首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two lectins were isolated from Robinia pseudoacacia (black locust) seeds using affinity chromatography on fetuin-agarose, and ion exchange chromatography on a Neobar CS column. The first lectin, R. pseudoacacia seed agglutinin I, referred to as RPsAI, is a homotetramer of four 34 kDa subunits whereas the second lectin, referred to as RPsAII, is composed of four 29 kDa polypeptides. cDNA clones encoding the polypeptides of RPsAI and RPsAII were isolated and their sequences were determined. Both polypeptides are translated from mRNAs of ca. 1.2 kb encoding a precursor carrying a signal peptide. Alignment of the deduced amino acid sequences of the different clones indicates that the 34 and 29 kDa seed lectin polypeptides show 95% sequence identity. In spite of this striking homology, the 29 kDa polypeptide has only one putative glycosylation site whereas the 34 kDa subunit has four of these sites. Carbohydrate analysis revealed that the 34 kDa possesses three carbohydrate chains whereas the 29 kDa polypeptide is only partially glycosylated at one site. A comparison of the deduced amino acid sequences of the two seed and three bark lectin polypeptides demonstrated unambiguously that they are encoded by different genes. This implies that five different genes are involved in the control of the expression of the lectins in black locust.Abbreviations LECRPAs cDNA clone encoding Robinia pseudoacacia seed lectin - LoLI Lathyrus ochrus isolectin I - PsA Pisum sativum agglutinin - RPbAI Robinia pseudoacacia bark agglutinin I - RPbAII Robinia pseudoacacia bark agglutinin II - RPsAI Robinia pseudoacacia seed agglutinin I - RPsAII Robinia pseudoacacia seed agglutinin II  相似文献   

2.
cDNA clones encoding the bark and seed lectins from Sophora japonica were isolated and their sequences analyzed. Screening of a cDNA library constructed from polyA RNA isolated from the bark resulted in the isolation of three different lectin cDNA clones. The first clone encodes the GalNAc-specific bark lectin which was originally described by Hankins et al. whereas the other clones encode the two isoforms of the mannose/glucose-specific lectin reported by Ueno et al.. Molecular cloning of the seed lectin genes revealed that Sophora seeds contain only a GalNAc-specific lectin which is highly homologous to though not identical with the GalNAc-specific lectin from the bark. All lectin polypeptides are translated from mRNAs of ca. 1.3 kb encoding a precursor carrying a signal peptide. In the case of the mannose/glucose-specific bark lectins this precursor is post-translationally processed in two smaller peptides. Alignment of the deduced amino acid sequences of the different clones revealed striking sequence similarities between the mannose/glucose-binding and the GalNAc-specific lectins. Furthermore, there was a high degree of sequence homology with other legume lectins which allowed molecular modelling of the Sophora lectins using the coordinates of the Pisum sativum, Lathyrus ochrus and Erythrina corallodendron lectins.  相似文献   

3.
A solubility-insolubility transition assay was used to screen the bark and stems of seven leguminous trees and plants for self-aggregatable lectins. Novel lectins were found in two trees, Robinia pseudoacacia and Wisteria floribunda, but not in the leguminous plants. The Robinia lectin was isolated from coexisting lectin by combined affinity chromatographies on various sugar adsorbents. The purified lectins proved to be differently glycosylated glycoproteins. One lectin exhibited the remarkable characteristics of self-aggregatable lectins: localization in the bark of legume trees, self-aggregation dissociated by N-acetylglucosamine/mannose, and coexistence with N-acetylgalactosamine/galactose-specific lectins, which are potential endogenous receptors. Self-aggregatable lectins are a functional lectin group that can link enhanced photosynthesis to dissociation of glycoproteins.  相似文献   

4.
The structure of the bark lectin RPbAI (isoform A4) from Robinia pseudoacacia has been determined by protein crystallography both in the free form and complexed with N-acetylgalactosamine. The free form is refined at 1.80 A resolution to an R-factor of 18.9% whereas the complexed structure has an R-factor of 19.7% at 2.05 A resolution. Both structures are compared to each other and to other available legume lectin structures. The polypeptide chains of the two structures exhibit the characteristic legume lectin tertiary fold. The quaternary structure resembles that of the Phaseolus vulgaris lectin, the soybean agglutinin, and the Dolichos biflorus lectin, but displays some unique features leading to the extreme stability of this lectin.  相似文献   

5.
A new galactose-specific lectin was isolated from African yam bean (Sphenostyles stenocarpa Harms) by affinity chromatography on galactose-Sepharose 4B. SDS-PAGE analysis resulted in four polypeptide bands of approximately 27, 29, 32 and 34 kDa, respectively. Based on the analysis of carbohydrate content and native PAGE, it is likely that the Sphenostyles lectin is a tetrameric glycoprotein with M(r) of approximately 122 kDa. N-terminal protein sequencing of purified lectins from four different Sphenostyles accessions shows that the four polypeptides have largely identical amino acid sequences. The sequences contain the conserved consensus sequence F-F-LILG characteristic of legume lectins, as well as Phaseolus vulgaris proteins in the arcelin-alpha-amylase inhibitor gene family. The lectin agglutinates both rabbit and human erythrocytes, but with a preference for blood types A and O. Using Western blotting, the lectin was shown to accumulate rapidly during seed development, but levels dropped slightly as seeds attained maturity. This is the first time a lectin has been purified from the genus Sphenostyles. The new lectin was assigned the abbreviation LECp.SphSte.se.Hga1.  相似文献   

6.
Using a combination of cDNA cloning and protein purification it is demonstrated that bark of yellow wood (Cladrastis lutea) contains two mannose/glucose binding lectins and a lectin-related protein which is devoid of agglutination activity. One of the lectins (CLAI) is the most prominent bark protein. It is built up of four 32 kDa monomers which are post-translationally cleaved into a 15 kDa and a 17 kDa polypeptide. The second lectin (CLAII) is a minor protein, which strongly resembles CLAI except that its monomers are not cleaved into smaller polypeptides. Molecular cloning of the Cladrastis lectin family revealed also the occurrence of a lectin-related protein (CLLRP) which is the second most prominent bark protein. Although CLLRP shows sequence homology to the true lectins, it is devoid of carbohydrate binding activity. Molecular modelling of the three Cladrastis proteins has shown that their three-dimensional structure is strongly related to the three-dimensional models of other legume lectins and, in addition, revealed that the presumed carbohydrate binding site of CLLRP is disrupted by an insertion of three extra amino acids. Since it is demonstrated for the first time that a lectin and a noncarbohydrate binding lectin-related protein are the two most prominent proteins in the bark of a tree, the biological meaning of their simultaneous occurrence is discussed.  相似文献   

7.
A lectin was purified from rhizomes of the fern Phlebodium aureum by affinity chromatography on mannose-Sepharose. The lectin, designated P. aureum lectin (PAL), is composed of two identical subunits of approximately 15 kDa associated by noncovalent bonds. From a cDNA library and synthetic oligonucleotide probes based on a partial amino acid sequence, 5'- and 3'-rapid amplification of cDNA ends allowed the generation of two similar full-length cDNAs, termed PALa and PALb, each of which had an open reading frame of 438 bp encoding 146 amino acid residues. The two proteins share 88% sequence identity and showed structural similarity to jacalin-related lectins. PALa contained peptide sequences exactly matching those found in the isolated lectin. PALa and PALb were expressed in Escherichia coli using pET-22b(+) vector and purified by one-step affinity chromatography. Native and recombinant forms of PAL agglutinated rabbit erythrocytes and precipitated with yeast mannan, dextran, and the high mannose-containing glycoprotein invertase. The detailed carbohydrate-binding properties of the native and recombinant lectins were elucidated by agglutination inhibition assay, and native lectin was also studied by isothermal titration calorimetry. Based on the results of these assays, we conclude that this primitive vascular plant, like many higher plants, contains significant quantities of a mannose/glucose-binding protein in its storage tissue, whose binding specificity differs in detail from either legume mannose/glucose-binding lectins or monocot mannose-specific lectins. The identification of a jacalin-related lectin in a true fern reveals for the first time the widespread distribution and molecular evolution of this lectin family in the plant kingdom.  相似文献   

8.
A novel lectin has been isolated and cloned from leaves of Glechoma hederacea (ground ivy), a typical representative of the plant family Lamiaceae. Biochemical analyses indicated that the G. hederacea agglutinin (Gleheda) is a tetrameric protein consisting of four subunits pairwise linked through an interchain disulphide bridge and exhibits a preferential specificity towards N-acetylgalactosamine. Cloning of the corresponding gene and molecular modeling of the deduced sequence demonstrated that Gleheda shares high sequence similarity with the legume lectins and exhibits the same overall fold and three-dimensional structure as the classical legume lectins. The identification of a soluble and active legume lectin ortholog in G. hederacea not only indicates that the yet unclassified Lamiaceae lectins belong to the same lectin family as the legume lectins, but also sheds a new light on the specificity, physiological role and evolution of the classical legume lectins.  相似文献   

9.
A lectin has been identified in black locust (Robinia pseudoacacia) bark that shares approximately 50% sequence identity with plant class V chitinases but is essentially devoid of chitinase activity. Specificity studies indicated that the black locust chitinase-related agglutinin (RobpsCRA) preferentially binds to high-mannose N-glycans comprising the proximal pentasaccharide core structure. Closely related orthologs of RobpsCRA could be identified in the legumes Glycine max, Medicago truncatula, and Lotus japonicus but in no other plant species, suggesting that this novel lectin family most probably evolved in an ancient legume species or possibly an earlier ancestor. This identification of RobpsCRA not only illustrates neofunctionalization in plants, but also provides firm evidence that plants are capable of developing a sugar-binding domain from an existing structural scaffold with a different activity and accordingly sheds new light on the molecular evolution of plant lectins.  相似文献   

10.
A lectin was purified from the bark of Robinia pseudoacaciaby sequential ion-exchange chromatography on DEAE-Sepharoseand CM-Toyopearl. The purified lectin was estimated to havea molecular weight of 106 kDa and to be a homotetramer of subunitswith a molecular weight of 29 kDa. Antibodies raised againstthe bark lectin cross-reacted with a 29-kDa polypeptide duringWestern blot analysis, showing that the antibodies are specificfor the bark lectin. The antibodies against the lectin fromRobinia bark cross-reacted with polypeptides in extracts ofthe seeds and bark of Sophora japonica, indicating that thelectin from Robinia bark is immunologically related to the lectinsof Sophora. However, the antibodies did not cross-react withproteins from Robinia seeds and leaves. The first twenty aminoacid residues from the N-terminus of the lectin from Robiniabark were determined and compared with those of the Sophoralectins. (Received July 13, 1991; Accepted December 12, 1991)  相似文献   

11.
A new lectin was purified from tubers of Arum maculatum L. by affinity chromatography on immobilized asialofetuin. Although this lectin is also retained on mannose-Sepharose 4B, under the appropriate conditions free mannose is a poor inhibitor of its agglutination activity. Pure preparations of the Arum lectin apparently yielded a single polypeptide band of approximately 12 kD upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis. However, N-terminal sequencing of the purified protein combined with molecular cloning of the lectin have shown that the lectin is composed of two different 12-kD lectin subunits that are synthesized on a single large precursor translated from an mRNA of approximately 1400 nucleotides. Lectins with similar properties were also isolated from the Araceae species Colocasia esculenta (L.) Schott, Xanthosoma sagittifolium (L.) Schott, and Dieffenbachia sequina Schott. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration of the different Araceae lectins have shown that they are tetrameric proteins composed of lectin subunits of 12 to 14 kD. Interestingly, these lectins are the most prominent proteins in the tuber tissue. Evidence is presented that a previously described major storage protein of Colocasia tubers corresponds to the lectin.  相似文献   

12.
Two monomeric lectins, SSA-b-3 and SSA-b-4, were purified from the bark tissue of Japanese elderberry, Sambucus sieboldiana. SDS-PAGE of the purified lectins showed the presence of single bands of 35 and 33 kDa for SSA-b-3 and SSA-b-4, respectively, irrespective of the presence of reducing agent. MS analysis as well as gel filtration of these lectins indicated that they exist mostly as monomeric lectins. Analysis of the N-terminal amino acid sequences of SSA-b-3 and SSA-b-4 yielded an identical sequence, indicating their close structural relationship. Four cDNA clones with extensive homology were obtained from the bark cDNA library and indicated to encode SSA-b-3 or SSA-b-4 from the comparison with the N-terminal sequences of these lectins. These clones were classified into two groups, three for SSA-b-3 and one for SSA-b-4, based on the predicted isoelectric points. The amino acid sequences of the encoded polypeptides were almost identical with the B-chain of a type 2 ribosome-inactivating protein from the same bark tissue, sieboldin-b, except for the absence of a small peptide containing a cystein residue, which is critical for the heteromeric dimerization with an A-subunit. Carbohydrate binding specificity and biological activity of these lectins are also reported.  相似文献   

13.
A detailed study was made of the bark lectins of the legume tree Maackia amurensis using a combination of protein purification and cDNA cloning. The lectins, which are the most abundant bark proteins, are a complex mixture of isoforms composed of two types of subunits of 32 and 37 kDa, respectively. Isolation and characterization of the homotetrameric isoforms indicated that the 32 kDa subunit exhibits a 100-fold stronger haemagglutinating activity than the 37 kDa subunit. Molecular cloning confirmed that the two lectin subunits are encoded by different genes. The 32 kDa subunit is apparently encoded by a single gene, whereas two highly homologous genes encode the 37 kDa subunit. A comparison of the deduced amino acid sequences of the bark lectin cDNAs and the previously described cDNA encoding the seed haemagglutinin demonstrated that they are encoded by different genes. Abbreviations: LECMAHb, cDNA clone encoding Maackia amurensis bark haemagglutinin; LECMALb, cDNA clone encoding Maackia amurensis bark leucoagglutinin; MALb, Maackia amurensis bark leucoagglutinin; MAHb, Maackia amurensis bark haemagglutinin This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

14.
Lectin cDNA clones for two different lectins from garlic (Allium sativum L.) bulbs, ASAI and ASAII (ASA, Allium sativum agglutinin), were isolated and characterized. The first lectin, ASAI, is a heterodimer composed of two different subunits of 11.5 kDa and 12.5 kDa. It is translated from an mRNA of 1400 nucleotides encoding a polypeptide of 306 amino acids with two very similar domains. N-terminal sequencing of the two polypeptides of the mature lectin confirmed that both subunits are derived from the same precursor and that each corresponds to one of the two domains in the sequence. In contrast to ASAI, the second garlic lectin, ASAII, is a homodimer of two identical 12-kDa subunits. It is translated from an mRNA of approximately 800 nucleotides encoding a polypeptide of 154 amino acids. Interestingly, the coding region of the ASAII cDNA clones is almost identical to that of the second domain of the ASAI cDNA clones.  相似文献   

15.
Ficolins are animal lectins with collagen-like and fibrinogen-like domains. They are involved in the first line of host defense against pathogens. Human ficolin/P35 as well as mannose-binding lectin (MBL) activates the complement lectin pathway in association with MBL-associated serine proteases. To elucidate the origin and evolution of ficolins, we separated approximately 40 kDa (p40) and approximately 50 kDa (p50) N-acetylglucosamine-binding lectins from hemolymph plasma of the solitary ascidian. Binding assays revealed that p40 recognizes N-acetyl groups in association with a pyranose ring and that p50 recognizes N-acetylglucosamine alone. Based on the amino acid sequences of the proteins, we isolated two clones each of p40 and p50 from the ascidian hepatopancreas cDNA and determined the entire coding sequences of these clones. Because all of the clones contained both collagen-like and fibrinogen-like domains, we concluded that these were homologs of the mammalian ficolin family and designated ascidian ficolins (AsFCNs). The fibrinogen-like domain of the AsFCNs shows 45.4-52.4% amino acid sequence identity with the mammalian ficolin family. A phylogenetic tree of the fibrinogen-like sequences shows that all the fibrinogen-like domains may have evolved from a common ancestor that branched off an authentic fibrinogen. These results suggest that AsFCNs play an important role with respect to ascidian hemolymph lectin activity and the correlation of different functions with binding specificity.  相似文献   

16.
The marine sponge Geodia cydonium contains several lectins.The main component, called lectin-1, is composed of three tofour identical subunits. The subunits of the lectins were clonedfrom a cDNA library; two clones were obtained. From the deducedaa sequence of one clone, LECT-1, a mol. wt of 15 313 Da iscalculated; this value is in good agreement with mass spectrometricanalysis of 15 453 25 Da. The sequence of another clone, LECT-2,was analysed and the aa sequence was deduced (15 433 Da). Thetwo subunits have a framework sequence of 38 conserved aa whichare characteristic for the carbohydrate-binding site of vertebrateS-type lectins. Clustering of lectin sequences of various speciesfollowing their pairwise comparison establishes a dendrogram,which reveals that the sponge lectin could be considered asthe ancestor for vertebrate S-type lectins. Geodia cydonium lectin sponges S-type lectin  相似文献   

17.
cDNA cloning and expression of Bauhinia purpurea lectin.   总被引:3,自引:0,他引:3  
Bauhinia purpurea lectin (BPA) was purified from seeds of B. purpurea alba. The purified lectin was digested with an endoproteinase, Asp-N, or trypsin and then the amino acid sequences of the resultant fragments were analyzed. Furthermore, a cDNA library for BPA was constructed using RNA isolated from germinated Bauhinia purpurea seeds. By gene cloning, the nucleotide sequence of BPA cDNA and its deduced amino acid sequence were analyzed. The cloned BPA cDNA comprised 1,152 nucleotides and the open reading frame of the cDNA encodes a polypeptide of 290 amino acids including a signal peptide composed of 28 amino acids. BPA expressed in Escherichia coli showed a relative molecular mass of 29 kDa on sodium dodecyl sulfate-polyacrylamide gel. On comparison of its sequence with those of other leguminous seed lectins, BPA showed high homology to the others.  相似文献   

18.
Five N-acetyl-galactosamine-specific lectins were isolated from the bark of the legume tree Sophora japonica. These lectins are immunologically and structurally very similar, but not identical, to the Sophora seed and leaf lectins. The carbohydrate specificities and hemagglutinin activities of these lectins are indistinguishable at pH 8.5 but their activities differ markedly at pH values below 8. All five lectins are tetrameric glycoproteins made up of different combinations of subunits of about 30,000, 30,100, 33,000 Mr containing 3% to 5% covalently attached sugar. These lectins are the overwhelmingly dominant proteins in bark, but they do not appear to be present in other tissues. Amino terminal sequence analysis indicates that at least two distinct lectin genes are expressed in bark.  相似文献   

19.
Two novel lectins were isolated from roots and leaves of garlic. Characterization of the purified proteins indicated that the leaf lectin ASAL is a dimer of two identical subunits of 12 kDa, which closely resembles the leaf lectins from onion, leek and shallot with respect to its molecular structure and agglutination activity. In contrast, the root lectin ASARI, which is a dimer of subunits of 15 kDa, strongly differs from the leaf lectin with respect to its agglutination activity. cDNA cloning of the leaf and root lectins revealed that the deduced amino acid sequences of ASAL and ASARI are virtually identical. Since both lectins have identical N-terminal sequences the larger Mr of the ASARI subunits implies that the root lectin has an extra sequence at its C-terminus. These results not only demonstrate that virtually identical precursor polypeptides are differently processed at their C-terminus in roots and leaves but also indicate that differential processing yields mature lectins with strongly different biological activities. Further screening of the cDNA library for garlic roots also yielded a cDNA clone encoding a protein composed of two tandemly arrayed lectin domains. Since the presumed two-domain root lectin has not been isolated yet, its possible relationship to the previously described two-domain bulb lectin could not be studied at the protein level.  相似文献   

20.
Previous studies have shown that the Dolichos biflorus plant contains a lectin in its stems and leaves, called DB58, that is closely related to the D. biflorus seed lectin. DB58 is a heterodimer composed of two closely related subunits. Immunoprecipitation of total translation products from D. biflorus stem and leaf mRNA suggests a single polypeptide precursor for both of these subunits. Several identical cDNA clones representing the entire coding region of the DB58 mRNA have been isolated from a D. biflorus stem and leaf cDNA library. The DB58 cDNA represents an mRNA encoding a polypeptide of Mr = 29,545. The predicted polypeptide is equal in length to the larger subunit of DB58 with the addition of a 22-amino acid amino-terminal signal sequence. The sequence of the DB58 lectin exhibits 84% homology to the D. biflorus seed lectin at the amino acid level, suggesting that these lectins are encoded by differentially expressed genes and may have evolved to carry out tissue-specific functions. Comparison of the DB58 sequence to other leguminous seed lectins indicates a high degree of structural conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号