首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arteries display a nonlinear anisotropic behavior dictated by the elastic properties and structural arrangement of its main constituents, elastin, collagen, and vascular smooth muscle. Elastin provides for structural integrity and for the compliance of the vessel at low pressure, whereas collagen gives the tensile resistance required at high pressures. Based on the model of Zulliger et al. (Zulliger MA, Rachev A, Stergiopulos N. Am J Physiol Heart Circ Physiol 287: H1335-H1343, 2004), which considers the contributions of elastin, collagen, and vascular smooth muscle cells (VSM) in an explicit form, we assessed the effects of enzymatic degradation of elastin on biomechanical properties of rabbit carotids. Pressure-diameter curves were obtained for controls and after elastin degradation, from which elastic and structural properties were derived. Data were fitted into the model of Zulliger et al. to assess elastic constants of elastin and collagen as well as the characteristics of the collagen engagement profile. The arterial segments were also prepared for histology to visualize and quantify elastin and collagen. Elastase treatment leads to a diameter enlargement, suggesting the existence of significant compressive prestresses within the wall. The elastic modulus was more ductile in treated arteries at low circumferential stretches and significantly greater at elevated circumferential stretches. Abrupt collagen fiber recruitment in elastase-treated arteries leads to a much stiffer vessel at high extensions. This change in collagen engagement properties results from structural alterations provoked by the degradation of elastin, suggesting a clear interaction between elastin and collagen, often neglected in previous constituent-based models of the arterial wall.  相似文献   

2.
The structural protein elastin endows large arteries with unique biological functionality and mechanical integrity, hence its disorganization, fragmentation, or degradation can have important consequences on the progression and treatment of vascular diseases. There is, therefore, a need in arterial mechanics to move from materially uniform, phenomenological, constitutive relations for the wall to those that account for separate contributions of the primary structural constituents: elastin, fibrillar collagens, smooth muscle, and amorphous matrix. In this paper, we employ a recently proposed constrained mixture model of the arterial wall and show that prestretched elastin contributes significantly to both the retraction of arteries that is observed upon transection and the opening angle that follows the introduction of a radial cut in an unloaded segment. We also show that the transmural distributions of elastin and collagen, compressive stiffness of collagen, and smooth muscle tone play complementary roles. Axial prestresses and residual stresses in arteries contribute to the homeostatic state of stress in vivo as well as adaptations to perturbed loads, disease, or injury. Understanding better the development of and changes in wall stress due to individual extracellular matrix constituents thus promises to provide considerable clinically important insight into arterial health and disease.  相似文献   

3.
Vascular smooth muscle is a major structural element of the arterial wall. We examined the effects of cytoskeleton destruction, after administration of Cytochalasin D, on the biomechanical properties of porcine common carotids. Compared to untreated, maximally dilated controls, Cytochalasin D-treated arteries have shown a marked increase in compliance in the elastin-dominated pressure range. After weakening the VSM stress-bearing cytoskeleton by Cytochalasin D the artery would expand, reaching a new equilibrium state. This study brings further evidence that VSM is under tension, even when it is under zero load and at maximal vasodilation. This residual tension was released upon partial destruction of the cytoskeleton with Cytochalasin D. From a biomechanical standpoint, this means that the zero stress states of the in-series and parallel elastic components are substantially different.  相似文献   

4.
The goal of this study was to model the in vivo non-linear mechanical behavior of human common carotid arteries (CCAs) and then to compare wall stresses and associated contributions of micro-constituents in normotensive (NT) and treated hypertensive (HT) subjects. We used an established theoretical model of 3D arterial mechanics that assumes a hyperelastic, anisotropic, active–passive, and residually stressed wall. In vivo data were obtained non-invasively from CCAs in 16 NT (21–64 years old) and 25 treated HT (44–69 years old) subjects. The associated quasi-static boundary value problem was solved semi-analytically over a cardiac cycle while accounting for surrounding perivascular tissue. Best-fit values of model parameters, including those describing contributions by intramural elastin, fibrillar collagen, and vascular smooth muscle, were estimated by a non-linear least-squares method. The model (1) captured temporal changes in intraluminal pressure, (2) estimated wall stress fields that appeared to reflect the presence or absence of age and disease, and (3) suggested changes in mechanical characteristics of wall micro-constituents despite medical treatment of hypertension. For example, age was positively correlated with residual stresses and altered fibrillar collagen in NT subjects, which indirectly validated the modeling, and HT subjects had higher levels of stresses, increased smooth muscle tone, and a stiffer elastin-dominated matrix despite treatment. These results are consistent with prior reports on effects of age and hypertension, but provide increased insight into evolving contributions of cell and matrix mechanics to arterial behavior in vivo.  相似文献   

5.
Primary pulmonary hypertension is a rare but deadly disease. Lungs extracted from PPH patients are deficient in endothelial nitric oxide synthase (eNOS), making the eNOS-null mouse a potentially useful model of the disease. To better understand the progression of pulmonary vascular remodeling in the congenital absence of eNOS, we induced pulmonary hypertension in eNOS-null mice using hypobaric hypoxia, and then quantified large artery structure and function in contralateral vessels. In particular, to assess structure we quantified diameter, wall thickness, and collagen, elastin and smooth muscle cell content; to quantify function we performed pressure-diameter tests. After remodeling, the pulmonary arteries had increased wall, collagen and elastin thicknesses compared to controls (P<0.05). The remodeled pulmonary arteries also had increased elastic moduli at low and high strains compared to controls (P<0.05). The increases in moduli at low and high strain correlated with increases in elastin and collagen thickness, respectively (P<0.05). These results provide insight into the mechanobiology of pulmonary vascular remodeling in the congenital absence of eNOS, and the coupled nature of these changes.  相似文献   

6.
Opening angles (OAs) are associated with growth and remodelling in arteries. One curiosity has been the relatively large OAs found in the aortic arch of some animals. Here, we use computational models to explore the reasons behind this phenomenon. The artery is assumed to contain a smooth muscle/collagen phase and an elastin phase. In the models, growth and remodelling of smooth muscle/collagen depends on wall stress and fluid shear stress. Remodelling of elastin, which normally turns over very slowly, is neglected. The results indicate that OAs generally increase with longitudinal curvature (torus model), earlier elastin production during development, and decreased wall stiffness. Correlating these results with available experimental data suggests that all of these effects may contribute to the large OAs in the aortic arch. The models also suggest that the slow turnover rate of elastin limits longitudinal growth. These results should promote increased understanding of the causes of residual stress in arteries.  相似文献   

7.
The vascular wall exhibits nonlinear anisotropic mechanical properties. The identification of a strain energy function (SEF) is the preferred method to describe its complex nonlinear elastic properties. Earlier constituent-based SEF models, where elastin is modeled as an isotropic material, failed in describing accurately the tissue response to inflation–extension loading. We hypothesized that these shortcomings are partly due to unaccounted anisotropic properties of elastin. We performed inflation–extension tests on common carotid of rabbits before and after enzymatic degradation of elastin and applied constituent-based SEFs, with both an isotropic and an anisotropic elastin part, on the experimental data. We used transmission electron microscopy (TEM) and serial block-face scanning electron microscopy (SBFSEM) to provide direct structural evidence of the assumed anisotropy. In intact arteries, the SEF including anisotropic elastin with one family of fibers in the circumferential direction fitted better the inflation–extension data than the isotropic SEF. This was supported by TEM and SBFSEM imaging, which showed interlamellar elastin fibers in the circumferential direction. In elastin-degraded arteries, both SEFs succeeded equally well in predicting anisotropic wall behavior. In elastase-treated arteries fitted with the anisotropic SEF for elastin, collagen engaged later than in intact arteries. We conclude that constituent-based models with an anisotropic elastin part characterize more accurately the mechanical properties of the arterial wall when compared to models with simply an isotropic elastin. Microstructural imaging based on electron microscopy techniques provided evidence for elastin anisotropy. Finally, the model suggests a later and less abrupt collagen engagement after elastase treatment.  相似文献   

8.
The aim of the present work was to study the morphological implications between the elastin and the phenotypic expression of the vascular smooth muscle cells. For this purpose, sixty human tortuous arteries from different territories have been studied. We have measured the morphometric indexes Intimal Thickening Index and Elastolyse Index and they have been quantified with computer system analysis, image-colour corresponding to the orcein and Verho?ff reactions for detecting elastin and the alpha-actin in the smooth muscle cells. We compared both territorial arteries from the cranial and from abdominal origin. The elastin concentration was similar in both territories, but not its morphology according to its spatial distribution. We have observed a relationship between the elastin structural organisation from the media of arteries and of the internal elastic lamina in these territories and the variation of reactivity to the smooth muscle alpha-actin as a marker of the phenotypic state. Our results confirm the hypothesis that elastin, besides intervening in the architecture of the arterial wall, is a factor implicated in the phenotypic variability of the smooth muscle cells and in the development and evolution of the intimal thickenings in human atherosclerosis.  相似文献   

9.
Blood vessels often experience torsion along their axes and it is essential to understand their biological responses and wall remodeling under torsion. To this end, a rat model was developed to investigate the arterial wall remodeling under sustained axial twisting in vivo. Rat carotid arteries were twisted at 180° along the longitudinal axis through a surgical procedure and maintained for different durations up to 4 weeks. The wall remodeling in these twisted arteries was examined using histology, immunohistochemistry and fluorescent microscopy. Our data showed that arteries remodeled under twisting in a time-dependent manner during the 4 weeks post-surgery. Cell proliferation, MMP-2 and MMP-9 expressions, medial wall thickness and lumen diameter increased while collagen to elastin ratio decreased. The size and number of internal elastic lamina fenestrae increased with elongated shapes, while the endothelial cells elongated and aligned towards the blood flow direction gradually. These results demonstrated that sustained axial twisting results in artery remodeling in vivo. The rat carotid artery twisting model is an effective in vivo model for studying arterial wall remodeling under long-term torsion. These results enrich our understanding of vascular biology and arterial wall remodeling under mechanical stresses.  相似文献   

10.
The microstructural basis for the mechanical properties of blood vessels has not been directly determined because of the lack of a nondestructive method that yields a three-dimensional view of these vascular wall constituents. Here, we demonstrate that multiphoton microscopy can be used to visualize the microstructural basis of blood vessel mechanical properties, by combining mechanical testing (distension) of excised porcine coronary arteries with simultaneous two-photon excited fluorescence and second-harmonic generation microscopy. Our results show that second-harmonic generation signals derived from collagen can be spectrally isolated from elastin and smooth muscle cell two-photon fluorescence. Two-photon fluorescence signals can be further characterized by emission maxima at 495 nm and 520 nm, corresponding to elastin and cellular contributions, respectively. Two-dimensional reconstructions of spectrally fused images permit high-resolution visualization of collagen and elastin fibrils and smooth muscle cells from intima to adventitia. These structural features are confirmed by coregistration of multiphoton microscopy images with conventional histology. Significant changes in mean fibril thickness and overall wall dimension were observed when comparing no load (zero transmural pressure) and zero-stress conditions to 30 and 180 mmHg distension pressures. Overall, these data suggest that multiphoton microscopy is a highly sensitive and promising technique for studying the morphometric properties of the microstructure of the blood vessel wall.  相似文献   

11.
The mechanical properties of passive blood vessels are generally thought to depend on the parallel arrangement of elastin and collagen with linear elasticity and collagen recruitment depending on vessel strain [hook-on (HO) model]. We evaluated an alternative model [serial element (SE) model] consisting of the series arrangement of an infinite number of elements, each containing elastin with a constant elastic modulus and collagen that switches stepwise from slack (zero stress) to fully rigid (infinite stiffness) on ongoing element strain. Both models were implemented with Weibull distributions for collagen recruitment strain (HO model) and collagen tightening strain (SE model). The models were tested in experiments on rat mesenteric small arteries. Strain-tension relations were obtained before and after two rounds of digestion by collagenase. Both models fitted the data prior to digestion. However, for the HO model, this required unrealistically low estimates for collagen recruitment or elastic modulus and unrealistically high estimates for distension of collagen fibers. Furthermore, the data after digestion were far better predicted by the SE model compared with the HO model. Finally, the SE model required one parameter less (collagen elastic modulus). Therefore, the SE model provides a valuable starting point for the understanding of vascular mechanics and remodeling of vessels.  相似文献   

12.
Previous research in arterial remodeling in response to changes in blood pressure seldom included both hyper- and hypotension. To compare the effects of low and high pressure on arterial remodeling and vascular smooth muscle tone and performance, we have utilized an in vitro model. Porcine carotid arteries were cultured for 3 days at 30 and 170mmHg and compared to controls cultured at 100mmHg for 1 and 3 days. On the first and last day of culture, pressure-diameter and pressure-wall thickness curves were measured under normal smooth muscle tone using a high-resolution ultrasonic device. Last-day experiments included measurements where vascular smooth muscle was contracted or totally relaxed. From the data wall cross-sectional area, Hudetz elastic modulus and a contraction index related to the diameter reduction under normal smooth muscle tone were calculated. We found that although wall cross-sectional area (indicating wall mass) did not change much, Hudetz elastic modulus was significantly reduced in the 3-day hypotension group. Inspection of the wall contraction index suggests that this is due to a reduction in the vascular smooth muscle tone. Further, the peak of contraction index was found to be shifted to higher pressures in the 3-day 170mmHg group. We conclude that vascular smooth muscle performance adapts to both hypo- and hypertension at short time scales and can alter the biomechanics of the vascular wall in vitro.  相似文献   

13.
The aim of this study was to determine the effect that a thermal renal denervation cycle has on the mechanical properties of the arterial wall. Porcine arterial tissue specimens were tested in three groups: native tissue, decellularized tissue, decellularized with collagen digestion (e.g. elastin only). One arterial specimen was used as an unheated control specimen while another paired specimen was subjected to a thermal cycle of 70 °C for 120 s (n=10). The specimens were subjected to tensile loading and a shrinkage analysis. We observed two key results: The mechanical properties associated with the elastin extracellular matrix (ECM) were not affected by the thermal cycle. The effect of the thermal cycle on the collagen (ECM) was significant, in both the native and decellularized groups the thermal cycle caused a statistically significant decrease in stiffness, and failure strength, moreover the native tissue demonstrated a 27% reduction in lumen area post exposure to the thermal cycle. We have demonstrated that a renal denervation thermal cycle can significantly affect the mechanical properties of an arterial wall, and these changes in stiffness and failure strength were associated with alterations to the collagen rather than the elastin extracellular matrix component.  相似文献   

14.
By means of immunoperoxidase and immunoferritin techniques collagen of the I, III, IV and V types has been revealed in cryostat sections of the popliteal artery and in the musculus quadriceps of the femur. Areas of the vascular wall without any macroscopical signs of lesions have been investigated. They have been obtained from amputated extremities of young persons (17-22 years old), and muscle pieces have been taken during operations performed in the knee joint. After certain immunocytochemical procedures the cryostat slices are embedded in mixture of epon 812 and araldit, non-contrasted ultrathin slices are examined in the electron microscope JEM 100CX. Collagen of the I and III types is revealed in fibrills 20-80 nm thick either with or without cross striation, as well as in microfibrills. Collagen of the III type in the intercellular substance of the arterial wall occurs in nonfibrillar form. Collagen of the IV type is revealed in basal membranes of the smooth muscle cells of the arterial wall, of the muscle fibers and of endothelium of blood capillaries of the skeletal muscle. Collagen of the V type is found as accumulations having various size and form; they localize in many places of the intercellular substance of the arterial wall. A tight contact is revealed between the formations including collagen of the V type with drops of elastin and elastic fibers. A suggestion is made that collagen of the V type participates in formation of elastic fibers.  相似文献   

15.
Increased aortic pulse-wave velocity (PWV) reflects increased arterial stiffness and is a strong predictor of cardiovascular risk in chronic kidney disease (CKD). We examined functional and structural correlations among PWV, aortic calcification, and vascular remodeling in a rodent model of CKD, the Lewis polycystic kidney (LPK) rat. Hemodynamic parameters and beat-to-beat aortic PWV were recorded in urethane-anesthetized animals [12-wk-old hypertensive female LPK rats (n = 5)] before the onset of end-stage renal disease and their age- and sex-matched normotensive controls (Lewis, n = 6). Animals were euthanized, and the aorta was collected to measure calcium content by atomic absorption spectrophotometry. A separate cohort of animals (n = 5/group) were anesthetized with pentobarbitone sodium and pressure perfused with formalin, and the aorta was collected for histomorphometry, which allowed calculation of aortic wall thickness, medial cross-sectional area (MCSA), elastic modulus (EM), and wall stress (WS), size and density of smooth muscle nuclei, and relative content of lamellae, interlamellae elastin, and collagen. Mean arterial pressure (MAP) and PWV were significantly greater in the LPK compared with Lewis (72 and 33%, respectively) animals. The LPK group had 6.8-fold greater aortic calcification, 38% greater aortic MCSA, 56% greater EM/WS, 13% greater aortic wall thickness, 21% smaller smooth muscle cell area, and 20% less elastin density with no difference in collagen fiber density. These findings demonstrate vascular remodeling and increased calcification with a functional increase in PWV and therefore aortic stiffness in hypertensive LPK rats.  相似文献   

16.
Residual strains in conduit arteries   总被引:7,自引:0,他引:7  
Residual strains and stresses are those that exist in a body when all external loads are removed. Residual strains in arteries can be characterized by the opening angle of the sector-like cross-section which arises when an unloaded ring segment is radially cut. A review of experimental methods for measuring residual strains and the main results about the variation of the opening angle with arterial localization, age, smooth muscle activity, mechanical environment and certain vascular pathologies are presented and discussed. It is shown that, in addition to their well-established ability to homogenize the stress field in the arterial wall, residual strains make arteries more compliant and thereby improve their performance as elastic reservoirs and ensure more effective local control of the arterial lumen by smooth muscle cells. Finally, evidence that, in some cases, residual strains remain in arteries even after they have been cut radially is discussed.  相似文献   

17.
Vessels remodel to compensate for increases in blood flow/pressure. The chronic exposure of blood vessels to increased flow and circulatory redox-homocysteine may injure vascular endothelium and disrupt elastic laminae. In order to understand the role of extracellular matrix (ECM) degradation in vascular structure and function, we isolated human vascular smooth muscle cells (VSMC) from normal and injured coronary arteries. The apparently normal vessels were isolated from explanted human hearts. The vessels were injured by inserting a blade into the lumen of the vessel, which damages the inner elastic laminae in the vessel wall and polarizes the VSMC by producing a pseudopodial phenotypic shift in VSMC. This shift is characteristic of migratory, invasive, and contractile nature of VSMC. We measured extracellular matrix metalloproteinases (MMPs), tissue plasminogen activator (tPA), tissue inhibitor of metalloproteinase (TIMP), and collagen I expression in VSMC by specific substrate zymography and Northern blot analyses. The injured and elastin peptide, val-gly-val-ala-pro-gly, treated VSMC synthesized active MMPs and reduced expression of TIMP. The level of tPA and collagen type I was induced in the injured, invasive VSMC and in the val-gly-val-ala-pro-gly treated cells. To demonstrate the angiogenic role of elastin peptide to VSMC we performed in vitro organ culture with rings from normal coronary artery. After 3 days in culture the vascular rings in the collagen gel containing elastin peptide elaborated MMP activity and sprouted and grew. The results suggest that val-gly-val-ala-pro-gly peptide generated at the site of proteolysis during vascular injury may have angiogenic activity.  相似文献   

18.
1. Relative elastic tissue and smooth muscle volumes were determined by a stereological point-counting method in arteries with a progressively diminishing diameter, from the aorta towards the periphery. 2. The volume relationship between the smooth muscle cell and its nucleus was determined by the same method. Mean nuclear volume amounted to 6.9% of total smooth muscle cell volume. 3. Relative elastic tissue volume fell from the aorta towards the peripheral arteries, from 22.6% in the ascending aorta to 4--6% in the smallest arteries examined. 4. Relative smooth muscle volume was practically the same and differences between the individual values in the vast majority of arteries examined were non-significant. Total smooth muscle volume, calculated from the volume of the smooth muscle cell nuclei, varied mostly from 45 to 55%. 5. It can be concluded from these results that the ability of small and medium muscular type arteries to change their diameter actively by muscular contraction (as against elastic type arteries, in which this ability is less expressed) is facilitated not only by the organization of the structural components of the arterial wall, but also by the lower elastic tissue volume, which is compensated by the volume of the other passive components of the vascular wall, while relative smooth muscle volume remains the same.  相似文献   

19.
In mature dogs ultrastructural peculiarities of elastogenesis in femoral and anterior tibial arteries have been studied at various stages of the bone elongation after Ilizarov method. From the end of the 1st week of distraction, metabolic activation of intimal smooth muscle cells is revealed, from the 2d week--in the middle tunic, and on the 5th-6th week--fibroblasts of adventitia of the arteries investigated, directed to biosynthesis of intracellular predecessors of elastin and microfibrils of the elastic fibers. This results in activation of elastogenic processes, elastic structures in all three tunics of the arteries are observed to newly form and rearrange. The factor that stimulates and maintains elastogenesis is strain of extension, that occurs in the vessels during the experiment. Elastogenesis in the major arteries, when the extremity is elongated, has much in common with development of elastic components in the vascular wall in animals during the process of physiological growth.  相似文献   

20.
We have developed a computational simulation model for investigating an often postulated hypothesis connected with aneurysm growth. This hypothesis involves a combination of two parallel and interconnected mechanisms: according to the first mechanism, an endothelium-originating and wall shear stress-driven apoptotic behavior of smooth muscle cells, leading to loss of vascular tone is believed to be important to the aneurysm behavior. Vascular tone refers to the degree of constriction experienced by a blood vessel relative to its maximally dilated state. All resistance and capacitance vessels under basal conditions exhibit some degree of smooth muscle contraction that determines the diameter, and hence tone, of the vessel. The second mechanism is connected to the arterial wall remodeling. Remodeling of the arterial wall under constant tension is a biomechanical process of rupture, degradation and reconstruction of the medial elastin and collagen fibers. In order to investigate these two mechanisms within a computationally tractable framework, we devise mechanical analogues that involve three-dimensional haemodynamics, yielding estimates of the wall shear stress and pressure fields and a quasi-steady approach for the apoptosis and remodeling of the wall. These analogues are guided by experimental information for the connection of stimuli to responses at a cellular level, properly averaged over volumes or surfaces. The model predicts aneurysm growth and can attribute specific roles to the two mechanisms involved: the smooth muscle cell-related loss of tone is important to the initiation of aneurysm growth, but cannot account alone for the formation of fully grown sacks; the fiber-related remodeling is pivotal for the latter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号