首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Echolocating bats cry out loud to detect their prey   总被引:1,自引:0,他引:1  
Surlykke A  Kalko EK 《PloS one》2008,3(4):e2036
Echolocating bats have successfully exploited a broad range of habitats and prey. Much research has demonstrated how time-frequency structure of echolocation calls of different species is adapted to acoustic constraints of habitats and foraging behaviors. However, the intensity of bat calls has been largely neglected although intensity is a key factor determining echolocation range and interactions with other bats and prey. Differences in detection range, in turn, are thought to constitute a mechanism promoting resource partitioning among bats, which might be particularly important for the species-rich bat assemblages in the tropics. Here we present data on emitted intensities for 11 species from 5 families of insectivorous bats from Panamá hunting in open or background cluttered space or over water. We recorded all bats in their natural habitat in the field using a multi-microphone array coupled with photographic methods to assess the bats' position in space to estimate emitted call intensities. All species emitted intense search signals. Output intensity was reduced when closing in on background by 4-7 dB per halving of distance. Source levels of open space and edge space foragers (Emballonuridae, Mormoopidae, Molossidae, and Vespertilionidae) ranged between 122-134 dB SPL. The two Noctilionidae species hunting over water emitted the loudest signals recorded so far for any bat with average source levels of ca. 137 dB SPL and maximum levels above 140 dB SPL. In spite of this ten-fold variation in emitted intensity, estimates indicated, surprisingly, that detection distances for prey varied far less; bats emitting the highest intensities also emitted the highest frequencies, which are severely attenuated in air. Thus, our results suggest that bats within a local assemblage compensate for frequency dependent attenuation by adjusting the emitted intensity to achieve comparable detection distances for prey across species. We conclude that for bats with similar hunting habits, prey detection range represents a unifying constraint on the emitted intensity largely independent of call shape, body size, and close phylogenetic relationships.  相似文献   

2.
Rhinolophidae or Horseshoe bats emit long and narrowband calls. Fluttering insect prey generates echoes in which amplitude and frequency shifts are present, i.e. glints. These glints are reliable cues about the presence of prey and also encode certain properties of the prey. In this paper, we propose that these glints, i.e. the dominant glints, are also reliable signals upon which to base prey localization. In contrast to the spectral cues used by many other bats, the localization cues in Rhinolophidae are most likely provided by self-induced amplitude modulations generated by pinnae movement. Amplitude variations in the echo not introduced by the moving pinnae can be considered as noise interfering with the localization process. The amplitude of the dominant glints is very stable. Therefore, these parts of the echoes contain very little noise. However, using only the dominant glints potentially comes at a cost. Depending on the flutter rate of the insect, a limited number of dominant glints will be present in each echo giving the bat a limited number of sample points on which to base localization. We evaluate the feasibility of a strategy under which Rhinolophidae use only dominant glints. We use a computational model of the echolocation task faced by Rhinolophidae. Our model includes the spatial filtering of the echoes by the morphology of the sonar apparatus of Rhinolophus rouxii as well as the amplitude modulations introduced by pinnae movements. Using this model, we evaluate whether the dominant glints provide Rhinolophidae with enough information to perform localization. Our simulations show that Rhinolophidae can use dominant glints in the echoes as carriers for self-induced amplitude modulations serving as localization cues. In particular, it is shown that the reduction in noise achieved by using only the dominant glints outweighs the information loss that occurs by sampling the echo.  相似文献   

3.
We investigated the detection cues used by the aerial-hawking bat Eptesicus nilssonii foraging in a cluttered environment. The bats can detect and attack rapidly moving targets within the clutter, i.e. below grass panicles, by using prey motion as a cue. Stationary objects are attacked only above the grass, but still within the clutter overlap zone. To test if the bats were guided by flutter from moth wings or by vision when searching for stationary targets, they were presented with male ghost swifts mounted on top of steel wires. There was no difference in attack frequency on live, fluttering moths compared to dead and spread ones. However, when comparing white and dark moths, we found a significantly higher attack frequency on white ones. As the attacks always were guided by echolocation calls, we hypothesize that northern bats, at least in the initial search phase, use visual cues as a complement to detect stationary ghost swifts.  相似文献   

4.
5.
Olfactory tracking generally sacrifices speed for sensitivity, but some fast-moving animals appear surprisingly efficient at foraging by smell. Here, we analysed the olfactory tracking strategies of flying bats foraging for fruit. Fruit- and nectar-feeding bats use odour cues to find food despite the sensory challenges derived from fast flight speeds and echolocation. We trained Jamaican fruit-eating bats (Artibeus jamaicensis) to locate an odour reward and reconstructed their flight paths in three-dimensional space. Results confirmed that bats relied upon olfactory cues to locate a reward. Flight paths revealed a combination of odour- and memory-guided search strategies. During ‘inspection flights’, bats significantly reduced flight speeds and flew within approximately 6 cm of possible targets to evaluate the presence or absence of the odour cue. This behaviour combined with echolocation explains how bats maximize foraging efficiency while compensating for trade-offs associated with olfactory detection and locomotion.  相似文献   

6.
7.
Bats are a potential natural reservoir for SARS-CoV-2 virus and other viruses detrimental to humans. Accumulated evidence has shown that, in their adaptation to a flight-based lifestyle, remodeling of the gut microbiota in bats may have contributed to immune tolerance to viruses. This evidence from bats provides profound insights into the potential influence of gut microbiota in COVID-19 disease in humans. Here, we highlight recent advances in our understanding of the mechanisms by which the gut microbiota helps bats tolerate deadly viruses, and summarize the current clinical evidence on the influence of gut microbiota on the susceptibility to SARS-CoV-2 infection and risk of COVID-19 leading to a fatal outcome. In addition, we discuss the implications of gut microbiota-targeted approaches for preventing infection and reducing disease severity in COVID-19 patients.  相似文献   

8.
The istiophorid family of billfishes is characterized by an extended rostrum or ‘bill’. While various functions (e.g. foraging and hydrodynamic benefits) have been proposed for this structure, until now no study has directly investigated the mechanisms by which billfishes use their rostrum to feed on prey. Here, we present the first unequivocal evidence of how the bill is used by Atlantic sailfish (Istiophorus albicans) to attack schooling sardines in the open ocean. Using high-speed video-analysis, we show that (i) sailfish manage to insert their bill into sardine schools without eliciting an evasive response and (ii) subsequently use their bill to either tap on individual prey targets or to slash through the school with powerful lateral motions characterized by one of the highest accelerations ever recorded in an aquatic vertebrate. Our results demonstrate that the combination of stealth and rapid motion make the sailfish bill an extremely effective feeding adaptation for capturing schooling prey.  相似文献   

9.
Stonefly nymphs use hydrodynamic cues to discriminate between prey   总被引:1,自引:0,他引:1  
Summary Playback experiments conducted in a Rocky Mountain, USA, stream determined whether predatory stonefly nymphs (Kogotus modestus; Plecoptera: PerlodiMae) used hydrodynamic cues to discriminate prey species from nonprey species. In the laboratory we recorded pressure wave patterns associated with swimming escape behavior of Baetis bicaudatus (Baetidae), the favored mayfly prey species, and those of a nonprey mayfly, Ephemerella infrequens (Ephemerellidae). We video taped the responses of 24-h starved Kogotus to Baetis playbacks, Ephemerella playbacks or no playbacks made by oscillating (or not) live mayflies (Ephemerella) or clear plastic models placed within in situ flow-through observation boxes. The probability of attacks per encounter with Baetis playbacks was highest and independent of the model type used, but Kogotus also showed an unexpected high probability of attacks per encounter when Ephemerella playbacks were made through live Ephemerella. Thus, Kogotus discriminated between Baetis and Ephemerella swimming patterns but only when playbacks were made through the plastic model. Kogotus never attacked motionless mayflies or motionless plastic models. We allowed some Kogotus to successfully capture one small Baetis immediately before playbacks, which resulted in a much higher probability of attacks per encounter with Baetis playbacks on either model and a heightened discrimination of prey versus nonprey playbacks. The probability of attacks per encounter by Kogotus with live Baetis swimming under similar experimental conditions was strikingly similar to its response to Baetis playbacks made by oscillating the plastic model after a successful capture. Order of playback presentation (Baetis first or Ephemerella first) did not influence predatory responses to mayfly swimming patterns. This study is the first to document the use of hydrodynamic cues by stream-dwelling predators for discrimination of prey from nonprey and provides a mechanism to explain selective predation by stoneflies on Baetis in nature.  相似文献   

10.
11.
《Current biology : CB》2023,33(15):3179-3191.e4
  1. Download : Download high-res image (144KB)
  2. Download : Download full-size image
  相似文献   

12.
Owls may use faeces and prey feathers to signal current reproduction   总被引:1,自引:0,他引:1  
  相似文献   

13.
One of the key problems in motor control is mastering or reducing the number of degrees of freedom (DOFs) through coordination. This problem is especially prominent with hyper-redundant limbs such as the extremely flexible arm of the octopus. Several strategies for simplifying these control problems have been suggested for human point-to-point arm movements. Despite the evolutionary gap and morphological differences, humans and octopuses evolved similar strategies when fetching food to the mouth. To achieve this precise point-to-point-task, octopus arms generate a quasi-articulated structure based on three dynamic joints. A rotational movement around these joints brings the object to the mouth . Here, we describe a peripheral neural mechanism-two waves of muscle activation propagate toward each other, and their collision point sets the medial-joint location. This is a remarkably simple mechanism for adjusting the length of the segments according to where the object is grasped. Furthermore, similar to certain human arm movements, kinematic invariants were observed at the joint level rather than at the end-effector level, suggesting intrinsic control coordination. The evolutionary convergence to similar geometrical and kinematic features suggests that a kinematically constrained articulated limb controlled at the level of joint space is the optimal solution for precise point-to-point movements.  相似文献   

14.
1. Females of the North American freshwater bivalve Lampsilis perovalis release their larvae, which are obligate parasites on fish, in a discrete mass (superconglutinate) resembling a small fish in shape and coloration. After release, the mass remains tethered to the female by a long, transparent, mucous strand and, in stream currents, displays a darting motion that further mimics a small fish. 2. Release of superconglutinates was observed in March and April at water temperatures of 14–17 °C. However, superconglutinates detached from the parent mussel were observed from March to June at water temperatures of 11–26 °C, indicating that release may occur into the summer. 3. The superconglutinate lure may function to attract a predaceous fish to ingest the mass, ensuring that the larvae are exposed to a suitable host. 4. This reproductive strategy was confirmed recently to occur in a congener, L. subangulata and is suspected to occur in another congener, L. australis.  相似文献   

15.
Bdellovibrio bacteriovorus is a famously fast, flagellate predatory bacterium, preying upon Gram-negative bacteria in liquids; how it interacts with prey on surfaces such as in medical biofilms is unknown. Here we report that Bdellovibrio bacteria "scout" for prey bacteria on solid surfaces, using slow gliding motility that is present in flagellum-negative and pilus-negative strains.  相似文献   

16.
17.
The present study questions whether hypothermia is an artifact due to captivity-induced stress or a thermoregulatory strategy for bats of the neotropical family Phyllostomidae. In Guanacaste, Costa Rica, Carollia perspicillata and Sturnira lilium exhibited a bimodal distribution of body temperatures when submitted to an ambient temperature of 21 °C. Body temperature was highly correlated with body mass in both species. C. perspicillata of mass ≥20 g and S. lilium of mass ≥17 g remained normothermic (body temperature >37 °C), whereas at masses below 18 g and 13 g, respectively, >80% of individuals were hypothermic (body temperature ≤32 °C). In two treatment groups for each species, we restricted food intake to ca. 20% of body mass on either night 1 or night 4 following capture. Hypothermia was significantly related to food-restriction, but not time in captivity. Metabolic rate (ml O2 ·  g−1 h−1) at ambient temperature = 21 °C was MR = e (–2.11 + 0.101 Tb) (r 2 = 0.7, P < 0.001) for C. perspicillata and MR = e (−2.62 + 0.115 Tb) (r 2 = 0.89) for S. lilium. Free-ranging, radio tagged C. perspicillata exhibited daily depression of body temperature to 33–34 °C. We conclude that hypothermia is an thermoregulatory strategy that allows phyllostomid bats to adjust metabolic rate to feeding success and the level of fat stores. Accepted: 20 August 1996  相似文献   

18.
Conspicuous colouration attracts prey to a stationary predator   总被引:1,自引:0,他引:1  
Abstract 1. Conspicuous body colouration is counter‐intuitive in stationary predators because sit‐and‐wait tactics frequently rely on concealed traps to capture prey. Consequently, bright colours and contrasting patterns should be rare in predators using traps as they may alert potential prey. Yet, some orb‐weaving spiders are brightly coloured and contrastingly patterned. How can conspicuousness of trap‐building sit‐and‐wait predators be favoured by natural selection? 2. Observations of spiny spiders Gasteracantha fornicata in north‐eastern Australia showed that the size of spiders relative to their orb webs correlated positively with relative prey numbers already captured in their webs. A possible explanation is that the relatively larger appearance of the yellow–black striped dorsal surface of this spider attracts more visually oriented prey items. Prey attracted to webs may get trapped, thereby increasing the spiders' foraging success. 3. To test this hypothesis for the function of conspicuous body colouration, a field experiment was conducted that documented the prey capture rates of spiny spiders after manipulating or sham‐manipulating their appearance. 4. As predicted, spiders that were dyed black on their striped dorsal surface caught relatively fewer prey items than did control spiders. Thus, conspicuous dorsal body colouration may be adaptive in spiny spiders because it increases foraging success and, presumably, survival rates and reproductive outputs. Overall, these data support the colour‐as‐prey‐attractant hypothesis in a stationary, trap‐building predator.  相似文献   

19.
20.
1. Protozoans are important consumers within microbial food webs and, in turn, they represent potential prey for small metazoans. However, feeding interactions within these food webs are rarely characterised and this is especially true for freshwater sediments. 2. We aimed to quantify the feeding links between a freshwater meiofaunal copepod and ciliates in two laboratory experiments. The first experiment addressed the response of Eucyclops serrulatus towards ciliate density and type (two ciliate species of the same genus differing in terms of body size). A second experiment assessed the effect of habitat structure on feeding rates by introducing different structural complexity into the feeding arena. In contrast to the first experiment, which was run only for one time period, this experiment also tested three different total feeding times (4, 7 and 9 h). 3. Eucyclops serrulatus exhibited high ingestion rates, with 3–69 ciliates copepod?1 h?1 consumed depending on food concentration, food type and habitat complexity. Copepods exhibited a preference for the smaller ciliate when total ciliate concentration was low, but selected both ciliates equally when food concentrations were medium or high. However, at very high food concentration, Eucyclops preferred the larger ciliate (which was 1/3 of its own body size), suggesting that the longer handling times of the larger prey are rewarding when the large prey is present in high numbers. In terms of total numbers consumed, copepods fed on more small ciliates, but in terms of carbon units both ciliates were selected equally when total prey concentration was low or medium. However, copepods derived more carbon from the larger prey at high and very high prey concentrations (up to 0.7 μgC out of a maximum of 1.1 μgC copepod?1 h?1). Habitat complexity influenced the feeding of copepods when it was observed over time. 4. The copepod–ciliate link is well known from the pelagic zone of both marine and freshwater habitats. We have shown its potential importance within the benthos, where it can be influenced by food identity, food quantity and possibly by habitat complexity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号