首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The mechanism of membrane insertion and folding of a beta-barrel membrane protein has been studied using the outer membrane protein A (OmpA) as an example. OmpA forms an eight-stranded beta-barrel that functions as a structural protein and perhaps as an ion channel in the outer membrane of Escherichia coli. OmpA folds spontaneously from a urea-denatured state into lipid bilayers of small unilamellar vesicles. We have used fluorescence spectroscopy, circular dichroism spectroscopy, and gel electrophoresis to investigate basic mechanistic principles of structure formation in OmpA. Folding kinetics followed a second-order rate law and is strongly depended on the hydrophobic thickness of the lipid bilayer. When OmpA was refolded into model membranes of dilaurylphosphatidylcholine, fluorescence kinetics were characterized by a rate constant that was about fivefold higher than the rate constants of formation of secondary and tertiary structure, which were determined by circular dichroism spectroscopy and gel electrophoresis, respectively. The formation of beta-sheet secondary structure and closure of the beta-barrel of OmpA were correlated with the same rate constant and coupled to the insertion of the protein into the lipid bilayer. OmpA, and presumably other beta-barrel membrane proteins therefore do not follow a mechanism according to the two-stage model that has been proposed for the folding of alpha-helical bundle membrane proteins. These different folding mechanisms are likely a consequence of the very different intramolecular hydrogen bonding and hydrophobicity patterns in these two classes of membrane proteins.  相似文献   

2.
Spontaneous membrane insertion and folding of beta-barrel membrane proteins from an unfolded state into lipid bilayers has been shown previously only for few outer membrane proteins of Gram-negative bacteria. Here we investigated membrane insertion and folding of a human membrane protein, the isoform 1 of the voltage-dependent anion-selective channel (hVDAC1) of mitochondrial outer membranes. Two classes of transmembrane proteins with either alpha-helical or beta-barrel membrane domains are known from the solved high-resolution structures. VDAC forms a transmembrane beta-barrel with an additional N-terminal alpha-helix. We demonstrate that similar to bacterial OmpA, urea-unfolded hVDAC1 spontaneously inserts and folds into lipid bilayers upon denaturant dilution in the absence of folding assistants or energy sources like ATP. Recordings of the voltage-dependence of the single channel conductance confirmed folding of hVDAC1 to its active form. hVDAC1 developed first beta-sheet secondary structure in aqueous solution, while the alpha-helical structure was formed in the presence of lipid or detergent. In stark contrast to bacterial beta-barrel membrane proteins, hVDAC1 formed different structures in detergent micelles and phospholipid bilayers, with higher content of beta-sheet and lower content of alpha-helix when inserted and folded into lipid bilayers. Experiments with mixtures of lipid and detergent indicated that the content of beta-sheet secondary structure in hVDAC1 decreased at increased detergent content. Unlike bacterial beta-barrel membrane proteins, hVDAC1 was not stable even in mild detergents such as LDAO or dodecylmaltoside. Spontaneous folding of outer membrane proteins into lipid bilayers indicates that in cells, the main purpose of membrane-inserted or associated assembly factors may be to select and target beta-barrel membrane proteins towards the outer membrane instead of actively assembling them under consumption of energy as described for the translocons of cytoplasmic membranes.  相似文献   

3.
Proper insertion, folding and assembly of functional proteins in biological membranes are key processes to warrant activity of a living cell. Here, we present a novel approach to trace folding and insertion of a nascent membrane protein leaving the ribosome and penetrating the bilayer. Surface Enhanced IR Absorption Spectroscopy selectively monitored insertion and folding of membrane proteins during cell-free expression in a label-free and non-invasive manner. Protein synthesis was performed in an optical cell containing a prism covered with a thin gold film with nanodiscs on top, providing an artificial lipid bilayer for folding. In a pilot experiment, the folding pathway of bacteriorhodopsin via various secondary and tertiary structures was visualized. Thus, a methodology is established with which the folding reaction of other more complex membrane proteins can be observed during protein biosynthesis (in situ and in operando) at molecular resolution.  相似文献   

4.
We have studied the folding pathway of a beta-barrel membrane protein using outer membrane protein A (OmpA) of Escherichia coli as an example. The deletion of the gene of periplasmic Skp impairs the assembly of outer membrane proteins of bacteria. We investigated how Skp facilitates the insertion and folding of completely unfolded OmpA into phospholipid membranes and which are the biochemical and biophysical requirements of a possible Skp-assisted folding pathway. In refolding experiments, Skp alone was not sufficient to facilitate membrane insertion and folding of OmpA. In addition, lipopolysaccharide (LPS) was required. OmpA remained unfolded when bound to Skp and LPS in solution. From this complex, OmpA folded spontaneously into lipid bilayers as determined by electrophoretic mobility measurements, fluorescence spectroscopy, and circular dichroism spectroscopy. The folding of OmpA into lipid bilayers was inhibited when one of the periplasmic components, either Skp or LPS, was absent. Membrane insertion and folding of OmpA was most efficient at specific molar ratios of OmpA, Skp, and LPS. Unfolded OmpA in complex with Skp and LPS folded faster into phospholipid bilayers than urea-unfolded OmpA. Together, these results describe a first assisted folding pathway of an integral membrane protein on the example of OmpA.  相似文献   

5.
The folding mechanisms of integral membrane proteins have largely eluded detailed study. This is owing to the inherent difficulties in folding these hydrophobic proteins in vitro, which, in turn, reflects the often apparently insurmountable problem of mimicking the natural membrane bilayer with lipid or detergent mixtures. There is, however, a large body of information on lipid properties and, in particular, on phosphatidylcholine and phosphatidylethanolamine lipids, which are common to many biological membranes. We have exploited this knowledge to develop efficient in vitro lipid-bilayer folding systems for the membrane protein, bacteriorhodopsin. Furthermore, we have shown that a rate-limiting apoprotein folding step and the overall folding efficiency appear to be controlled by particular properties of the lipid bilayer. The properties of interest are the stored curvature elastic energy within the bilayer, and the lateral pressure that the lipid chains exert on the their neighbouring folding proteins. These are generic properties of the bilayer that can be achieved with simple mixtures of biological lipids, and are not specific to the lipids studied here. These bilayer properties also seem to be important in modulating the function of several membrane proteins, as well as the function of membranes in vivo. Thus, it seems likely that careful manipulations of lipid properties will shed light on the forces that drive membrane protein folding, and will aid the development of bilayer folding systems for other membrane proteins.  相似文献   

6.
Nagy JK  Lonzer WL  Sanders CR 《Biochemistry》2001,40(30):8971-8980
Despite the relevance of membrane protein misfolding to a number of common diseases, our understanding of the folding and misfolding of membrane proteins lags well behind soluble proteins. Here, the overall kinetics of membrane insertion and folding of the homotrimeric integral membrane protein diacylglycerol kinase (DAGK) is addressed. DAGK was purified into lipid/detergent-free urea and guanidinium solutions and subjected to general structural characterization. In urea, the enzyme was observed to be monomeric but maintained considerable tertiary structure. In guanidinium, it was also monomeric but exhibited much less tertiary structure. Aliquots of these DAGK stock solutions were diluted 200-fold into lipid vesicles or into detergent/lipid mixed micelles, and the rates and efficiencies of folding/insertion were monitored. Reactions were also carried out in which micellar DAGK solutions were diluted into vesicular solutions. Productive insertion of DAGK from denaturant solutions into mixed micelles occurred much more rapidly than into lipid vesicles, suggesting that bilayer transversal represents the rate-limiting step for DAGK assembly in vesicles. The efficiency of productive folding/insertion into vesicles was highest in reactions initiated with micellar DAGK stock solutions (where DAGK maintains a nativelike fold and oligomeric state) and lowest in reactions starting with guanidinium stocks (where DAGK is an unfolded monomer). Moreover, the final ratio of irreversibly misfolded DAGK to reversibly misfolded enzyme was highest following reactions initiated with guanidinium stock solutions and lowest when micellar stocks were used. Finally, it was also observed that very low concentrations of detergents were able to both enhance the bilayer insertion rate and suppress misfolding.  相似文献   

7.
The folding mechanism of outer membrane proteins (OMPs) of Gram-negative bacteria into lipid bilayers has been studied using OmpA of E. coli and FomA of F. nucleatum as examples. Both, OmpA and FomA are soluble in unfolded form in urea and insert and fold into phospholipid bilayers upon strong dilution of the denaturant urea. OmpA is a structural protein and forms a small ion channel, composed of an 8-stranded transmembrane beta-barrel domain. FomA is a voltage-dependent porin, predicted to form a 14 stranded beta-barrel. Both OMPs fold into a range of model membranes of very different phospholipid compositions. Three membrane-bound folding intermediates of OmpA were discovered in folding studies with dioleoylphosphatidylcholine bilayers that demonstrated a highly synchronized mechanism of secondary and tertiary structure formation of beta-barrel membrane proteins. A study on FomA folding into lipid bilayers indicated the presence of parallel folding pathways for OMPs with larger transmembrane beta-barrels.  相似文献   

8.
Phospholipids are essential building blocks of membranes and maintain the membrane permeability barrier of cells and organelles. They provide not only the bilayer matrix in which the functional membrane proteins reside, but they also can play direct roles in many essential cellular processes. In this review, we give an overview of the lipid involvement in protein translocation across and insertion into the Escherichia coli inner membrane. We describe the key and general roles that lipids play in these processes in conjunction with the protein components involved. We focus on the Sec-mediated insertion of leader peptidase. We describe as well the more direct roles that lipids play in insertion of the small coat proteins Pf3 and M13. Finally, we focus on the role of lipids in membrane assembly of oligomeric membrane proteins, using the potassium channel KcsA as model protein. In all cases, the anionic lipids and lipids with small headgroups play important roles in either determining the efficiency of the insertion and assembly process or contributing to the directionality of the insertion process.  相似文献   

9.
The ability of multidrug transport proteins within biological membranes to recognise a diverse array of substrates is a fundamental aspect of antibiotic resistance. Detailed information on the mechanisms of recognition and transport can be provided only by in vitro studies in reconstituted bilayer systems. We describe the controlled, efficient reconstitution of the small multidrug transporter EmrE in a simple model membrane and investigate the effect of non-bilayer lipids on this process. Transport activity is impaired, in line with an increase in the lateral pressure within the bilayer. We demonstrate the potential of this lateral pressure modulation method as a general approach to the folding and assembly of membrane proteins in vitro, by recovering functional transporter from a partly denatured state. Our results highlight the importance of optimising reconstitution procedures and bilayer lipid composition in studies of membrane transporters. This is particularly pertinent for multidrug proteins, and we show that the use of a sub-optimal lipid bilayer environment or reconstitution method could lead to incorrect information on protein activity.  相似文献   

10.
Posokhov YO  Rodnin MV  Lu L  Ladokhin AS 《Biochemistry》2008,47(18):5078-5087
Experimental determination of the free energy stabilizing the structure of membrane proteins in their native lipid environment is undermined by the lack of appropriate methods and suitable model systems. Annexin B12 (ANX) is a soluble protein which reversibly inserts into lipid membranes under mildly acidic conditions, which makes it a good experimental model for thermodynamic studies of folding and stability of membrane proteins. Here we apply fluorescence correlation spectroscopy for quantitative analysis of ANX partitioning into large unilamellar vesicles containing either 25% or 75% anionic lipids. Membrane binding of ANX results in changes of autocorrelation time and amplitude, both of which are used in quantitative analysis. The thermodynamic scheme describing acid-induced membrane interactions of ANX considers two independent processes: pH-dependent formation of a membrane-competent form near the membrane interface and its insertion into the lipid bilayer. Our novel fluorescence lifetime topology method demonstrates that the insertion proceeds via an interfacial refolded intermediate state, which can be stabilized by anionic lipids. Lipid titration measurements are used to determine the free energy of both transmembrane insertion and interfacial penetration, which are found to be similar, approximately -10-12 kcal/mol. The formation of the membrane-competent form, examined in a lipid saturation experiment, was found to depend on the local proton concentration near the membrane interface, occurring with pK = 4.3 and involving the protonation of two residues. Our results demonstrate that fluorescence correlation spectroscopy is a convenient tool for the quantitative characterization of the energetics of transmembrane insertion and that pH-triggered ANX insertion is a useful model for studying the thermodynamic stability of membrane proteins.  相似文献   

11.
The physical mechanisms that govern the folding and assembly of integral membrane proteins are poorly understood. It appears that certain properties of the lipid bilayer affect membrane protein folding in vitro, either by modulating helix insertion or packing. In order to begin to understand the origin of this effect, we investigate the effect of lipid forces on the insertion of a transmembrane alpha-helix using a water-soluble, alanine-based peptide, KKAAAIAAAAAIAAWAAIAAAKKKK-amide. This peptide binds to preformed 1,2-dioleoyl-l-alpha-phosphatidylcholine (DOPC) vesicles at neutral pH, but spontaneous transmembrane helix insertion directly from the aqueous phase only occurs at high pH when the Lys residues are de-protonated. These results suggest that the translocation of charge is a major determinant of the activation energy for insertion. Time-resolved measurements of the insertion process at high pH indicate biphasic kinetics with time constants of ca 30 and 430 seconds. The slower phase seems to correlate with formation of a predominantly transmembrane alpha-helical conformation, as determined from the transfer of the tryptophan residue to the hydrocarbon region of the membrane. Temperature-dependent measurements showed that insertion can proceed only above a certain threshold temperature and that the Arrhenius activation energy is of the order of 90 kJ mol(-1). The kinetics, threshold temperature and the activation energy change with the mole fraction of 1,2-dioleoyl-l-alpha-phosphatidylethanolamine (DOPE) introduced into the DOPC membrane. The activation energy increases with increasing DOPE content, which could reflect the fact that this lipid drives the bilayer towards a non-bilayer transition and increases the lateral pressure in the lipid chain region. This suggests that folding events involving the insertion of helical segments across the bilayer can be controlled by lipid forces.  相似文献   

12.
This review discusses main features of transmembrane (TM) proteins which distinguish them from water‐soluble proteins and allow their adaptation to the anisotropic membrane environment. We overview the structural limitations on membrane protein architecture, spatial arrangement of proteins in membranes and their intrinsic hydrophobic thickness, co‐translational and post‐translational folding and insertion into lipid bilayers, topogenesis, high propensity to form oligomers, and large‐scale conformational transitions during membrane insertion and transport function. Special attention is paid to the polarity of TM protein surfaces described by profiles of dipolarity/polarizability and hydrogen‐bonding capacity parameters that match polarity of the lipid environment. Analysis of distributions of Trp resides on surfaces of TM proteins from different biological membranes indicates that interfacial membrane regions with preferential accumulation of Trp indole rings correspond to the outer part of the lipid acyl chain region—between double bonds and carbonyl groups of lipids. These “midpolar” regions are not always symmetric in proteins from natural membranes. We also examined the hydrophobic effect that drives insertion of proteins into lipid bilayer and different free energy contributions to TM protein stability, including attractive van der Waals forces and hydrogen bonds, side‐chain conformational entropy, the hydrophobic mismatch, membrane deformations, and specific protein–lipid binding.  相似文献   

13.
The transfer of polypeptide segments into lipid bilayers to form transmembrane helices represents the crucial first step in cellular membrane protein folding and assembly. This process is driven by complex and poorly understood atomic interactions of peptides with the lipid bilayer environment. The lack of suitable experimental techniques that can resolve these processes both at atomic resolution and nanosecond timescales has spurred the development of computational techniques. In this review, we summarize the significant progress achieved in the last few years in elucidating the partitioning of peptides into lipid bilayer membranes using atomic detail molecular dynamics simulations. Indeed, partitioning simulations can now provide a wealth of structural and dynamic information. Furthermore, we show that peptide-induced bilayer distortions, insertion pathways, transfer free energies, and kinetic insertion barriers are now accurate enough to complement experiments. Further advances in simulation methods and force field parameter accuracy promise to turn molecular dynamics simulations into a powerful tool for investigating a wide range of membrane active peptide phenomena.  相似文献   

14.
Mitochondrial outer and inner membranes contain translocators that achieve protein translocation across and/or insertion into the membranes. Recent evidence has shown that mitochondrial beta-barrel protein assembly in the outer membrane requires specific translocator proteins in addition to the components of the general translocator complex in the outer membrane, the TOM40 complex. Here we report two novel mitochondrial outer membrane proteins in yeast, Tom13 and Tom38/Sam35, that mediate assembly of mitochondrial beta-barrel proteins, Tom40, and/or porin in the outer membrane. Depletion of Tom13 or Tom38/Sam35 affects assembly pathways of the beta-barrel proteins differently, suggesting that they mediate different steps of the complex assembly processes of beta-barrel proteins in the outer membrane.  相似文献   

15.
Chen M  Xie K  Jiang F  Yi L  Dalbey RE 《Biological chemistry》2002,383(10):1565-1572
Membranes contain proteins that catalyze a variety of reactions, which lead to the selective permeability of the membrane. For membrane proteins to function as receptors, transporters, channels, and ATPases, they must be targeted to their correct membrane and inserted into the lipid bilayer. Recently, a new membrane component called YidC was discovered that mediates the insertion of proteins into membranes in bacteria. YidC homologs also exist in mitochondria and chloroplasts. Depletion of YidC from the cell interferes with the insertion of membrane proteins that insert both dependent and independent of the SecYEG/SecDFYajC machinery. YidC directly interacts with membrane proteins during the membrane protein insertion process and assists in the folding of the hydrophobic regions into the membrane bilayer. The chloroplast and bacterial YidC homologs are truly functional homologs because the chloroplast homolog Alb3 functionally complements the bacterial YidC depletion strain. The role of YidC in the membrane insertion pathway will be reviewed.  相似文献   

16.
The influence of lipid bilayer properties on a defined and sequence-specific transmembrane helix-helix interaction is not well characterized yet. To study the potential impact of changing bilayer properties on a sequence-specific transmembrane helix-helix interaction, we have traced the association of fluorescent-labeled glycophorin A transmembrane peptides by fluorescence spectroscopy in model membranes with varying lipid compositions. The observed changes of the glycophorin A dimerization propensities in different lipid bilayers suggest that the lipid bilayer thickness severely influences the monomer-dimer equilibrium of this transmembrane domain, and dimerization was most efficient under hydrophobic matching conditions. Moreover, cholesterol considerably promotes self-association of transmembrane helices in model membranes by affecting the lipid acyl chain ordering. In general, the order of the lipid acyl chains appears to be an important factor involved in determining the strength and stability of transmembrane helix-helix interactions. As discussed, the described influences of membrane properties on transmembrane helix-helix interactions are highly important for understanding the mechanism of transmembrane protein folding and functioning as well as for gaining a deeper insight into the regulation of signal transduction via membrane integral proteins by bilayer properties.  相似文献   

17.
Bending membranes   总被引:1,自引:0,他引:1  
It is widely assumed that peripheral membrane proteins induce intracellular membrane curvature by the asymmetric insertion of a protein segment into the lipid bilayer, or by imposing shape by adhesion of a curved protein domain to the membrane surface. Two papers now provide convincing evidence challenging these views. The first shows that specific assembly of a clathrin protein scaffold, coupled to the membrane, seems to be the most prevalent mechanism for bending a lipid bilayer in a cell. The second reports that membrane crowding, driven by protein-protein interactions, can also drive membrane bending, even in the absence of any protein insertion into the bilayer.  相似文献   

18.
The synthesis, folding, and function of membrane transport proteins are critical factors for defining cellular physiology. Since the stability of these proteins evolved amidst the lipid bilayer, it is no surprise that we are finding that many of these membrane proteins demonstrate coupling of their structure or activity in some way to the membrane. More and more transporter structures are being determined with some information about the surrounding membrane, and computational modeling is providing further molecular details about these solvation structures. Thus, the field is moving towards identifying which molecular mechanisms - lipid interactions, membrane perturbations, differential solvation, and bulk membrane effects - are involved in linking membrane energetics to transporter stability and function. In this review, we present an overview of these mechanisms and the growing evidence that the lipid bilayer is a major determinant of the fold, form, and function of membrane transport proteins in membranes.  相似文献   

19.
Studies of the assembly of the hexapeptide Acetyl-Trp-Leu5 (AcWL5) into β-sheets in membranes have provided insights into membrane protein folding. Yet, the exact structure of the oligomer in the lipid bilayer is unknown. Here we use neutron diffraction to study the disposition of the peptides in bilayers. We find that pairs of adjacent deuterium-labeled leucines have no well-defined peak or dip in the transmembrane distribution profiles, indicative of heterogeneity in the depth of membrane insertion. At the same time, the monomeric homolog AcWL4 exhibits a homogeneous, well-defined, interfacial location in neutron diffraction experiments. Thus, although the bilayer location of monomeric AcWL4 is determined by hydrophobicity matching or complementarity within the bilayer, the AcWL5 molecules in the oligomer are positioned at different depths within the bilayer because they assemble into a staggered transmembrane β-sheet. The AcWL5 assembly is dominated by protein-protein interactions rather than hydrophobic complementarity. These results have implications for the structure and folding of proteins in their native membrane environment and highlight the importance of the interplay between hydrophobic complementarity and protein-protein interactions in determining the structure of membrane proteins.  相似文献   

20.
beta-Barrel membrane proteins have several important functions in outer membranes of Gram-negative bacteria and in the organelles of endosymbiotic origin, mitochondria and chloroplasts. The biogenesis of beta-barrel membrane proteins was, until recently, an unresolved process. A breakthrough was achieved when a specific pathway for the insertion of beta-barrel outer-membrane proteins was identified in both mitochondria and Gram-negative bacteria. The key component of this pathway is Tob55 (also known as Sam50) in mitochondria and Omp85 in bacteria, both beta-barrel membrane proteins themselves. Tob55 is part of the hetero-oligomeric TOB (topogenesis of mitochondrial outer-membrane beta-barrel proteins) or SAM (sorting and assembly of mitochondria) complex, which is present in the mitochondrial outer membrane. Tob55 belongs to an evolutionarily conserved protein family, the members of which are present in almost all eukaryotes and in Gram-negative bacteria and chloroplasts. Thus, is it emphasized that the insertion pathway of mitochondrial beta-barrel membrane proteins was conserved during evolution of mitochondria from endosymbiotic bacterial ancestors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号