首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Geographic patterns of genetic variation are strongly influenced by historical changes in species habitats. Whether such patterns are common to co‐distributed taxa may depend on the extent to which species vary in ecology and vagility. We investigated whether broad‐scale phylogeographic patterns common to a number of small‐bodied vertebrate and invertebrate species in eastern Australian forests were reflected in the population genetic structure of an Australo‐Papuan forest marsupial, the red‐legged pademelon (Macropodidae: Thylogale stigmatica). Strong genetic structuring of mtDNA haplotypes indicated the persistence of T. stigmatica populations across eastern Australia and southern New Guinea in Pleistocene refugial areas consistent with those inferred from studies of smaller, poorly dispersing species. However, there was limited divergence of haplotypes across two known historical barriers in the northeastern Wet Tropics (Black Mountain Barrier) and coastal mideastern Queensland (Burdekin Gap) regions. Lack of divergence across these barriers may reflect post‐glacial recolonization of forests from a large, central refugium in the Wet Tropics. Additionally, genetic structure is not consistent with the present delimitation of subspecies T. s. wilcoxi and T. s. stigmatica across the Burdekin Gap. Instead, the genetic division occurs further to the south in mideastern Queensland. Thus, while larger‐bodied marsupials such as T. stigmatica did persist in Pleistocene refugia common to a number of other forest‐restricted species, species‐specific local extinction and recolonization events have resulted in cryptic patterns of genetic variation. Our study demonstrates the importance of understanding individualistic responses to historical climate change in order to adequately conserve genetic diversity and the evolutionary potential of species.  相似文献   

2.
There are many large, easy‐to‐observe anseriform birds (ducks, geese, and swans) in northern Australia and New Guinea and they often gather in large numbers. Yet, the structure of their populations and their regional movements are poorly understood. Lack of understanding of population structure limits our capacity to understand source‐sink dynamics relevant to their conservation or assess risks associated with avian‐borne pathogens, in particular, avian influenza for which waterfowl are the main reservoir species. We set out to assess present‐day genetic connectivity between populations of two widely distributed waterfowl in the Australo‐Papuan tropics, magpie goose Anseranas semipalmata (Latham, 1798) and wandering whistling‐duck Dendrocygna arcuata (Horsfield, 1824). Microsatellite data were obtained from 237 magpie geese and 64 wandering whistling‐duck. Samples were collected across northern Australia, and at one site each in New Guinea and Timor Leste. In the wandering whistling‐duck, genetic diversity was significantly apportioned by region and sampling location. For this species, the best model of population structure was New Guinea as the source population for all other populations. One remarkable result for this species was genetic separation of two flocks sampled contemporaneously on Cape York Peninsula only a few kilometers apart. In contrast, evidence for population structure was much weaker in the magpie goose, and Cape York as the source population provided the best fit to the observed structure. The fine scale genetic structure observed in wandering whistling‐duck and magpie goose is consistent with earlier suggestions that the west‐coast of Cape York Peninsula is a flyway for Australo‐Papuan anseriforms between Australia and New Guinea across Torres Strait.  相似文献   

3.
Aim Alternative hypotheses concerning genetic structuring of the widespread endemic New Guinean forest pademelons (Thylogale) based on current taxonomy and zoogeography (northern, southern and montane species groupings) and preliminary genetic findings (western and eastern regional groupings) are investigated using mitochondrial sequence data. We examine the relationship between the observed phylogeographical structure and known or inferred geological and historical environmental change during the late Tertiary and Quaternary. Location New Guinea and associated islands. Methods We used primarily museum specimen collections to sample representatives from Thylogale populations across New Guinea and three associated islands. Mitochondrial cytochrome b and control region sequence data were used to construct phylogenies and estimate the timing of population divergence. Results Phylogenetic analyses indicated subdivision of pademelons into ‘eastern’ and ‘western’ regional clades. This was largely due to the genetic distinctiveness of north‐eastern and eastern peninsula populations, as the ‘western’ clade included samples from the northern, southern and central regions of New Guinea. Two tested island groups were closely related to populations north of the Central Cordillera; low genetic differentiation of pademelon populations between north‐eastern New Guinea and islands of the Bismarck Archipelago is consistent with late Pleistocene human‐mediated translocations, while the Aru Islands population showed divergence consistent with cessation of gene flow in the mid Pleistocene. There was relatively limited genetic divergence between currently geographically isolated populations in subalpine and nearby mid‐montane or lowland regions. Main conclusions Phylogeographical structuring does not conform to zoogeographical expectations of a north/south division across the cordillera, nor to current species designations, for this generalist forest species complex. Instead, the observed genetic structuring of Thylogale populations has probably been influenced by geological changes and Pleistocene climatic changes, in particular the recent uplift of the north‐eastern Huon Peninsula and the lowering of tree lines during glacial periods. Low sea levels during glacial maxima also allowed gene flow between the continental Aru Island group and New Guinea. More work is needed, particularly multi‐taxon comparative studies, to further develop and test phylogeographical hypotheses in New Guinea.  相似文献   

4.
Abstract For a phylogeographical analysis of European grey partridge (Perdix perdix) we sequenced 390 nucleotides of the 5′ end of the mitochondrial control region (CR) of 227 birds from several localities. The birds were divided into two major clades (western and eastern) which differed in control region 1 (CR1) by 14 nucleotide substitutions (3.6%). For estimation of the time of divergence, the whole CR of 14 specimens was sequenced. The major clades differed by 2.2%, corresponding to an estimated coalescence time of c. 1.1 million years. On CR1, 45 haplotypes were found. Western clade haplotypes were found in France, England, Germany, Poland, Italy and Austria. Eastern clade haplotypes were found in Finland, Bulgaria, Greece, and Ireland. One Finnish population and all Bulgarian and Irish populations were mixed, but only in Bulgaria was the mixing assumed to be natural. Nucleotide and haplotype diversities varied between populations, and both clades showed geographical structuring. The distribution of pairwise nucleotide differences in the eastern clade fitted the expectations of an expanding population. About 80% of the genetic structure in the grey partridge could be explained by the clades. The western clade presumably originates on the Iberian Peninsula (with related subtypes in Italy), and the eastern clade either on the Balkan or Caucasian refugia. Large‐scale hand‐rearing and releasing of western partridges have introduced very few mtDNA marks into the native eastern populations in Finland.  相似文献   

5.
Mauremys leprosa, distributed in Iberia and North‐west Africa, contains two major clades of mtDNA haplotypes. Clade A occurs in Portugal, Spain and Morocco north of the Atlas Mountains. Clade B occurs south of the Atlas Mountains in Morocco and north of the Atlas Mountains in eastern Algeria and Tunisia. However, we recorded a single individual containing a clade B haplotype in Morocco from north of the Atlas Mountains. This could indicate gene flow between both clades. The phylogenetically most distinct clade A haplotypes are confined to Morocco, suggesting both clades originated in North Africa. Extensive diversity within clade A in south‐western Iberia argues for a glacial refuge located there. Other regions of the Iberian Peninsula, displaying distinctly lower haplotype diversities, were recolonized from within south‐western Iberia. Most populations in Portugal, Spain and northern Morocco contain the most common clade A haplotype, indicating dispersal from the south‐western Iberian refuge, gene flow across the Strait of Gibraltar, and reinvasion of Morocco by terrapins originating in south‐western Iberia. This hypothesis is consistent with demographic analyses, suggesting rapid clade A population increase while clade B is represented by stationary, fragmented populations. We recommend the eight, morphologically weakly diagnosable, subspecies of M. leprosa be reduced to two, reflecting major mtDNA clades: Mauremys l. leprosa (Iberian Peninsula and northern Morocco) and M. l. saharica (southern Morocco, eastern Algeria and Tunisia). Peripheral populations could play an important role in evolution of M. leprosa because we found endemic haplotypes in populations along the northern and southern range borders. Previous investigations in another western Palearctic freshwater turtle (Emys orbicularis) discovered similar differentiation of peripheral populations, and phylogeographies of Emys orbicularis and Mauremys rivulata underline the barrier status of mountain chains, in contrast to sea straits, suggesting common patterns for western Palearctic freshwater turtles.  相似文献   

6.
Integrating information from species occurrence data, environmental variables and molecular markers can provide valuable insights about the processes of population persistence and differentiation. In this study, we present the most comprehensive overview of the evolutionary history of the North African salamander Salamandra algira (Caudata, Salamandridae) to date, including analyses of climatic and topographical variables, and sequences of two mitochondrial and two nuclear DNA fragments, with a special focus on Algerian populations, under‐represented in previous studies. Coalescent‐based phylogenetic analyses of mtDNA data recover four well‐supported population groups corresponding to described subspecies, with a western clade including populations in north‐western Morocco (with two subclades corresponding to the subspecies tingitana and splendens), and an eastern clade including populations from north‐eastern Morocco (subspecies spelaea) and Algeria (subspecies algira). Inferred split times between major clades date back to the Miocene, with additional splits within each major clade in the Plio‐Pleistocene. Present climatic (aridity) and topographical factors account for geographical discontinuities across population groups and help identify potential areas of secondary contact between clades corresponding to the subspecies tingitana and splendens in the Rif mountains in Morocco. Niche analysis indicates the absence of phylogenetic signal in the use of environmental space in this species.  相似文献   

7.
Aim To assess the roles of dispersal and vicariance in shaping the present distribution and diversity within Hypentelium nigricans, the northern hogsucker (Teleostei: Cypriniformes). Location Eastern United States. Methods Parsimony analyses, Bayesian analyses, pairwise genetic divergence and mismatch plots are used to examine patterns of genetic variation across H. nigricans. Results Species relationships within the genus Hypentelium were consistent with previous hypotheses. However, relationships between haplotypes within H. nigricans revealed two deeply divergent groups, a clade containing haplotypes from the New and Roanoke rivers (Atlantic Slope) plus Interior Highlands and upper Mississippi River and a clade containing haplotypes from the Eastern Highlands, previously glaciated regions of the Ohio and Wabash rivers, and the Amite and Homochitto rivers of south‐western Mississippi. Main conclusions The phylogenetic history of Hypentelium was shaped by old vicariant events associated with erosion of the Blue Ridge and separation of the Mobile and Mississippi river basins. Within H. nigricans two clades existed prior to the Pleistocene; a widespread clade in the pre‐glacial Teays‐Mississippi River system and a clade in Cumberland and Tennessee rivers. Pleistocene events fragmented the Teays‐Mississippi fauna. Following the retreat of the glaciers H. nigricans dispersed northward into previously glaciated regions. These patterns are replicated in other clades of fishes and are consistent with some of the predictions of Mayden's (Systematic Zoology, 37, 329, 1988) pre‐Pleistocene vicariance hypothesis.  相似文献   

8.
Iberian gypsum outcrops are highly fragmented and ecologically challenging environments for plant colonization. As gypsophytes occur exclusively in such habitats, they are ideal models for the study of both the effects of habitat fragmentation and selection on population genetic diversity and structure. In this study, we used amplified fragment length polymorphism (AFLP) and plastid DNA sequences to investigate the phylogeographical history of the Iberian plant Gypsophila struthium (Caryophyllaceae), a widespread endemic restricted to Iberian gypsum outcrops. Gypsophila struthium consists of two subspecies that differ in the architecture of their inflorescence and have mostly allopatric ranges. Gypsophila struthium subsp. struthium occurs in central, eastern and south‐eastern Iberia, whereas G. struthium subsp. hispanica occurs in northern and eastern areas. AFLPs revealed low but significant genetic differentiation between the subspecies, probably as a result of a recent diversification during the Pliocene–Pleistocene. In the geographical contact zone between the taxa, the Bayesian analyses revealed populations with mixed ancestries and genetic clusters predominantly of one or the other subspecies, indicating incomplete reproductive barriers between them. Plastid DNA haplotypes revealed strong geographical structure and testified to processes of isolation by distance and continuous range expansion for some haplotype clades. The Bayesian analyses of the population structure of AFLP data and nested clade phylogeographical analysis (NCPA) of plastid haplotypes revealed that the putative ancestral range corresponded to central and eastern populations of G. struthium subsp. struthium, with those lineages contributing through more recent expansion to increased genetic diversity and structure of the south‐eastern and eastern ranges of this subspecies and to the diversification of G. struthium subsp. hispanica in northern and eastern gypsum outcrops. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 173 , 654–675.  相似文献   

9.
The Australo‐Papuan catbird genus Ailuroedus has a complex distribution and a contested taxonomy. Here, we integrate phylogenetic analysis of DNA data and morphology to study the group's biogeography and to re‐examine its taxonomy. We couple phylogeographic and abiotic data to examine differences between the major groups defined in our phylogenetic analysis. Our results are consistent with Ailuroedus catbirds being divided into two species complexes, one distributed in humid forests in the lowlands on New Guinea and another in comparably drier and colder forests mainly in mid‐mountains on New Guinea and Australia. Vicariant events during the Pliocene are surmised to have been the major force in shaping the contemporary phylogeographical signature of this genus. Several previously suggested vicariant events, such as fragmentation of xeric forests in Australia and the uplift of the central mountain range on New Guinea, are reinforced as important Pliocene barriers for tropical forest taxa in this region. Interaction between Pleistocene climatic fluctuations and differences in habitat requirements may explain a higher and more recent population structures in the mid‐mountain catbird complex and the lack of representatives from the lowland clade in the comparably drier Australia. Phylogeographical patterns in both catbird complexes, respectively, both comply and deviate from other lowland and mid‐mountain taxa in the region. This highlights that taxon‐specific properties, such as their historical spatial and ecological distributions, capacity to disperse and tolerance to habitat changes, affect the phylogeographical histories of organisms. Within both species complexes, the genetic differentiation between several geographically isolated populations was found to exceed those commonly observed for avian sister species. As these genetically distinct taxa also were found to be morphological diagnosable, we suggest a revised classification of the genus Ailuroedus, where we recognize three species within the lowland complex and seven species within the mid‐mountain complex.  相似文献   

10.
Molecular systematics is bringing taxonomy into the 21st Century by updating our nomenclature to reflect phylogenetic relationships of taxa. This transformation is evidenced by massive changes in avian taxonomy, ranging from ordinal to subspecies changes. In this study, we employ target capture of ultraconserved elements to resolve genus‐level systematics of a problematic group of honeyeaters (Aves: Meliphagidae). With near complete species‐level taxon sampling of the Australo‐Papuan species within the traditionally recognized Meliphaga and Oreornis, we investigate generic limits using a genomic dataset. Likelihood and species tree methods confirm two clades within this group and found the New Guinea endemic Oreornis chrysogenys embedded within one of these clades. Our study supports earlier recommendations that Meliphaga Lewin, 1808 should be restricted to three species, M. aruensis, M. lewinii and M. notata. We make a case for recognizing three genera in the remaining species, Oreornis van Oort, 1910, Microptilotis Mathews, 1912 and Territornis Mathews, 1924.  相似文献   

11.
The naked mole‐rat (Heterocephalus glaber) is used as an animal model in various studies, but not much is known on the genetic diversity of this animal. Here, on the basis of dataset collected from the most part of the distribution range of the naked mole‐rat, we reconstruct phylogenetic relationships between its different lineages using mitochondrial and nuclear markers. We also mapped the distribution of the main genetic lineages, dated the divergence using different Bayesian tree‐calibration techniques, and modeled the distribution of ecological niches for the period of last glacial maximum. Our results show the existence of two deeply divergent clades designated as the eastern clade (East Ethiopia) and the southern clade (South Ethiopia and North Kenya). Additional phylogeographic structure was demonstrated for each of these two clades. Divergence between these two main lineages dated back to the Middle Pleistocene (ca. 1.4–0.8 Mya) and may have been related to climate changes in Africa during the Mid‐Pleistocene Revolution. In light of substantial genetic differences between the eastern and southern lineages of the naked mole‐rat, these two clades can be considered as two deeply divergent subspecies or even as distinct species.  相似文献   

12.
Pleistocene glaciations greatly affected the distribution of genetic diversity in animal populations. The Little Owl is widely distributed in temperate regions and could have survived the last glaciations in southern refugia. To describe the phylogeographical structure of European populations, we sequenced the mitochondrial cytochrome c oxidase I (COI) and control region (CR1) in 326 individuals sampled from 22 locations. Phylogenetic analyses of COI identified two deeply divergent clades: a western haplogroup distributed in western and northwestern Europe, and an eastern haplogroup distributed in southeastern Europe. Faster evolving CR1 sequences supported the divergence between these two main clades, and identified three subgroups within the eastern clade: Balkan, southern Italian and Sardinian. Divergence times estimated from COI with fossil calibrations indicate that the western and eastern haplogroups split 2.01–1.71 Mya. Slightly different times for splits were found using the standard 2% rate and 7.3% mtDNA neutral substitution rate. CR1 sequences dated the origin of endemic Sardinian haplotypes at 1.04–0.26 Mya and the split between southern Italian and Balkan haplogroups at 0.72–0.21 Mya, coincident with the onset of two Pleistocene glaciations. Admixture of mtDNA haplotypes was detected in northern Italy and in central Europe. These findings support a model of southern Mediterranean and Balkan refugia, with postglacial expansion and secondary contacts for Little Owl populations. Central and northern Europe was predominantly recolonized by Little Owls from Iberia, whereas expansion out of the Balkans was more limited. Northward expansion of the Italian haplogroup was probably prevented by the Alps, and the Sardinian haplotypes remained confined to the island. Results showed a clear genetic pattern differentiating putative subspecies. Genetic distances between haplogroups were comparable with those recorded between different avian species.  相似文献   

13.
Bryant, L. M., Donnellan, S. C., Hurwood, D. A. & Fuller, S. J. (2011). Phylogenetic relationships and divergence date estimates among Australo‐Papuan mosaic‐tailed rats from the Uromys division (Rodentia: Muridae). —Zoologica Scripta, 40, 433–447. We inferred phylogenetic relationships and divergence date estimates among four genera of mosaic‐tailed rats from the Uromys division in Australia, New Guinea and the Solomon Islands from both mitochondrial (16S rRNA) and nuclear (AP5 and DHFR introns) nucleotide sequence data. Phylogenetic analysis of our combined data shows that Melomys species from Australia and New Guinea are monophyletic to the exclusion of Paramelomys, which last shared a common ancestor with other members of the Uromys division approximately 3 MYA. However, Melomys was found to be paraphyletic with respect to the Solomon Islands endemic Solomys, suggesting the taxonomic distinction of the latter may need revision. The radiation of this group was estimated to have occurred between 2.1 MYA and 900 000 years ago. A currently undescribed taxon, species nova, which is apparently morphologically indistinguishable from sympatric M. cervinipes, was found to be a highly distinctive lineage and was not monophyletic with Melomys from Australia or New Guinea. Australian Uromys share a sister group relationship with sp. n. and the Melomys/Solomys clade. Australian Melomys were not monophyletic with respect to New Guinean Melomys. The New Guinean M. lutillus and Australian M. burtoni appear to be conspecific, supporting a previous suggestion that M. burtoni has an extralimital distribution encompassing New Guinea as M. lutillus. This also suggests sustained contact between these taxa, most likely enabled through historical landbridges that linked the two landmasses during periods of lower sea level. Melomys rubicola, found only on Bramble Cay, 50 km south of New Guinea, is more closely related to Australian Melomys, particularly M. capensis, than to any of the New Guinean species. Results suggest that M. rubicola and M. capensis last shared a common ancestor in the early Pleistocene, a time when land bridges existed connecting Bramble Cay to Cape York. Finally, polyphyly within M. cervinipes was also detected, corresponding to reciprocally monophyletic northern and southern clades. The northern M. cervinipes clade diverged from the M. capensis/rubicola clade approximately 1.2 MYA, with this split possibly resulting from isolation across the Normanby gap in far north Queensland.  相似文献   

14.
Aim This study aims to elucidate the phylogeography of the murid rodent Praomys misonnei and to document whether or not rain forest refugia and rivers structure patterns of diversity within this species. Location Tropical Africa, from Ghana to Kenya. Methods Patterns of genetic structure and signatures of population history (cytochrome b gene) were assessed in a survey of 229 individuals from 54 localities. Using maximum likelihood, Bayesian, network and genetic structure analyses, we inferred intra‐specific relationships and tested hypotheses for historical patterns of gene flow within P. misonnei. Results Our phylogenetic analyses reveal a strong phylogeographical structure. We identified four major geographical clades within P. misonnei: one clade in Ghana and Benin, a Nigerian clade, a West Central African clade and a Central and East African clade. Several subclades were identified within these four major clades. A signal of population expansion was detected in most clades or subclades. Coalescence within all of the major clades of P. misonnei occurred during the Middle Pleistocene and/or the beginning of Late Pleistocene. Main conclusions Our results suggest a role for both Pleistocene refugia and rivers in structuring genetic diversity in P. misonnei. This forest‐dwelling rodent may have been isolated in a number of forest fragments during arid periods and expanded its range during wetter periods. Potential forest refugia may have been localized in Benin–Ghana, south‐western Cameroon, southern Gabon, northern Gabon and eastern Democratic Republic of Congo–western Uganda. The Niger and/or the Cross Rivers, the Oubangui‐Congo, Sanaga, Ogooue and/or Ivindo Rivers probably stopped the re‐expansion of the species from relict areas.  相似文献   

15.
Aim To investigate patterns of genetic divergence between populations of the fruit bat genus Melonycteris Dobson 1877 in relation to the possible effects on dispersal of the geological history of water barriers within and between northern Melanesian archipelagos. Location The genus is found only in the Bismarck Archipelago and Solomon Islands of northern Melanesia. Methods Up to 935 aligned bases of cytochrome b and cytochrome c oxidase subunit I DNA sequences were determined for specimens of most species and subspecies of Melonycteris. Measures of genetic distance, analysis of molecular variation and phylogenetic investigations (using maximum parsimony, maximum likelihood and Bayesian approaches) were conducted to assess the evolutionary relationships amongst populations. Results The deepest divergences within Melonycteris separate the genus into two reciprocally monophyletic clades from first, the Bismarck Archipelago, and secondly, the Solomon Islands. Within the Solomon Islands, five major clades received strong support. Listed in a generally north‐western to south‐eastern direction these were: (1) specimens from Choiseul and Santa Isabel; (2) specimens from New Georgia and Kolombangara; (3) specimens from Malaita; (4) specimens from Guadalcanal; and (5) specimens from Makira. Outgroup rooting suggested that the clade from Makira was the most basal within the Solomon Islands, being shown as the sister group to all other Melonycteris from this archipelago. Main conclusions Patterns of genetic variation within Melonycteris were generally consistent, given current knowledge of northern Melanesian geological history, with the hypothesis that the dispersal of these fruit bats is strongly inhibited by water barriers. Within the Solomon Islands the main genetic clades were each restricted to a single island or to a group of islands that are thought to have belonged to larger landmasses (Greater Gatumbangara and Greater Bukida) formed by land bridges during the Pleistocene. The high genetic distance between specimens from the Bismarck Archipelago and from the Solomon Islands reflects the persistently large geographic distance between these archipelagos. The unexpected phylogenetic position of the Makira specimens suggests either that this island was the first colonized by Melonycteris in the Solomon Islands or that this population is the relict of a clade that was previously more widely distributed.  相似文献   

16.
鄂报春(Primula obconica Hance)亲缘地理学的初步研究   总被引:4,自引:0,他引:4  
为了获得鄂报春(Primula obconica Hance)的种内亲缘地理学信息,对叶绿体基因组上非编码区trnL-trnF的序列变异进行了分析.获得的20个单倍型具有一定的地理分布结构.对这些单倍型进行系统发育分析,得到了三个主要分支:东部分支广泛分布于中国东南部、湖南、湖北、四川和云南;四川分支分布于四川西部;云南分支分布于云南西北部.东部分支分布面积较后两个分支大,并且在东部分支中可以发现一定的演化关系.结合古气候学和地质学信息,推测东部分支中现存的单倍型由冰期时气候变冷导致鄂报春快速迁移而形成,云南、四川分支中的单倍型可能是在各自的避难所中得以保存.同时本文也简要地探讨了鄂报春几个亚种之间的分类学关系.  相似文献   

17.
We employed restriction site variation in mitochondrial (mt)DNA to determine if significant phylogeographic structure occurs in the North American cyprinid fish Cyprinella lutrensis. Digestion patterns from 16 restriction endonucleases identified fifty mtDNA haplotypes among 127 individuals of Cyprinella lutrensis assayed from localities in the Gulf Coastal Plain, the Great Plains, and the Central Lowlands. Nucleotide sequence divergence among haplotypes was highly variable (mean ± SE: 2.87%± 0.08; range: 0.14–9.24%). Maximum-parsimony analysis and the neighbour joining method of tree construction revealed three major groupings (clades) of haplotypes that differed in geographic distribution. Divergence estimates between the basal clade, comprised of haplotypes primarily from the Brazos River in east Texas, and the remaining two clades, place C. lutrensis in the western Gulf Coastal Plain prior to Pleistocene glaciation. Nucleotide sequence divergence between the second clade, comprised of haplotypes from the Trinity and Calcasieu rivers in east Texas and southwestern Louisiana, respectively, and the third clade (comprised primarily of haplotypes from localities north of Texas and affected directly by Pleistocene glaciation), suggest that C. lutrensis colonized gladated regions to the north during the mid- to late Pleistocene. This hypothesis is supported by levels of intrapopulational nucleotide diversity in geographic localities outside of Texas and by geological evidence. Despite marked geographic variation in morphometries, meristics, and nuptial coloration, mtDNA variation in glaciated regions was not geographically structured, and subspecies of C. lutrensis were not identifiable by phylogenetic analysis of mtDNA.  相似文献   

18.
The leopard tortoise (Stigmochelys pardalis) is the most widely distributed sub‐Saharan tortoise species, with a range extending from the Horn of Africa all over eastern Africa to the Republic of South Africa, Namibia and southernmost Angola. Using 1938 bp of mitochondrial DNA (cyt b gene, partial ND4 gene plus adjacent tRNA genes) from a nearly range‐wide sampling, we examined its phylogeographic structure and compared our findings with previously published GenBank sequences. We identified seven major clades that are largely parapatrically distributed. A few records of distinct haplotypes at the same locality or in close proximity could be the result of translocation of tortoises by man. The greatest diversity occurs in the south of the species’ range, with five out of the seven clades. Testing for isolation‐by‐distance suggests that the observed phylogeographic structure is the result of restricted geographical gene flow and not of historical vicariance. This is in sharp contrast to wide‐ranging thermophilic reptiles from the western Palaearctic, whose phylogeographic structure was significantly shaped by Pleistocene range interruptions, but also by earlier dispersal and vicariant events. Most cyt b sequences of S. pardalis from GenBank turned out to be nuclear pseudogenes, or to be of chimerical origin from such pseudogenes and authentic mitochondrial sequences, which argues for caution regarding uncritical usage of GenBank sequences. The recent revalidation of the two subspecies of S. pardalis was based on such a chimerical sequence that was erroneously identified with the subspecies S. p. babcocki. Furthermore, according to our data, the distribution of mitochondrial clades does match neither the traditional subspecies ranges nor the pronounced geographical size variation of leopard tortoises. We conclude that there is no rationale for recognizing subspecies within S. pardalis.  相似文献   

19.
Aim We examine several hypotheses emerging from biogeographical and fossil records regarding glacial refugia of a southern thermophilic plant species. Specifically, we investigated the glacial history and post‐glacial colonization of a forest understorey species, Trillium cuneatum. We focused on the following questions: (1) Did T. cuneatum survive the Last Glacial Maximum (LGM) in multiple refugia, and (if so) where were they located, and is the modern genetic structure congruent with the fossil record‐based reconstruction of refugia for mesic deciduous forests? (2) What are the post‐glacial colonization patterns in the present geographical range? Location South‐eastern North America. Methods We sampled 45 populations of T. cuneatum throughout its current range. We conducted phylogeographical analyses based on maternally inherited chloroplast DNA (cpDNA haplotypes) and used TCS software to reconstruct intraspecific phylogeny. Results We detected six cpDNA haplotypes, geographically highly structured into non‐overlapping areas. With one exception, none of the populations had mixed haplotype composition. TCS analysis resulted in two intraspecific cpDNA lineages, with one clade subdivided further by shallower diversification. Main conclusions Our investigation revealed that T. cuneatum survived the LGM in multiple refugia, belonging to two (western, eastern) genealogical lineages geographically structured across south‐eastern North America. The western clade is confined to the south‐western corner of T. cuneatum’s modern range along the Lower Mississippi Valley, where fossil records document a major refugium of mesic deciduous forest. For the eastern clade, modern patterns of cpDNA haplotype distribution suggest cryptic vicariance, in the form of forest contractions and subsequent expansions associated with Pleistocene glacial cycles, rather than simple southern survival and subsequent northward colonization. The north–south partitioning of cpDNA haplotypes was unexpected, suggesting that populations of this rather southern thermophilic species may have survived in more northern locations than initially expected based on LGM climate reconstruction, and that the Appalachian Mountains functioned as a barrier to the dispersal of propagules originating in more southern refugia. Furthermore, our results reveal south‐west to north‐east directionality in historical migration through the Valley and Ridge region of north‐west Georgia.  相似文献   

20.
The Black Tiger shrimp (Penaeus monodon) has a natural distribution range from East Africa to the South Pacific Islands. Although previous studies of Indo-Pacific P. monodon have found populations from the Indian Ocean and Australasia to differ genetically, their relatedness to South Pacific shrimp remains unknown. To address this, polymorphisms at eight shared microsatellite loci and haplotypes in a 418-bp mtDNA-CR (control region) sequence were examined across 682 P. monodon from locations spread widely across its natural range, including the South Pacific islands of Fiji, Palau, and Papua New Guinea (PNG). Observed microsatellite heterozygosities of 0.82-0.91, allele richness of 6.85-9.69, and significant mtDNA-CR haplotype variation indicated high levels of genetic diversity among the South Pacific shrimp. Analysis of microsatellite genotypes using a Bayesian STRUCTURE method segregated Indo-Pacific P. monodon into eight distinct clades, with Palau and PNG shrimp clustering among others from Southeast Asia and eastern Australia, respectively, and Fiji shrimp clustering as a distinct group. Phylogenetic analyses of mtDNA-CR haplotypes delineated shrimp into three groupings, with shrimp from Fiji again being distinct by sharing no haplotypes with other populations. Depending on regional location, the genetic structures and substructures identified from the genotyping and mtDNA-CR haplotype phylogeny could be explained by Metapopulation and/or Member-Vagrant type evolutionary processes. Neutrality tests of mutation-drift equilibrium and estimation of the time since population expansion supported a hypothesis that South Pacific P. monodon were colonized from Southeast Asia and eastern Australia during the Pleistocene period over 60,000 years ago when land bridges were more expansive and linked these regions more closely.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号