首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 130 毫秒
1.
Motor neurons contain agrin-like molecules   总被引:8,自引:7,他引:1       下载免费PDF全文
Molecules antigenically similar to agrin, a protein extracted from the electric organ of Torpedo californica, are highly concentrated in the synaptic basal lamina of neuromuscular junctions in vertebrate skeletal muscle. On the basis of several lines of evidence it has been proposed that agrin-like molecules mediate the nerve-induced formation of acetylcholine receptor (AChR) and acetylcholinesterase (AChE) aggregates on the surface of muscle fibers at developing and regenerating neuromuscular junctions and that they help maintain these postsynaptic specializations in the adult. Here we show that anti-agrin monoclonal antibodies selectively stain the cell bodies of motor neurons in embryos and adults, and that the stain is concentrated in the Golgi apparatus. We also present evidence that motor neurons in both embryos and adults contain molecules that cause the formation of AChR and AChE aggregates on cultured myotubes and that these AChR/AChE-aggregating molecules are antigenically similar to agrin. These findings are consistent with the hypothesis that agrin-like molecules are synthesized by motor neurons, and are released from their axon terminals to become incorporated into the synaptic basal lamina where they direct the formation of synapses during development and regeneration.  相似文献   

2.
In skeletal muscles that have been damaged in ways which spare the basal lamina sheaths of the muscle fibers, new myofibers develop within the sheaths and neuromuscular junctions form at the original synaptic sites on them. At the regenerated neuromuscular junctions, as at the original ones, the muscle fibers are characterized by junctional folds and accumulations of acetylcholine receptors and acetylcholinesterase (AChE). The formation of junctional folds and the accumulation of acetylcholine receptors is known to be directed by components of the synaptic portion of the myofiber basal lamina. The aim of this study was to determine whether or not the synaptic basal lamina contains molecules that direct the accumulation of AChE. We crushed frog muscles in a way that caused disintegration and phagocytosis of all cells at the neuromuscular junction, and at the same time, we irreversibly blocked AChE activity. New muscle fibers were allowed to regenerate within the basal lamina sheaths of the original muscle fibers but reinnervation of the muscles was deliberately prevented. We then stained for AChE activity and searched the surface of the new muscle fibers for deposits of enzyme they had produced. Despite the absence of innervation, AChE preferentially accumulated at points where the plasma membrane of the new muscle fibers was apposed to the regions of the basal lamina that had occupied the synaptic cleft at the neuromuscular junctions. We therefore conclude that molecules stably attached to the synaptic portion of myofiber basal lamina direct the accumulation of AChE at the original synaptic sites in regenerating muscle. Additional studies revealed that the AChE was solubilized by collagenase and that it remained adherent to basal lamina sheaths after degeneration of the new myofibers, indicating that it had become incorporated into the basal lamina, as at normal neuromuscular junctions.  相似文献   

3.
Matrix metalloproteinase-3 removes agrin from synaptic basal lamina   总被引:4,自引:0,他引:4  
Agrin, a heparin sulfate proteoglycan, is an integral member of the synaptic basal lamina and plays a critical role in the formation and maintenance of the neuromuscular junction. The N-terminal region of agrin binds tightly to basal lamina, while the C-terminal region interacts with a muscle-specific tyrosine kinase (MuSK) to induce the formation of the postsynaptic apparatus. Although the binding of agrin to basal lamina is tight, the binding of agrin to MuSK has yet to be shown; therefore, basal lamina binding is critical for maintaining the presentation of agrin to MuSK. Here we report evidence that supports our hypothesis that matrix metalloproteinase-3 (MMP-3) is responsible for the removal of agrin from synaptic basal lamina. Antibodies to the hinge region of human MMP-3 recognize molecules concentrated at the frog neuromuscular junction in both cross sections and whole mounts. Electron microscopy of neuromuscular junctions stained with antibodies to MMP-3 reveals that staining is found in the extracellular matrix surrounding the Schwann cell. Treatment of sections from frog anterior tibialis muscle with MMP-3 results in a clear and reproducible removal of agrin immunoreactivity from synaptic basal lamina. The same MMP-3 treatment does not alter anti-laminin staining. These results support our hypothesis that synaptic activity results in the activation of MMP-3 at the neuromuscular junction and that MMP-3 specifically removes agrin from synaptic basal lamina.  相似文献   

4.
Agrin, a heparin sulfate proteoglycan, is an integral member of the synaptic basal lamina and plays a critical role in the formation and maintenance of the neuromuscular junction. The N‐terminal region of agrin binds tightly to basal lamina, while the C‐terminal region interacts with a muscle‐specific tyrosine kinase (MuSK) to induce the formation of the postsynaptic apparatus. Although the binding of agrin to basal lamina is tight, the binding of agrin to MuSK has yet to be shown; therefore, basal lamina binding is critical for maintaining the presentation of agrin to MuSK. Here we report evidence that supports our hypothesis that matrix metalloproteinase‐3 (MMP‐3) is responsible for the removal of agrin from synaptic basal lamina. Antibodies to the hinge region of human MMP‐3 recognize molecules concentrated at the frog neuromuscular junction in both cross sections and whole mounts. Electron microscopy of neuromuscular junctions stained with antibodies to MMP‐3 reveals that staining is found in the extracellular matrix surrounding the Schwann cell. Treatment of sections from frog anterior tibialis muscle with MMP‐3 results in a clear and reproducible removal of agrin immunoreactivity from synaptic basal lamina. The same MMP‐3 treatment does not alter anti‐laminin staining. These results support our hypothesis that synaptic activity results in the activation of MMP‐3 at the neuromuscular junction and that MMP‐3 specifically removes agrin from synaptic basal lamina. © 2000 John Wiley & Sons, Inc. J Neurobiol 43: 140–149, 2000  相似文献   

5.
The synaptic basal lamina (SBL) directs key aspects of the differentiation of regenerating neuromuscular junctions. A range of experiments indicate that agrin or a closely related molecule is stably associated with the SBL and participates in inducing the formation of the postsynaptic apparatus after damage to adult muscle. The selective concentration of agrin-related molecules in the SBL suggests that agrin is secreted locally by cellular components of the nerve-muscle synapse. In vivo studies on aneural embryonic muscle indicate that the muscle cell is one source of the agrin-like molecules in the SBL. Here we have used cultured chick muscle cells to study the expression of agrin-related molecules in the absence of innervation. Immunofluorescence and immunoelectron microscopy show that myogenic cells in culture express agrin-related molecules on their surfaces, and that at least a subset of these molecules are associated with the basal lamina. Moreover, in short term cultures agrin-like molecules accumulate on the surfaces of myogenic cells grown in unsupplemented basal media. We quantified the expression of agrin-like molecules on the cell surface using a solid-phase radioimmune assay. The expression of these molecules is relatively low during the first 6 days of culture and increases fourfold during the second week. The stimulation of the expression of agrin-related molecules in these long-term cultures requires the presence of chick embryo extract or fetal calf serum. We also characterized the expression of muscle-derived agrin-like molecules at clusters of AChR. These agrin-related molecules are not consistently colocalized at spontaneous AChR aggregates; however, they are selectively concentrated at greater than or equal to 90% of the AChR clusters that are induced by Torpedo agrin. These data, together with previous results from in vivo developmental experiments indicate that the agrin-like molecules in the synaptic basal lamina are derived at least in part from the muscle cell. In addition, the expression of agrin-like molecules can be regulated by soluble factors present in CEE and FBS. Finally, the selective localization of these molecules at induced AChR clusters, taken together with their localization in the basal lamina, suggests that agrin-like molecules secreted by the muscle cell play an important role in the formation and/or the stabilization of the postsynaptic apparatus.  相似文献   

6.
The neuromuscular junction is a plastic structure and is constantly undergoing changes as the nerve terminals that innervate the muscle fiber extend and retract their processes. In vivo observations on developing mouse neuromuscular junctions revealed that prior to the retraction of a nerve terminal the acetylcholine receptors (AChRs) under that nerve terminal disperse. Agrin is a protein released by nerve terminals that binds to synaptic basal lamina and directs the aggregation of AChRs and acetylcholinesterase (AChE) in and on the surface of the myotube. Thus, if the AChRs under a nerve terminal disperse, then the cellular signaling mechanism by which agrin maintains the aggregation of those AChRs must have been disrupted. Two possibilities that could lead to the disruption of the agrin induced aggregation are that agrin is present at the synaptic basal lamina but is unable to direct the aggregation of AChRs, or that agrin has been removed from the synaptic basal lamina. Thus, if agrin were blocked, one would expect to see anti-agrin staining at abandoned synaptic sites; whereas if agrin were removed, anti-agrin staining would be absent at abandoned synaptic sites. We find that anti-agrin staining and α-bungarotoxin staining are absent at abandoned synaptic sites. Further, in vivo observations of retracting nerve terminals confirm that agrin is removed from the synaptic basal lamina within 7 days. Thus, while agrin will remain bound to synaptic basal lamina for months following denervation, it is removed within days following synaptic retraction. © 1996 John Wiley & Sons, Inc.  相似文献   

7.
Acetylcholinesterase (AChE) in skeletal muscle is concentrated at neuromuscular junctions, where it is found in the synaptic cleft between muscle and nerve, associated with the synaptic portion of the myofiber basal lamina. This raises the question of whether the synaptic enzyme is produced by muscle, nerve, or both. Studies on denervated and regenerating muscles have shown that myofibers can produce synaptic AChE, and that the motor nerve may play an indirect role, inducing myofibers to produce synaptic AChE. The aim of this study was to determine whether some of the AChE which is known to be made and transported by the motor nerve contributes directly to AChE in the synaptic cleft. Frog muscles were surgically damaged in a way that caused degeneration and permanent removal of all myofibers from their basal lamina sheaths. Concomitantly, AChE activity was irreversibly blocked. Motor axons remained intact, and their terminals persisted at almost all the synaptic sites on the basal lamina in the absence of myofibers. 1 mo after the operation, the innervated sheaths were stained for AChE activity. Despite the absence of myofibers, new AChE appeared in an arborized pattern, characteristic of neuromuscular junctions, and its reaction product was concentrated adjacent to the nerve terminals, obscuring synaptic basal lamina. AChE activity did not appear in the absence of nerve terminals. We concluded therefore, that the newly formed AChE at the synaptic sites had been produced by the persisting axon terminals, indicating that the motor nerve is capable of producing some of the synaptic AChE at neuromuscular junctions. The newly formed AChE remained adherent to basal lamina sheaths after degeneration of the terminals, and was solubilized by collagenase, indicating that the AChE provided by nerve had become incorporated into the basal lamina as at normal neuromuscular junctions.  相似文献   

8.
9.
《The Journal of cell biology》1984,98(4):1453-1473
If skeletal muscles are damaged in ways that spare the basal lamina sheaths of the muscle fibers, new myofibers develop within the sheaths and neuromuscular junctions form at the original synaptic sites on them. At the regenerated neuromuscular junctions, as at the original ones, the muscle fiber plasma membrane is characterized by infoldings and a high concentration of acetylcholine receptors (AChRs). The aim of this study was to determine whether or not the synaptic portion of the myofiber basal lamina sheath plays a direct role in the formation of the subsynaptic apparatus on regenerating myofibers, a question raised by the results of earlier experiments. The junctional region of the frog cutaneous pectoris muscle was crushed or frozen, which resulted in disintegration and phagocytosis of all cells at the synapse but left intact much of the myofiber basal lamina. Reinnervation was prevented. When new myofibers developed within the basal lamina sheaths, patches of AChRs and infoldings formed preferentially at sites where the myofiber membrane was apposed to the synaptic region of the sheaths. Processes from unidentified cells gradually came to lie on the presynaptic side of the basal lamina at a small fraction of the synaptic sites, but there was no discernible correlation between their presence and the effectiveness of synaptic sites in accumulating AChRs. We therefore conclude that molecules stably attached to the myofiber basal lamina at synaptic sites direct the formation of subsynaptic apparatus in regenerating myofibers. An analysis of the distribution of AChR clusters at synaptic sites indicated that they formed as a result of myofiber-basal lamina interactions that occurred at numerous places along the synaptic basal lamina, that their presence was not dependent on the formation of plasma membrane infoldings, and that the concentration of receptors within clusters could be as great as the AChR concentration at normal neuromuscular junctions.  相似文献   

10.
Changes in the distribution of agrin and acetylcholine receptors (AChRs) were examined during reinnervation and following permanent denervation as a means of understanding mechanisms controlling the distribution of these molecules. Following nerve damage in the peripheral nervous system, regenerating nerve terminals preferentially return to previous synaptic sites leading to the restoration of synaptic activity. However, not all portions of original synaptic sites are reoccupied: Some of the synaptic sites are abandoned by both the nerve terminal and the Schwann cell. Abandoned synaptic sites contain agrin, AChRs, and acetylcholinesterase (AChE) without an overlying nerve terminal or Schwann cell providing a unique location to observe changes in the distribution of these synapse-specific molecules. The distribution of anti-agrin and AChR staining at abandoned synaptic sites was altered during the process of reinnervation, changing from a dense, wide distribution to a punctate, pale pattern, and finally becoming entirely absent. Agrin and AChRs were removed from abandoned synaptic sites in reinnervated frog neuromuscular junctions, while in contralateral muscles which were permanently denervated, anti-agrin and AChR staining remained at abandoned synaptic sites. Decreasing synaptic activity during reinnervation delayed the removal of agrin and AChRs from abandoned synaptic sites. Altogether, these results support the hypothesis that synaptic activity controls a cellular mechanism that directs the removal of agrin from synaptic basal lamina and the loss of agrin leads to the dispersal of AChRs. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 999–1018, 1997  相似文献   

11.
To identify mechanisms that regulate the formation of the neuromuscular junction, we examined the cellular origin of a heparan sulfate proteoglycan (HSPG) that becomes highly concentrated within the synaptic cleft during the initial deposition of the junctional basal lamina. Using cultured nerve and muscle cells from anuran and urodele embryos, we prepared species-chimaeric synapses that displayed spontaneous cholinergic potentials, and eventually developed organized accumulations of acetylcholine receptors and HSPG at the sites of nerve-muscle contact. To determine the cellular origin of synaptic HSPG molecules, these chimaeric junctions were stained with both species-specific and cross-reactive monoclonal antibodies, labeled with contrasting fluorochromes. Our results demonstrate that synaptic HSPG is derived almost exclusively from muscle. Since it has already been shown that muscle cells can assemble virtually all of the known constituents of the junctional basal lamina into organized surface accumulations, without any input from nerve cells, we consider the possibility that the specialized synaptic basal lamina may be generated primarily by the myofibre, in response to another 'inductive' positional signal at the site of nerve-muscle contact.  相似文献   

12.
Agrin is a synapse-organizing protein that is concentrated in embryonic motor neurons and the synaptic basal lamina of the neuromuscular junction. Agrin or closely related proteins are also associated with most other basal laminae. Here I report that the major agrin-like proteins from the nervous system and other tissues of the chicken are immunochemically and biochemically similar. Four major agrin-like proteins of approximately 60, 72, 80, and 90 kDa were identified on immunoblots of agrin preparations from both neural and non-neural tissues. Agrin-like proteins from embryonic chicken brain and adult kidney were similar in amino acid composition. Rabbit antisera against each of the kidney proteins labeled basement membranes of several tissues, as well as spinal cord motor neurons. These antibodies specifically precipitated and inhibited acetylcholine receptor (AChR)-aggregating activity from the chicken nervous system and Torpedo electric organ. Thus, the agrin-like proteins of non-neural tissues in the chicken are closely related to agrin from the nervous system. However, the AChR-aggregating activity of chicken agrin preparations differed depending on the tissue of origin. Agrin enriched by immunoaffinity chromatography from the central nervous system induced large numbers of AChR aggregates on cultured myotubes. In contrast, agrin preparations from other chicken tissues induced dramatically fewer and smaller AChR aggregates. The difference in biological activity between these agrin preparations may reflect differential inactivation or the existence of tissue- or cell-specific isoforms of agrin.  相似文献   

13.
We examined the role of nerve terminals in organizing acetylcholine receptors on regenerating skeletal-muscle fibers. When muscle fibers are damaged, they degenerate and are phagocytized, but their basal lamina sheaths survive. New myofibers form within the original basal lamina sheaths, and they become innervated precisely at the original synaptic sites on the sheaths. After denervating and damaging muscle, we allowed myofibers to regenerate but deliberately prevented reinnervation. The distribution of acetylcholine receptors on regenerating myofibers was determined by histological methods, using [125I] alpha-bungarotoxin or horseradish peroxidase-alpha-bungarotoxin; original synaptic sites on the basal lamina sheaths were marked by cholinesterase stain. By one month after damage to the muscle, the new myofibers have accumulations of acetylcholine receptors that are selectively localized to the original synaptic sites. The density of the receptors at these sites is the same as at normal neuromuscular junctions. Folds in the myofiber surface resembling junctional folds at normal neuromuscular junctions also occur at original synaptic sites in the absence of nerve terminals. Our results demonstrate that the biochemical and structural organization of the subsynaptic membrane in regenerating muscle is directed by structures that remain at synaptic sites after removal of the nerve.  相似文献   

14.
《The Journal of cell biology》1988,106(4):1263-1272
The synaptic basal lamina, a component of extracellular matrix (ECM) in the synaptic cleft at the neuromuscular junction, directs the formation of new postsynaptic specializations, including the aggregation of acetylcholine receptors (AChRs), during muscle regeneration in adult animals. Although the molecular basis of this phenomenon is unknown, it is mimicked by AChR-aggregating proteins in ECM-enriched fractions from muscle and the synapse-rich electric organ of the ray Torpedo californica. Molecules immunologically similar to these proteins are concentrated in the synaptic basal lamina at neuromuscular junctions of the ray and frog. Here we demonstrate that immunologically, chemically, and functionally similar AChR-aggregating proteins are also associated with the ECM of several other tissues in Torpedo. Monoclonal antibodies against the AChR-aggregating proteins from electric organ intensely stained neuromuscular junctions and the ventral surfaces of electrocytes, structures with a high density of AChRs. However, they also labeled many other structures which have basal laminae, including the extrajunctional perimeters of skeletal muscle fibers, smooth and cardiac muscle cells, Schwann cell sheaths in peripheral nerves, walls of some blood vessels, and epithelial basement membranes in the gut, skin, and heart. Some structures with basal laminae did not stain with the antibodies; e.g., the dorsal surfaces of electrocytes. Bands of similar molecular weight were detected by the antibodies on Western blots of extracts of ECM-enriched fractions from electric organ and several other tissues. Proteins from all tissues examined, enriched from these extracts by affinity chromatography with the monoclonal antibodies, aggregated AChRs on cultured myotubes. Thus, similar AChR- aggregating proteins are associated with the extracellular matrix of many Torpedo tissues. The broad distribution of these proteins suggests they have functions in addition to AChR aggregation.  相似文献   

15.
Matrix metalloproteinases are important regulators of extracellular matrix molecules and cell-cell signaling. Antibodies to matrix metalloproteinase 3 (MMP3) recognize molecules at the frog neuromuscular junction, and MMP3 can remove agrin from synaptic basal lamina (VanSaun & Werle, 2000). To gain insight into the possible roles of MMP3 at the neuromuscular junction, detailed observations were made on the structure and function of the neuromuscular junctions in MMP3 null mutant mice. Striking differences were found in the appearance of the postsynaptic apparatus of MMP3 null mutant mice. Endplates had an increased volume of AChR stained regions within the endplate structure, leaving only small regions devoid of AChRs. Individual postsynaptic gutters were wider, containing prominent lines that represent the AChRs concentrated at the tops of the junctional folds. Electron microscopy revealed a dramatic increase in the number and size of the junctional folds, in addition to ectopically located junctional folds. Electrophysiological recordings revealed no change in quantal content or MEPP frequency, but there was an increase in MEPP rise time in a subset of endplates. No differences were observed in the rate or extent of developmental synapse elimination. In vitro cleavage experiments revealed that MMP3 directly cleaves agrin. Increased agrin immunofluorescence was observed at the neuromuscular junctions of MMP3 null mutant mice. These results provide strong evidence that MMP3 is involved in the control of synaptic structure at the neuromuscular junction and they support the hypothesis that MMP3 is involved in the regulation of agrin at the neuromuscular junction.  相似文献   

16.
Agrin induces the clustering of acetylcholine receptors (AchRs) and other postsynaptic components on the surface of cultured muscle cells. Molecules closely related if not identical to agrin are highly concentrated in the synaptic basal lamina, a structure known to play a key part in orchestrating synapse regeneration. Agrin or agrin-related molecules are thus likely to play a role in directing the differentiation of the postsynaptic apparatus at the regenerating neuromuscular junction. The present studies are aimed at understanding the role of agrin at developing synapses. We have used anti-agrin monoclonal antibodies combined with alpha-bungarotoxin labeling to establish the localization and time of appearance of agrin-related molecules in muscles of the chick hindlimb. Agrinlike immunoreactivity was observed in premuscle masses from as early as stage 23. AchR clusters were first detected late in stage 25, coincident with the entry of axons into the limb. At this and all subsequent stages examined, greater than 95% of the AchR clusters colocalized with agrin-related molecules. This colocalization was also observed in unpermeabilized whole mount preparations, indicating that the agrin-related molecules were disposed on the external surface of the cells. Agrin-related molecules were also detected in regions of low AchR density on the muscle cell surface. To examine the role of innervation in the expression of agrin-related molecules, aneural limbs were generated by two methods. Examination of these limbs revealed that agrin-related molecules were expressed in the aneural muscle and they colocalized with AchR clusters. Thus, in developing muscle, agrin or a closely related molecule (a) is expressed before AchR clusters are detected; (b) is colocalized with the earliest AchR clusters formed; and (c) can be expressed in muscle and at sites of high AchR density independently of innervation. These results indicate that agrin or a related molecule is likely to play a role in synapse development and suggest that the muscle cell may be at least one source of this molecule.  相似文献   

17.
Agrin is a heparan sulfate proteoglycan, which plays an essential role in the development and maintenance of the neuromuscular junction. Agrin is a stable component of the synaptic basal lamina and strong evidence supports the hypothesis that agrin directs the formation of the postsynaptic apparatus, including aggregates of AChRs, and junctional folds. Changes in the distribution of agrin during synaptic remodeling, denervation and reinnervation reveal that agrin can be quickly and efficiently removed from the synaptic basal lamina in a regulated manner. In order to fully understand this mechanism we sought to identify those molecules that were responsible for the removal of agrin. Matrix Metalloproteinases (MMPs) were the most likely molecules since MMPs are involved in the regulation of the pericellular space, including the cleavage of matrix proteins. In particular, MMP3 has been shown to be effective in cleaving heparan sulfate proteoglycans. Antibodies to MMP3 recognize molecules concentrated in the extracellular matrix of perisynaptic Schwann cells. MMP3 specific phylogenic compounds reveal that active MMP3 is localized to the neuromuscular junction. Purified recombinant MMP3 can directly cleave agrin, and it can also remove agrin from synaptic basal lamina. MMP3 activity is itself regulated as activation of MMP3 is lost in denervated muscles. MMP3 null mutant mice have altered neuromuscular junction structure and function, with increased AChRs, junctional folds and agrin immunoreactivity. Altogether these results support the hypothesis that synaptic activity induces the activation of MMP3, and the activated MMP3 removes agrin from the synaptic basal lamina.  相似文献   

18.
The extracellular matrix surrounding the neuromuscular junction is a highly specialized and dynamic structure. Matrix Metalloproteinases are enzymes that sculpt the extracellular matrix. Since synaptic activity is critical to the structure and function of this synapse, we investigated whether changes in synaptic activity levels could alter the activity of Matrix Metalloproteinases at the neuromuscular junction. In particular, we focused on Matrix Metalloproteinase 3 (MMP3), since antibodies to MMP3 recognize molecules at the frog neuromuscular junction, and MMP3 cleaves a number of synaptic basal lamina molecules, including agrin. Here we show that the fluorogenic compound (M2300) can be used to perform in vivo proteolytic imaging of the frog neuromuscular junction to directly measure the activity state of MMP3. Application of this compound reveals that active MMP3 is concentrated at the normal frog neuromuscular junction, and is tightly associated with the terminal Schwann cell. Blocking presynaptic activity via denervation, or TTX nerve blockade, results in a decreased level of active MMP3 at the neuromuscular junction. The loss of active MMP3 at the neuromuscular junction in denervated muscles can result from decreased activation of pro-MMP3, or it could result from increased inhibition of MMP3. These results support the hypothesis that changes in synaptic activity can alter the level of active MMP3 at the neuromuscular junction.  相似文献   

19.
The expression of cytotactin, an extracellular matrix glycoprotein involved in morphogenesis and regeneration, was determined in the normal and regenerating neuromuscular system of the frog Rana temporaria. Cytotactin was expressed in adult brain and gut as two major components of Mr 190,000 and 200,000 and a minor form of higher molecular weight, but was almost undetectable in skeletal muscle extract. However, cytotactin was concentrated at the neuromuscular junctions as well as at the nodes of Ranvier. After nerve transection, cytotactin staining increased in the distal stump along the endoneurial tubes. In preparations of basal lamina sheaths of frog cutaneous pectoris muscle obtained by inducing the degeneration of both nerve and muscle fibers, cytotactin was found in dense accumulations at original synaptic sites. In order to define the role of cytotactin in axonal regeneration and muscle reinnervation, the effect of anti-cytotactin antibodies on the reinnervation of the basal lamina sheaths preparations was examined in vivo. In control preparations, regenerating nerve terminals preferentially reinnervate the original synaptic sites. In the presence of anti-cytotactin antibodies, axon regeneration occurred with normal fasciculation and branching but with altered preterminal nerve fibers pathways. Ultrastructural observations showed that synaptic basal laminae reinnervation was greatly delayed or inhibited. These results suggest that cytotactin plays a primordial role in synaptogenesis, at least during nerve regeneration and reinnervation in the adult neuromuscular system.  相似文献   

20.
As an initial step in characterizing the function of basal lamina components during muscle cell differentiation and innervation in vivo, we have determined immunohistochemically the pattern of expression of three components--laminin, proteins related to agrin (an acetylcholine receptor (AChR)-aggregating protein), and a heparan sulfate proteoglycan--during the development of chick embryo hindlimb muscles. Monoclonal antibodies against agrin were used to purify the protein from the Torpedo ray and to characterize agrin-like proteins from embryonic and adult chicken. In early hindlimb buds (stage 19), antibodies against laminin and agrin stained the ectodermal basement membrane and bound to limb mesenchyme with a generalized, punctate distribution. However, as dorsal and ventral premuscle masses condensed (stage 22-23), mesenchymal immunoreactivity for laminin and agrin-like proteins, but not the proteoglycan, became concentrated in these myogenic regions. Significantly, the preferential accumulation of these molecules in myogenic regions of the limb preceded by 1-2 days the appearance of muscle-specific proteins, myoblast fusion, and muscle innervation. All three basal lamina components were preferentially associated with all AChR clusters from the time we first observed them on newly formed myotubes at stage 26. Localization of these antigens in three-dimensional collagen gel cultures of limb mesenchyme, explanted prior to innervation of the limb, paralleled the staining patterns seen during limb development in the embryo. These results indicate that basal lamina molecules intrinsic to limb mesenchyme are early markers for myogenic and synaptic differentiation, and suggest that these components play important roles during the initial phases of myogenesis and synaptogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号