首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The chemoenzymatic process involving biocatalytic resolution of rac-2-carboxyethyl-3-cyano-5-methylhexanoic acid ethyl ester (CNDE, 1) has been the most competitive and attractive route for pregabalin. A new esterase-producing strain ZJB-09203, which exhibited high hydrolytic activity, excellent enantioselectivity, and diastereoselectivity towards CNDE, has been successfully isolated from soil samples with a pH indicator agar plate method. The isolate was identified as Morgarella morganii by the ATB system (ID 32 GN) and the 16S rDNA sequence. In order to suppress product inhibition during enzymatic hydrolysis of CNDE, an adsorptive biocatalytic process was developed by utilizing anion-exchange resin D201 as adsorbent for selective removal of (3S)-2-carboxyethyl-3-cyano-5-methylhexanoic acid (2) from the reaction medium. This approach allowed the substrate loading to be increased up to 1.5 M and the chiral intermediate 2 was produced in 682 mM, 45.3 % conversion, and 95 % ee. These results imply that M. morganii ZJB-09203 esterase is a promising biocatalyst in the development of chemenzymatic manufacturing process for pregabalin.  相似文献   

2.
以2-羧乙基-3-氰基-5-甲基己酸乙酯为唯一碳源,采用手性气相法检测,筛选到一株能产对映选择性水解酶的假单胞菌Pseudomonas CGMCC No.4184.该菌产的水解酶能优先水解R型底物产生(3R)-2-羧乙基-3-氰基-5-甲基己酸,产物对映体过量值达到90%以上.对菌株Pseudomonas CGMCC ...  相似文献   

3.
为建立廉价、高效的普瑞巴林关键手性中间体生产工艺,经单因素优化和正交试验,确定了摩氏摩根菌CCTCC M 2011175最佳产酯酶培养基,组成(g/L)为葡萄糖15.0,牛肉膏7.0,Na2HPO41.0,Fe2(SO4)30.1,吐温-8010.0。优化后酯酶比酶活达到1 071.0 U/L,为出发培养基的2.5倍。以培养基优化后获得的摩氏摩根菌菌体为催化剂,立体选择性拆分外消旋2-羧乙基-3-氰基-5-甲基己酸乙酯水解,转化率达到45%,对映体过量值(e.e.)大于94%,为酶法生产普瑞巴林关键手性中间体奠定了良好基础。  相似文献   

4.
A codon-optimized Escherichia coli appA phytase gene was synthesized and expressed in Pichia pastoris. Two residue substitutions (Q258N, Q349N) were sequentially introduced to enhance its glycosylation activity. Secretion of appA-Q258N/Q349N was approx. 0.3 mg ml?1 and enzyme activity reached 1,030 U ml?1. Purified appA-Q258N/Q349N had a specific activity of 3,137 U mg?1 with an MW of approx. 53 kDa. Compared with appA-WT, appA-Q258N/Q349N showed over 40 % enhancement in thermostability (85 °C for 10 min) and 4–5 °C increases in the melting temperatures (Tm). The Km and Kcat of appA-Q258N/Q349N were 0.43 mM and 3,058 s?1, respectively, which are similar with that of appA-WT. The mutant appA-Q258N/Q349N obtained in this study could be used for the large-scale commercial production of phytase.  相似文献   

5.
Aspergillus niger glucose oxidase (GOx) genes for wild-type (GenBank accession no. X16061, swiss-Prot; P13006) and M12 mutant (N2Y, K13E, T30 V, I94 V, K152R) were cloned into pPICZαA vector for expression in Pichia pastoris KM71H strain. The highest expression level of 17.5 U/mL of fermentation media was obtained in 0.5 % (v/v) methanol after 9 days of fermentation. The recombinant GOx was purified by cross-flow ultrafiltration using membranes of 30 kDa molecular cutoff and DEAE ion-exchange chromatography at pH 6.0. Purified wt GOx had k cat of 189.4 s?1 and K m of 28.26 mM while M12 GOx had k cat of 352.0 s?1 and K m of 13.33 mM for glucose at pH 5.5. Specificity constants k cat/K m of wt (6.70 mM?1 s?1) and M12 GOx (26.7 mM?1 s?1) expressed in P. pastoris KM71H were around three times higher than for the same enzymes previously expressed in Saccharomyces cerevisiae InvSc1 strain. The pH optimum and sugar specificity of M12 mutant of GOx remained similar to the wild-type form of the enzyme, while thermostability was slightly decreased. M12 GOx expressed in P. pastoris showed three times higher activity compared to the wt GOx toward redox mediators like N,N-dimethyl-nitroso-aniline used for glucose strips manufacturing. M12 mutant of GOx produced in P. pastoris KM71H could be useful for manufacturing of glucose biosensors and biofuel cells.  相似文献   

6.

Objective

To enhance the thermal and alkaline pH stability of the lysine decarboxylase from Escherichia coli (CadA) by engineering the decameric interface and explore its potential for industrial applications.

Results

The mutant T88S was designed for improved structural stability by computational analysis. The optimal pH and temperature of T88S were 7.0 and 55 °C (5.5 and 50 °C for wild-type). T88S showed higher thermostability with a 2.9-fold increase in the half-life at 70 °C (from 11 to 32 min) and increased melting temperature (from 76 to 78 °C). Additionally, the specific activity and pH stability (residual activity after 10 h incubation) of T88S at pH 8.0 were increased to 164 U/mg and 78% (58 U/mg and 57% for wild-type). The productivity of cadaverine with T88S (284 g l-lysine L?1 and 5 g DCW L?1) was 40 g L?1 h?1, in contrast to 28 g L?1 h?1 with wild-type.

Conclusion

The mutant T88S showed high thermostability, pH stability, and activity at alkaline pH, indicating that this mutant is a promising biocatalyst for industrial production of cadaverine.
  相似文献   

7.
Formate dehydrogenases (FDHs) are frequently used for the regeneration of cofactors in biotransformations employing NAD(P)H-dependent oxidoreductases. Major drawbacks of most native FDHs are their strong preference for NAD+ and their low operational stability in the presence of reactive organic compounds such as α-haloketones. In this study, the FDH from Mycobacterium vaccae N10 (MycFDH) was engineered in order to obtain an enzyme that is not only capable of regenerating NADPH but also stable toward the α-haloketone ethyl 4-chloroacetoacetate (ECAA). To change the cofactor specificity, amino acids in the conserved NAD+ binding motif were mutated. Among these mutants, MycFDH A198G/D221Q had the highest catalytic efficiency (k cat/K m) with NADP+. The additional replacement of two cysteines (C145S/C255V) not only conferred a high resistance to ECAA but also enhanced the catalytic efficiency 6-fold. The resulting quadruple mutant MycFDH C145S/A198G/D221Q/C255V had a specific activity of 4.00?±?0.13 U?mg?1 and a K m, NADP + of 0.147?±?0.020 mM at 30 °C, pH 7. The A198G replacement had a major impact on the kinetic constants of the enzyme. The corresponding triple mutant, MycFDH C145S/D221Q/C255V, showed the highest specific activity reported to date for a NADP+-accepting FDH (v max, 10.25?±?1.63 U?mg?1). However, the half-saturation constant for NADP+ (K m, NADP + , 0.92?±?0.10 mM) was about one order of magnitude higher than the one of the quadruple mutant. Depending on the reaction setup, both novel MycFDH variants could be useful for the production of the chiral synthon ethyl (S)-4-chloro-3-hydroxybutyrate [(S)-ECHB] by asymmetric reduction of ECAA with NADPH-dependent ketoreductases.  相似文献   

8.

Objectives

To establish an efficient method of chemoenzymatic modification for making N-linked oligosaccharide chains of glycoproteins structurally homogeneous, which crucially affects their bioactivities.

Results

Deglycosylated-RNase B (GlcNAc-RNase B; acceptor), sialylglyco (SG)-oxazoline (donor) and an N180H mutant of Coprinopsis cinerea endo-β-N-acetylglucosaminidase (Endo-CCN180H) were employed. pH 7.5 was ideal for both SG-oxazoline’s stability and Endo-CC’s transglycosylation reaction. The most efficient reaction conditions for producing glycosylated-RNase B, virtually modified completely with sialo-biantennary-type complex oligosaccharide, were: 80 μg GlcNAc-RNase B, 200 μg SG-oxazoline and 3 μg Endo-CCN180H in 20 μl 20 mM Tris/HCl pH 7.5 at 30 °C for 30–60 min.

Conclusions

This transglycosylation method using SG-oxazoline and Endo-CCN180H is beneficial for producing pharmaceutical glycoproteins modified with homogenous biantennary-complex-type oligosaccharides.
  相似文献   

9.
The enzyme Erwinia chrysanthemi l-asparaginase (ErA) is an important biopharmaceutical product used in the treatment of acute lymphoblastic leukaemia. Like all proteins, certain asparagine (Asn) residues of ErA are susceptible to deamidation to aspartic acid (Asp), which may be a concern with respect to enzyme activity and potentially to pharmaceutical efficacy. Recombinant ErA mutants containing Asn to Asp changes were expressed, purified and characterised. Two mutants with single deamidation sites (N41D and N281D) were found to have approximately the same specific activity (1,062 and 924 U/mg, respectively) as the wild-type (908 U/mg). However, a double mutant (N41D N281D) had an increased specific activity (1261 U/mg). The N41D mutation conferred a slight increase in the catalytic constant (k cat 657 s?1) when compared to the WT (k cat 565 s?1), which was further increased in the double mutant, with a k cat of 798 s?1. Structural analyses showed that the slight changes caused by point mutation of Asn41 to Asp may have reduced the number of hydrogen bonds in this α-helical part of the protein structure, resulting in subtle changes in enzyme turnover, both structurally and catalytically. The increased α-helical content observed with the N41D mutation by circular dichroism spectroscopy correlates with the difference in k cat, but not K m. The N281D mutation resulted in a lower glutaminase activity compared with WT and the N41D mutant, however the N281D mutation also imparted less stability to the enzyme at elevated temperatures. Taken as a whole, these data suggest that ErA deamidation at the Asn41 and Asn281 sites does not affect enzyme activity and should not be a concern during processing, storage or clinical use. The production of recombinant deamidated variants has proven an effective and powerful means of studying the effect of these changes and may be a useful strategy for other biopharmaceutical products.  相似文献   

10.
Applications of lipases are mainly based on their catalytic efficiency and substrate specificity. In this study, circular permutation (CP), an unconventional protein engineering technique, was employed to acquire active mutants of Yarrowia lipolytica lipase Lip8p. A total of 21 mutant lipases exhibited significant shifts in substrate specificity. Cp128, the most active enzyme mutant, showed higher catalytic activity (14.5-fold) and higher affinity (4.6-fold) (decreased K m) to p-nitrophenyl-myristate (pNP-C14) than wild type (WT). Based on the three-dimensional (3D) structure model of the Lip8p, we found that most of the functional mutation occurred in the surface-exposed loop region in close proximity to the lid domain (S112–F122), which implies the steric effect of the lid on lipase activity and substrate specificity. The temperature properties of Cp128 were also investigated. In contrast to the optimal temperature of 45 °C for the WT enzyme, Cp128 exhibited the maximal activity at 37 °C. But it is noteworthy that there is no change in thermostability.  相似文献   

11.
Random mutagenesis was performed on β-agarase, AgaB, from Zobellia galactanivorans to improve its catalytic activity and thermostability. The activities of three mutants E99K, T307I and E99K–T307I were approx. 140, 190 and 200%, respectively, of wild type β-agarase (661 U/mg) at 40°C. All three mutant enzymes were stable up to 50°C and E99K–T307I had the highest thermostability. The melting temperature (T m) of E99K–T307I, determined by CD spectra, was increased by 5.2°C over that of the wild-type enzyme (54.6°C). Activities of both the wild-type and E99K–T307I enzymes, as well as their overall thermostabilities, increased in 1 mM CaCl2. The E99K–T307I enzyme was stable at 55°C with 1 mM CaCl2, reaching 260% of the activity the wild-type enzyme held at 40°C without CaCl2.  相似文献   

12.
Cold active esterases are a class of important biocatalysts that exhibit high activity at low temperatures. In this study, a search for putative cold-active esterase encoding genes from Monascus ruber M7 was performed. A cold-active esterase, named Lip10, was isolated, cloned, purified, and characterized. Amino acid sequence analysis reveals that Lip10 contained a conserved sequence motif Gly173-Xaa-Ser175-Xaa-Gly177 that is also present in the majority of esterases and lipases. Phylogenetic analysis indicated that Lip10 was a novel microbial esterase. The lip10 gene was cloned and heterologously expressed in Escherichia coli BL21(DE3), resulting in the expression of an active and soluble protein that constituted 40 % of the total cell protein content. Lip10 maintained almost 50 % of its maximal activity at 4–10 °C, with optimal activity at 40 °C. Furthermore, Lip10 retained 184–216 % of its original activity, after incubation in 50 % (v/v) hydrophobic organic solvents for 24 h. The enzyme also exhibited high activity under alkaline conditions and good tolerance to metal ions in the reaction mixture. These results indicate that Lip10 may have potential uses in chemical synthesis and food processing industrial applications as an esterase.  相似文献   

13.
This study aimed to improve the thermostability of alkaline α-amylase from Alkalimonas amylolytica through structure-based rational design and systems engineering of its catalytic domain. Separate engineering strategies were used to increase alkaline α-amylase thermostability: (1) replace histidine residues with leucine to stabilize the least similar region in domain B, (2) change residues (glycine, proline, and glutamine) to stabilize the highly conserved α-helices in domain A, and (3) decrease the free energy of folding predicted by the PoPMuSiC program to stabilize the overall protein structure. A total of 15 single-site mutants were obtained, and four mutants — H209L, Q226V, N302W, and P477V — showed enhanced thermostability. Combinational mutations were subsequently introduced, and the best mutant was triple mutant H209L/Q226V/P477V. Its half-life at 60 °C was 3.8-fold of that of the wild type and displayed a 3.2 °C increase in melting temperature compared with that of the wild type. Interestingly, other biochemical properties of this mutant also improved: the optimum temperature increased from 50 °C to 55 °C, the optimum pH shifted from 9.5 to 10.0, the stable pH range expanded from 7.0–11.0 to 6.0–12.0, the specific activity increased by 24 %, and the catalytic efficiency (k cat/K m) increased from 1.8×104 to 3.5?×?104 l/(g min). Finally, the mechanisms responsible for the increased thermostability were analyzed through comparative analysis of structure models. The structure-based rational design and systems engineering strategies in this study may also improve the thermostability of other industrial enzymes.  相似文献   

14.
Microbial transglutaminase (MTG) gene (mtg) from Streptomyces hygroscopicus H197 strain was cloned by PCR and mutated by deleting a specific 84 bp fragment using overlapping extension PCR. The mutant MTG and the wild MTG genes expressed by recombinant plasmid pET32a+-mutant mtg and pET32a+-mtg, respectively, and were harvested by alternating freeze–thaw steps and purified by Ni column. The purified mutant MTG and the wild MTG exhibited 0.22 U/mg and 0.16 U/mg activity, respectively, and 0.69 U/mg and 0.54 U/mg activity, respectively, after activated by trypsin. The molecular weight of mutant MTG was estimated as 67 kDa by SDS-PAGE. Both MTGs showed optimum activity at pH 6–8 for hydroxamate formation from N-CBZ-Gln-Gly and hydroxylamine, and exhibited higher stability at 40°C and 1–3% salinity. The two types of MTG were not stable in the presence of Zn(II), Cu(II), Hg(II), Pb(II), Fe(III), and Ag(I), suggesting that they could possess a thiol group. In addition, the mutant MTG and the wild MTG were strongly affected by ethanol. Furthermore, the mutant MTG was obviously (P < 0.05 or P < 0.01) more stable than the wild MTG at 50°C and 60°C, at pH 4, 5, and 9, at 7% and 9% salinity, 30% and 35% ethanol concentration, and in the presence of Li(I) and Ag(I). The polyhydroxy compounds as protein stabilizers could elevate MTG stability.  相似文献   

15.
Novel lipases lip11 and lip12 from Yarrowia lipolytica MSR80 were cloned and expressed in E. coli HB101 pEZZ18 system along with lip2. These enzymes were constitutively expressed as extracellular proteins with IgG tag. The enzymes were purified by affinity chromatography and analyzed by SDS-PAGE with specific activity of 314, 352 and 198?U/mg for Lip2, Lip11 and Lip12, respectively on olive oil. Biochemical characterization showed that all were active over broad range of pH 4.0?C9.0 and temperature 20?C80?°C with optima at pH 7 and 40?°C. All the three lipases were thermostable up to 80?°C with varying t1/2. Activity on various substrates revealed that they were most active on oils?>?triacylglycerides?>?p-np-esters. Relatively Lip2 and Lip11 showed specificity for mid to long chain fatty acids, while Lip12 was mid chain specific. GC analysis of triolein hydrolysis by these lipases revealed that Lip2 and Lip11 are regioselective, while Lip12 is not. Effect of metal ions showed that Lip2 and Lip12 were activated by Ca2+ whereas Lip11 by Mg2+. All were thiol activated and inhibited by PMSF and N-bromosuccinimide. All were activated by non polar solvents and inhibited by polar solvents. Detailed sequence analysis and structural predictions revealed Lip11 and Lip12 shared 61 and 62?% homology with Lip2 (3O0D) and three dimensional superimposition revealed Lip2 was closer to Lip11 than to Lip12 as was observed during biochemical characterization. Finally, thermostability and substrate specificity has been explained on the basis of detailed amino acid analysis.  相似文献   

16.
The extreme process condition of high temperature and high alkali limits the applications of most of natural xylanases in pulp and paper industry. Recently, various methods of protein engineering have been used to improve the thermal and alkalic tolerance of xylanases. In this work, directed evolution and site-directed mutagenesis were performed to obtain a mutant xylanase improved both on alkali stability and thermostability from the native Paenibacillus campinasensis Family-11 xylanase (XynG1-1). Mutant XynG1-1B43 (V90R/P172H) with two units increased in the optimum pH (pH 7.0–pH 9.0) and significant improvement on alkali stability was selected from the second round of epPCR library. And the further thermoduric mutant XynG1-1B43cc16 (V90R/P172H/T84C-T182C/D16Y) with 10 °C increased in the optimum temperature (60–70 °C) was then obtained by introducing a disulfide bridge (T84C-T182C) and a single amino acid substitution (D16Y) to XynG1-1B43 using site-directed mutagenesis. XynG1-1B43cc16 also showed higher thermostability and catalytic efficiency (k cat /K m ) than that of wild-type (XynG1-1) and XynG1-1B43. The attractive improved properties make XynG1-1B43cc16 more suitable for bioleaching of cotton stalk pulp under the extreme process condition of high temperature (70 °C) and high alkali (pH 9.0).  相似文献   

17.
Penicillium chrysogenum NRRL 792 was exposed successively to gamma radiation (physical mutagen) and ethyl methansulfonate (EMS; chemical mutagen). Gamma mutant G9 produced more alkaline protease than the wild type (62.92 vs. 40.0 U/g, respectively). Subsequent mutagenesis of G9 by EMS resulted in mutant EMS-1, which produced the highest level of enzyme (120.0 U/g). Optimal conditions for alkaline protease production by this mutant fungal strain were examined. The optimized medium was supplemented with 1 % (w/w) casein and 2.5 mM MgSO4, while the optimal pH and temperature were 9, and 30 °C after 7 days of incubation. The purified mutant alkaline protease from EMS-1 was more stable than that from the wild-type, resulting in the former having a higher pH stability and thermostability. The mutant and wild enzymes were subjected to sodium dodecylsulfate-polyacrylamide gel electrophoresis. The purified mutant enzyme showed two bands with molecular weights of 40 and 65 kDa, while the molecular weight of the purified wild-type enzyme was 66 kDa. Random amplified polymorphic DNA and inter-simple sequence repeat markers were used to identify polymorphism and genetic variations between the mutant and wild-type strains.  相似文献   

18.
The aim of this study was to characterize new Bacillus thuringiensis strains that have a potent insecticidal activity against Ephestia kuehniella larvae. Strains harboring cry1A genes were tested for their toxicity, and the Lip strain showed a higher insecticidal activity compared to that of the reference strain HD1 (LC50 of Lip and HD1 were 33.27 and 128.61 μg toxin/g semolina, respectively). B. thuringiensis Lip harbors and expresses cry1Aa, cry1Ab, cry1Ac, cry1Ad and cry2A. DNA sequencing revealed several polymorphisms in Lip Cry1Aa and Cry1Ac compared to the corresponding proteins of HD1. The activation process using Ephestia kuehniella midgut juice showed that Lip Cry1A proteins were more stable in the presence of larval proteases. Moreover, LipCry1A proteins exhibited higher insecticidal activity against these larvae. These results indicate that Lip is an interesting strain that could be used as an alternative to the worldwide used strain HD1.  相似文献   

19.
High fructose corn syrup (HFCS) is an alternative of liquid sweetener to sucrose that is isomerized by commercial glucose isomerase (GI). One-step production of 55 % HFCS by thermostable GI has been drawn more and more attentions. In this study, a new hyperthermophilic GI from Thermoanaerobacter ethanolicus CCSD1 (TEGI) was identified by genome mining, and then a 1317 bp fragment encoding the TEGI was synthesized and expressed in Escherichia coli BL21(DE3). To improve the activity of TEGI, two amino acid residues, Trp139 and Val186, around the active site and substrate-binding pocket based on the structural analysis and molecular docking were selected for site-directed mutagenesis. The specific activity of mutant TEGI-W139F/V186T was 2.3-fold and the value of k cat/K m was 1.86-fold as compared to the wild type TEGI, respectively. Thermostability of mutant TEGI-W139F/V186T at 90 °C for 24 h showed 1.21-fold extension than that of wild type TEGI. During the isomerization of glucose to fructose, the yield of fructose could maintain above 55.4 % by mutant TEGI-W139F/V186T as compared to 53.8 % by wild type TEGI at 90 °C. This study paved foundation for the production of 55 % HFCS using the thermostable TEGI.  相似文献   

20.
l-Phenylalanine is an important amino acid commercially, and therefore optimization of its manufacture is of interest. We constructed a range of mutant alleles of AroG, the enzyme involved in the first step of phenylalanine biosynthesis. Three single-site mutant alleles were constructed (aroG8, aroG15, and aroG29), which were then combined to generate three double-site aroG fbr mutant alleles (aroG8/15, aroG8/29, and aroG15/29). Enzymatic activity, feedback inhibition, and fermentation were analyzed in all of the mutants. All double-site mutants, except AroG15/29, showed higher enzymatic activity and greater resistance to feedback inhibition than their respective single-site mutants. The E. coli strain carrying the aroG8/15 allele produced a phenylalanine titer of 26.78 g/l, a 116 % improvement over the control phenylalanine overproducing strain (12.41 g/l). Our findings provide an effective method for modifying phenylalanine biosynthetic genes, which may be applied to optimize the commercial manufacture of phenylalanine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号