 during the 1994 dry season) in combination with three levels of applied N (0, 50 or 100 kg N ha-1 in the wet season; 0, 90 or 200 kg N ha-1 in the dry season). Light interception was not directly affected by [CO2], but elevated [CO2] indirectly increased light interception through increasing total absorbed N. Plant N requirement for radiation interception was similar for rice grown under ambient [CO2] or elevated [CO2] treatments. The conversion efficiency of intercepted radiation to dry matter, radiation-use efficiency (RUE), was about 35% greater at elevated [CO2] than at ambient [CO2]. The relationship between leaf N and RUE was curvilinear. At ambient [CO2], RUE was fairly stable across levels of leaf N, but leaf N less than about 2.5% resulted in lower RUE for plants grown with elevated [CO2] than for plant grown at ambient [CO2]. Decreased leaf N with increased [CO2], therefore decreased RUE of rice plants grown at elevated [CO2]. When predicting responses of rice to elevated [CO2], RUE should be adjusted with a decrease in leaf N. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
Maize and grain sorghum seeds were sown in pots and grown for 39 days in sunlit controlled-environment chambers at 360 (ambient) and 720 (double-ambient, elevated) μmol mol−1 carbon dioxide concentrations [CO2]. Canopy net photosynthesis (PS) and evapotranspiration (TR) was measured throughout and summarized daily from 08:00 to 17:00 h Eastern Standard Time. Irrigation was withheld from matched pairs of treatments starting on 26 days after sowing (DAS). By 35 DAS, cumulative PS of drought-stress maize, compared to well-watered plants, was 41% lower under ambient [CO2] but only 13% lower under elevated [CO2]. In contrast, by 35 DAS, cumulative PS of drought-stress grain sorghum, compared to well-watered plants, was only 9% lower under ambient [CO2] and 7% lower under elevated [CO2]. During the 27-35 DAS drought period, water use efficiency (WUE, mol CO2 Kmol−1 H2O), was 3.99, 3.88, 5.50, and 8.65 for maize and 3.75, 4.43, 5.26, and 9.94 for grain sorghum, for ambient-[CO2] well-watered, ambient-[CO2] stressed, elevated-[CO2] well-watered and elevated-[CO2] stressed plants, respectively. Young plants of maize and sorghum used water more efficiently at elevated [CO2] than at ambient [CO2], especially under drought. Reductions in biomass by drought for young maize and grain sorghum plants were 42 and 36% at ambient [CO2], compared to 18 and 14% at elevated [CO2], respectively. Results of our water stress experiment demonstrated that maintenance of relatively high canopy photosynthetic rates in the face of decreased transpiration rates enhanced WUE in plants grown at elevated [CO2]. This confirms experimental evidence and conceptual models that suggest that an increase of intercellular [CO2] (or a sustained intercellular [CO2]) in the face of decreased stomatal conductance results in relative increases of growth of C4 plants. In short, drought stress in C4 crop plants can be ameliorated at elevated [CO2] as a result of lower stomatal conductance and sustaining intercellular [CO2]. Furthermore, less water might be required for C4 crops in future higher CO2 atmospheres, assuming weather and climate similar to present conditions.  相似文献   

12.
Better understanding of crop responses to projected changes in climate is an important requirement. An experiment was conducted in sunlit, controlled environment chambers known as soil–plant–atmosphere–research units to determine the interactive effects of atmospheric carbon dioxide concentration [CO2] and ultraviolet‐B (UV‐B) radiation on cotton (Gossypium hirsutum L.) growth, development and leaf photosynthetic characteristics. Six treatments were used, comprising two levels of [CO2] (360 and 720 µmol mol?1) and three levels of 0 (control), 7.7 and 15.1 kJ m?2 d?1 biologically effective UV‐B radiations within each CO2 level. Treatments were imposed for 66 d from emergence until 3 weeks after the first flower stage. Plants grown in elevated [CO2] had greater leaf area and higher leaf photosynthesis, non‐structural carbohydrates, and total biomass than plants in ambient [CO2]. Neither dry matter partitioning among plant organs nor pigment concentrations was affected by elevated [CO2]. On the other hand, high UV‐B (15.1 kJ m?2 d?1) radiation treatment altered growth resulting in shorter stem and branch lengths and smaller leaf area. Shorter plants at high UV‐B radiation were related to internode lengths rather than the number of mainstem nodes. Fruit dry matter accumulation was most sensitive to UV‐B radiation due to fruit abscission. Even under 7.7 kJ m?2 d?1 of UV‐B radiation, fruit dry weight was significantly lower than the control although total biomass and leaf photosynthesis did not differ from the control. The UV‐B radiation of 15.1 kJ m?2 d?1 reduced both total (43%) and fruit (88%) dry weights due to smaller leaf area and lower leaf net photosynthesis. Elevated [CO2] did not ameliorate the adverse effects of UV‐B radiation on cotton growth and physiology, particularly the boll retention under UV‐B stress.  相似文献   

13.
Acclimation of photosynthesis to growth at elevated CO2 concentration varies markedly between species. Species functionally classified as stress-tolerators (S) and ruderals (R), are thought to be incapable, or the least capable, of responding positively in terms of growth to elevated [CO2]. Is this pattern of response also apparent in leaf photosynthesis of wild S- and R-strategists? Acclimatory loss of a photosynthetic and growth response to elevated [CO2] is assumed to reflect limitation on capacity to utilize additional photosynthate. The doubling of pre-industrial global [CO2] is expected to coincide with a 3 °C increase in mean temperature which could stimulate growth; will photosynthetic capacity at elevated [CO2] be greater when the concurrent temperature increase is simulated? Five species from natural grassland of NW Europe and of contrasting ecological strategy were grown in hemispherical greenhouses, environmentally controlled to track the external microclimate. Within a replicated design, plants were grown at (i) current ambient [CO2] and temperature, (ii) elevated [CO2] (ambient + 340 μmol mol–1) and ambient temperature, (iii) ambient [CO2] and elevated temperature (ambient + 3 °C), or (iv) elevated [CO2] and elevated temperature. After 75–104 days, the CO2 response of light-saturated rates of photosynthesis (Asat) was analysed in controlled-environment cuvettes in a field laboratory. There was no acclimatory loss of photosynthetic capacity with growth in elevated [CO2] or elevated temperature over this period in Poa alpina (S), Bellis perennis (R) or Plantago lanceolata (mixed C-S-R strategist), and a significant (P ? ? bl 0.05) increase in capacity in Helianthemum nummularium (S) and Poa annua (R). Photosynthetic rates of leaves grown and measured in elevated [CO2] were therefore significantly higher than rates for leaves grown and measured in ambient [CO2], for all species. With the exception of Poa alpina, stomatal conductance and stomatal limitation on Asat showed no acclimatory response to growth in elevated [CO2]. Carboxylation efficiency, determined from the initial slope of the response of Asat to intercellular CO2 concentration was significantly increased by elevated [CO2] and elevated temperature in H.nummularium, implying a possible increase in in vivo RubisCO activity. Increased carboxylation efficiency of this species was also reflected by an increase in the CO2- and light-saturated rates of photosynthesis, indicating an increased capacity for regeneration of the primary CO2 acceptor in photosynthesis. The results show that R-strategists and slow-growing S-strategists, are inherently capable of large increases in leaf photosynthetic capacity with growth in elevated [CO2] in contrast to expectations from growth studies. With the exception of P.annua, where there was a significant negative interaction between CO2 and temperature, concurrent increase in growth temperature had little effect on this pattern of response.  相似文献   

14.
Peanut (Arachis hypogaea L. cv. Florunner) was grown from seed sowing to plant maturity under two daytime CO2 concentrations ([CO2]) of 360 μmol mol−1 (ambient) and 720 μmol mol−1 (elevated) and at two temperatures of 1.5 and 6.0 °C above ambient temperature. The objectives were to characterize peanut leaf photosynthesis responses to long-term elevated growth [CO2] and temperature, and to assess whether elevated [CO2] regulated peanut leaf photosynthetic capacity, in terms of activity and protein content of ribulose bisphosphate carboxylase-oxygenase (Rubisco), Rubisco photosynthetic efficiency, and carbohydrate metabolism. At both growth temperatures, leaves of plants grown under elevated [CO2] had higher midday photosynthetic CO2 exchange rate (CER), lower transpiration and stomatal conductance and higher water-use efficiency, compared to those of plants grown at ambient [CO2]. Both activity and protein content of Rubisco, expressed on a leaf area basis, were reduced at elevated growth [CO2]. Declines in Rubisco under elevated growth [CO2] were 27–30% for initial activity, 5–12% for total activity, and 9–20% for protein content. Although Rubisco protein content and activity were down-regulated by elevated [CO2], Rubisco photosynthetic efficiency, the ratio of midday light-saturated CER to Rubisco initial or total activity, of the elevated-[CO2] plants was 1.3- to 1.9-fold greater than that of the ambient-[CO2] plants at both growth temperatures. Leaf soluble sugars and starch of plants grown at elevated [CO2] were 1.3- and 2-fold higher, respectively, than those of plants grown at ambient [CO2]. Under elevated [CO2], leaf soluble sugars and starch, however, were not affected by high growth temperature. In contrast, high temperature reduced leaf soluble sugars and starch of the ambient-[CO2] plants. Activity of sucrose-P synthase, but not adenosine 5′-diphosphoglucose pyrophosphorylase, was up-regulated under elevated growth [CO2]. Thus, in the absence of other environmental stresses, peanut leaf photosynthesis would perform well under rising atmospheric [CO2] and temperature as predicted for this century.  相似文献   

15.
To examine the role of sink size on photosynthetic acclimation under elevated atmospheric CO2 concentrations ([CO2]), we tested the effects of panicle-removal (PR) treatment on photosynthesis in rice (Oryza sativa L.). Rice was grown at two [CO2] levels (ambient and ambient + 200 μmol mol−1) throughout the growing season, and at full-heading stage, at half the plants, a sink-limitation treatment was imposed by the removal of the panicles. The PR treatment alleviated the reduction of green leaf area, the contents of chlorophyll (Chl) and Rubisco after the full-heading stage, suggesting delay of senescence. Nonetheless, elevated [CO2] decreased photosynthesis (measured at current [CO2]) of plants exposed to the PR treatment. No significant [CO2] × PR interaction on photosynthesis was observed. The decrease of photosynthesis by elevated [CO2] of plants was associated with decreased leaf Rubisco content and N content. Leaf glucose content was increased by the PR treatment and also by elevated [CO2]. In conclusion, a sink-limitation in rice improved N status in the leaves, but this did not prevent the photosynthetic down-regulation under elevated [CO2].  相似文献   

16.
Poplar (Populus × euroamericana) saplings were grown in the field to study the changes of photosynthesis and isoprene emission with leaf ontogeny in response to free air carbon dioxide enrichment (FACE) and soil nutrient availability. Plants growing in elevated [CO2] produced more leaves than those in ambient [CO2]. The rate of leaf expansion was measured by comparing leaves along the plant profile. Leaf expansion and nitrogen concentration per unit of leaf area was similar between nutrient treatment, and this led to similar source–sink functional balance. Consequently, soil nutrient availability did not cause downward acclimation of photosynthetic capacity in elevated [CO2] and did not affect isoprene synthesis. Photosynthesis assessed in growth [CO2] was higher in plants growing in elevated than in ambient [CO2]. After normalizing for the different number of leaves over the profile, maximal photosynthesis was reached and started to decline earlier in elevated than in ambient [CO2]. This may indicate a [CO2]‐driven acceleration of leaf maturity and senescence. Isoprene emission was adversely affected by elevated [CO2]. When measured on the different leaves of the profile, isoprene peak emission was higher and was reached earlier in ambient than in elevated [CO2]. However, a larger number of leaves was emitting isoprene in plant growing in elevated [CO2]. When integrating over the plant profile, emissions in the two [CO2] levels were not different. Normalization as for photosynthesis showed that profiles of isoprene emission were remarkably similar in the two [CO2] levels, with peak emissions at the centre of the profile. Only the rate of increase of the emission of young leaves may have been faster in elevated than in ambient [CO2]. Our results indicate that elevated [CO2] may overall have a limited effect on isoprene emission from young seedlings and that plants generally regulate the emission to reach the maximum at the centre of the leaf profile, irrespective of the total leaf number. In comparison with leaf expansion and photosynthesis, isoprene showed marked and repeatable differences among leaves of the profile and may therefore be a useful trait to accurately monitor changes of leaf ontogeny as a consequence of elevated [CO2].  相似文献   

17.
Syvertsen  James P.  Graham  James H. 《Plant and Soil》1999,208(2):209-219
We hypothesized that greater photosynthate supply at elevated [CO2] could compensate for increased below-ground C demands of arbuscular mycorrhizas. Therefore, we investigated plant growth, mineral nutrition, starch, and net gas exchange responses of two Citrus spp. to phosphorus (P) nutrition and mycorrhizas at elevated atmospheric [CO2]. Half of the seedlings of sour orange (C. aurantium L.) and ‘Ridge Pineapple’ sweet orange (C. sinensis L. Osbeck) were inoculated with the arbuscular mycorrhizal (AM) fungus, Glomus intraradices Schenck and Smith and half were non-mycorrhizal (NM). Plants were grown at ambient or 2X ambient [CO2] in unshaded greenhouses for 11 weeks and fertilized daily with nutrient solution either without added P or with 2 mM P in a low-P soil. High P supply reduced AM colonization whereas elevated [CO2] counteracted the depressive effect of P on intraradical colonization and vesicle development. Seedlings grown at either elevated [CO2], high P or with G. intraradices had greater growth, net assimilation of CO2 (A CO2) in leaves, leaf water-use efficiency, leaf dry wt/area, leaf starch and carbon/nitrogen (C/N) ratio. Root/whole plant dry wt ratio was decreased by elevated [CO2], P, and AM colonization. Mycorrhizal seedlings had higher leaf-P status but lower leaf N and K concentrations than nonmycorrhizal seedlings which was due to growth dilution effects. Starch in fibrous roots was increased by elevated [CO2] but reduced by G. intraradices, especially at low-P supply. In fibrous roots, elevated [CO2] had no effect on C/N, but AM colonization decreased C/N in both Citrus spp. grown at low-P supply. Overall, there were no species differences in growth or A CO2. Mycorrhizas did not increase plant growth at ambient [CO2]. At elevated [CO2], however, mycorrhizas stimulated growth at both P levels in sour orange, the more mycorrhiza-dependent species, but only at low-P in sweet orange, the less dependent species. At low-P and elevated [CO2], colonization by the AM fungus increased A CO2 in both species but more so in sour orange than in sweet orange. Leaf P and root N concentrations were increased more and root starch level was decreased less by AM in sour orange than in sweet orange. Thus, the additional [CO2] availability to mycorrhizal plants increased CO2 assimilation, growth and nutrient uptake over that of NM plants especially in sour orange under P limitation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
ABSTRACT

Peach (Prunus persica L.) seedlings were germinated and grown for two growing seasons either in open top chambers (OTC) with ambient (350 μmol mol-1) or elevated (700 μmol mol-1) [CO2], or in an outside control plot, all located inside a glasshouse. The seedlings were grown in 10 dm3 pots and were fertilised once a week following Ingestad principles in order to supply mineral nutrients at free access rates. In the second growing season, rapid onset of water stress was imposed on rapidly growing peach seedlings by withholding water for a four-week drying cycle. In elevated [CO2], seedlings had a total dry mass which was 33% higher than that in ambient [CO2]. This increase was largely a consequence of increased height growth. [CO2] and irrigation treatments had only small effects on allocation, and there was no increase in root allocation with low water availability possibly as consequence of the high-nutrient regime. Specific leaf area was significantly reduced in elevated [CO2], and probably resulted from increases in starch concentrations. Stomatal conductance (g s) was not affected by elevated [CO2] both in well-watered and water-stressed seedlings. The combination of increased assimilation rate (A) and unchanged g s led to large increases in intrinsic water use efficiency in response to elevated [CO2]. The A/C i curves were used to derive the parameters describing photosynthetic capacity, Amax, Jmax and Vcmax . These parameters were similar among [CO2] treatments; thus, there was no downward acclimation of photosynthesis in elevated [CO2]. Moreover, Amax, Jmax and Vcmax scaled linearly with leaf N content per unit leaf area. This indicates that the whole-plant source-sink balance of peach seedlings was not disrupted by growth in elevated [CO2], because root volume and nutrient supply were non-restricting. These values may be used in scaling up models to improve their ability to predict the magnitude of tree responses to climate change in the Mediterranean area.  相似文献   

19.
We investigated the effect of elevated [CO2] (700 μmol mol?1), elevated temperature (+2 °C above ambient) and decreased soil water availability on net photosynthesis (Anet) and water relations of one‐year old potted loblolly pine (Pinus taeda L.) seedlings grown in treatment chambers with high fertility at three sites along a north‐south transect covering a large portion of the species native range. At each location (Blairsville, Athens and Tifton, GA) we constructed four treatment chambers and randomly assigned each chamber one of four treatments: ambient [CO2] and ambient temperature, elevated [CO2] and ambient temperature, ambient [CO2] and elevated temperature, or elevated [CO2] and elevated temperature. Within each chamber half of the seedlings were well watered and half received much less water (1/4 that of the well watered). Measurements of net photosynthesis (Anet), stomatal conductance (gs), leaf water potential and leaf fluorescence were made in June and September, 2008. We observed a significant increase in Anet in response to elevated [CO2] regardless of site or temperature treatment in June and September. An increase in air temperature of over 2 °C had no significant effect on Anet at any of the sites in June or September despite over a 6 °C difference in mean annual temperature between the sites. Decreased water availability significantly reduced Anet in all treatments at each site in June. The effects of elevated [CO2] and temperature on gs followed a similar trend. The temperature, [CO2] and water treatments did not significantly affect leaf water potential or chlorophyll fluorescence. Our findings suggest that predicted increases in [CO2] will significantly increase Anet, while predicted increases in air temperature will have little effect on Anet across the native range of loblolly pine. Potential decreases in precipitation will likely cause a significant reduction in Anet, though this may be mitigated by increased [CO2].  相似文献   

20.
Nitrogen‐fixing plant species growing in elevated atmospheric carbon dioxide concentration ([CO2]) should be able to maintain a high nutrient supply and thus grow better than other species. This could in turn engender changes in internal storage of nitrogen (N) and remobilisation during periods of growth. In order to investigate this one‐year‐old‐seedlings of Alnus glutinosa (L.) Gaertn and Pinus sylvestris (L.) were exposed to ambient [CO2] (350 µ mol mol ? 1) and elevated [CO2] (700 µ mol mol ? 1) in open top chambers (OTCs). This constituted a main comparison between a nitrogen‐fixing tree and a nonfixer, but also between an evergreen and a deciduous species. The trees were supplied with a full nutrient solution and in July 1994, the trees were given a pulse of 15N‐labelled fertiliser. The allocation of labelled N to different tissues (root, leaves, shoots) was followed from September 1994 to June 1995. While N allocation in P. sylvestris (Scots pine) showed no response to elevated [CO2], A. glutinosa (common alder) responded in several ways. During the main nutrient uptake period of June–August, trees grown in elevated [CO2] had a higher percentage of N derived from labelled fertiliser than trees grown in ambient [CO2]. Remobilisation of labelled N for spring growth was significantly higher in A. glutinosa grown in elevated [CO2] (9.09% contribution in ambient vs. 29.93% in elevated [CO2] leaves). Exposure to elevated [CO2] increased N allocation to shoots in the winter of 1994–1995 (12.66 mg in ambient vs. 43.42 mg in elevated 1993 shoots; 4.81 mg in ambient vs. 40.00 mg in elevated 1994 shoots). Subsequently significantly more labelled N was found in new leaves in April 1995. These significant increases in movement of labelled N between tissues could not be explained by associated increases in tissue biomass, and there was a significant shift in C‐biomass allocation away from the leaves towards the shoots (all above‐ground material except leaves) in A. glutinosa. This experiment provides the first evidence that not only are shifts in C allocation affected by elevated [CO2], but also internal N resource utilisation in an N2‐fixing tree.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号