首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Fab (fragment that having the antigen binding site) of a monoclonal antibody (mAb) is widely required in biopharmaceutical research and development. At Centocor, two routes of Fab production and purification were used to enable a variety of research and development efforts, particularly, crystallographic studies of antibody–antigen interactions. One route utilizes papain digestion of an intact monoclonal antibody for Fab fragment production. After digestion, separation of the Fab fragment from the Fc (fragment that crystallizes) and residual intact antibody was achieved using protein A affinity chromatography. In another route, His-tagged Fab fragments were obtained by transient expression of an appropriate construct in mammalian cells, and typical yields are 1–20 mg of Fab fragment per liter of cell culture. The His-tagged Fab fragments were first captured using immobilized metal affinity chromatography (IMAC). To provide high quality protein sample for crystallization, Fabs from either proteolytic digestion or from direct expression were further purified using size-exclusion chromatography (SEC) and/or ion-exchange chromatography (IEC). The purified Fab fragments were characterized by mass spectrometry, SDS–PAGE, dynamic light scattering, and circular dichroism. Crystallization experiments demonstrated that the Fab fragments are of high quality to produce diffraction quality crystals suitable for X-ray crystallographic analysis.  相似文献   

2.
An extremely halophilic archaeon Haloferax lucentensis VKMM 007, isolated from a solar saltern, was found to produce a protease. This extracellular enzyme consisted of a single polypeptide chain of 57.8 kDa as determined by SDS–PAGE and was purified by a combination of ultrafiltration, bacitracin–Sepharose affinity chromatography and Sephadex G-100 gel filtration. The purified protein was stable in a wide range of temperatures (20–70°C), NaCl concentrations (0.85–5.13 M) and pH (5.0–9.0) with maximal activity observed at 60°C, 4.3 M NaCl and pH 8.0. Proteolytic activity was enhanced by Ca2+, K+, Mg2+, Na+, and Fe2+ ions and the protein was classified as a trypsin-like serine protease. Further assays indicated highest degree of specificity when hemoglobin was used as an enzyme substrate. Most importantly, the proteolytic activity remained stable or only marginally inhibited in the presence of various polar and non-polar solvents, surfactants and reducing agents thus emphasizing the biotechnological potential of this novel halophilic protease.  相似文献   

3.
We describe a procedure for the affinity purification of Shiga toxin 1 subunit B (SLTB) using a commercial galabiose–agarose resin. Recombinant SLTB was purified to 99% homogeneity in a single-step protocol, from the periplasmic extracts of Vibrio cholerae 0395 N1/pSBC54. SDS–PAGE of the affinity purified SLTB showed one band of 8 kDa MW. SLTB purified by this procedure retained its chemical and biological activity as demonstrated by re-binding to the galabiose–agarose resin, and receptor-mediated binding and uptake in Vero cells. The galabiose–agarose resin could isolate roughly 1 mg of SLTB/mL of gel. The resin was stable over 3 years and 500 cycles/year of usage. Hence, this method is a straightforward approach to the large-scale preparation of SLTB at a reasonable cost.  相似文献   

4.
A trypsin fraction was isolated from the pyloric ceca of New Zealand farmed chinook salmon (Oncorhynchus tshawytscha) by ammonium sulfate fractionation, acetone precipitation and affinity chromatography. The chinook salmon enzyme hydrolyzed the trypsin-specific synthetic substrate benzoyl-dl-arginine-p-nitroanilide (dl-BAPNA), and was inhibited by the general serine protease inhibitor phenyl methyl sulfonyl fluoride (PMSF), and also by the specific trypsin inhibitors — soybean trypsin inhibitor (SBTI) and benzamidine. The enzyme was active over a broad pH range (from 7.5 to at least pH 10.0) at 25 °C and was stable from pH 4.0 to pH 10.0 when incubated at 20 °C, with a maximum at pH 8.0. The optimum temperature for the hydrolysis of dl-BAPNA by the chinook salmon enzyme was 60 °C, however, the enzyme was unstable at temperatures above 40 °C. The molecular mass of the chinook salmon trypsin was estimated as 28 kDa by SDS–PAGE.  相似文献   

5.
Aspergillus fumigatus Fresenius was previously shown to grow in mineral medium containing chicken feather flour as carbon and nitrogen source. Substantial proteolytic keratin-degrading activity was present in the culture supernatant after 24–72 h of growth at 42 °C. The keratinase was successfully purified by a single ion exchange chromatographic procedure and had a molecular mass of 31 kDa as determined by SDS–PAGE. The keratinase cDNA was expressed in Pichia pastoris cells and the recombinant clones were shown to be able to produce substantial caseinolytic, azo-keratinolytic and keratinolytic activities. SDS–PAGE and Western-blotting analysis using antibody against keratinase of A. fumigatus showed the presence of a single protein in the culture supernatants of several recombinant P. pastoris cells. This protein had a molecular mass corresponding to that of the A. fumigatus keratinase. The enzyme production profile showed that theP. pastoris recombinant cells produced an increasing amount of proteolytic and azo-keratinolytic activities over a 72 h growth period. Dry weight determination analysis indicated that 10% of the keratin flour was hydrolysed over a 24 h incubation period with 510 U (caseinolytic activity) of the recombinant keratinase.  相似文献   

6.
Peroxidase from date palm (Phoenix dactylifera L.) leaves was purified to homogeneity and characterized biochemically. The enzyme purification included homogenization, extraction of pigments followed by consecutive chromatographies on DEAE-Sepharose and Superdex 200. The purification factor for purified date palm peroxidase was 17 with 5.8% yield. The purity was checked by SDS and native PAGE, which showed a single prominent band. The molecular weight of the enzyme was approximately 55 kDa as estimated by SDS–PAGE. The enzyme was characterized for thermal and pH stability, and kinetic parameters were determined using guaiacol as substrate. The optimum activity was between pH 5–6. The enzyme showed maximum activity at 55 °C and was fairly stable up to 75 °C, with 42% loss of activity. Date palm leaves peroxidase showed Km values of 0.77 and 0.045 mM for guaiacol and H2O2, respectively. These properties suggest that this enzyme could be a promising tool for applications in different analytical determinations as well as for treatment of industrial effluents at low cost.  相似文献   

7.
The alkaline protease gene from Aspergillus oryzae was cloned, and then it was successfully expressed in the heterologous Pichia pastoris GS115 with native signal peptide or α-factor secretion signal peptide. The yield of the recombinant alkaline protease with native signal peptide was about 1.5-fold higher than that with α-factor secretion signal peptide, and the maximum yield of the recombinant alkaline protease was 513 mg/L, which was higher than other researches. The recombinant alkaline protease was purified by ammonium sulfate precipitation, ion exchange chromatography and gel filtration chromatography. The purified recombinant alkaline protease showed on SDS–PAGE as a single band with an apparent molecular weight of 34 kDa. The recombinant alkaline protease was identical to native alkaline protease from A. oryzae with regard to molecular weight, optimum temperature for activity, optimum pH for activity, stability to pH, and similar sensitivity to various metal ions and protease inhibitors. The native enzyme retained 61.18% of its original activity after being incubated at 50 °C for 10 min, however, the recombinant enzyme retained 56.22% of its original activity with same disposal. The work demonstrates that alkaline protease gene from A. oryzae can be expressed largely in P. pastoris without affecting its enzyme properties and the recombinant alkaline protease could be widely used in various industrial applications.  相似文献   

8.
In cynobacteria and higher plants, salinity is known to inhibit the activity of several enzymes involved in photosynthesis and hence decreases the overall photosynthetic rate. This gave us an impetus to search for a protease, which may be involved in the turnover of non-functional enzymes produced under salinity stress. Taking the possible changes in pH gradient of the chloroplast under consideration, we have tried to identify a protease, which is induced under salinity and characterized it as an alkaline protease using spinach (Spinacia oleracea) leaves as a model system. The HIC-HPLC purified homogeneous alkaline serine protease from the isolated spinach chloroplasts had two subunits of molecular weight 63 and 32 kDa. The enzyme was maximally active at pH 8.5 and 50°C. The enzyme showed the property to hydrolyze the synthetic substrate like azocaesin and had sufficient proteolytic activity in gelatin bound native PAGE. The enzyme activity was also dependent upon the presence of divalent cations and reduced environment. The active site residues were identified and the homogeneous alkaline serine protease had cysteine, lysine and tryptophan residues at its active site.  相似文献   

9.
Numerous attempts have been made to replace calf rennet with other milk clotting proteases because of limited supply and increasingly high prices. The aim of this work was to investigate the characteristic of the milk-clotting enzyme from Nocardiopsis sp. The partial purification extract was obtained by fractional precipitation with ammonium sulphate. Of the fractions obtained by precipitation, 40-60% possessed the milk-clotting activity (156.25 U/mg). The chromatography of 40-100% ammonium sulphate fraction in DEAE-cellulose yielded four fractions (F4, F5, F6, F7) with milk-clotting activity. The F5 yielded the best milk-clotting activity (20 U/ml). Both crude and partially purified extract were active at the range pH 4.5-11.0, however, optimum activity was displayed at pH 11.0 and pH 7.5, respectively. The milk-clotting activity was highest at 55 degrees C for both crude and partially purified extract. The crude and partial purification extract were inactivated at 65 and 75 degrees C after 30 min.  相似文献   

10.
Summary A 0.1% Triton X-100 extract of human erythrocyte plasma membranes contained high proteolytic activity as determined by a very sensitive assay utilizing3H-acetylated hemoglobin (162 cpm/pmole) as a substrate. Two proteolytic enzymes having optimum activity at pH 3.4 and pH 7.4 were isolated from Sephadex G-100. The protease active at pH 3.4 was 75 times as active as the pH 7.4 enzyme and it was purified 182-fold over the original homogenate and characterized. A linear relationship for activity versus time and activity versus concentration of enzyme was found. The optimum temperature was 37°C and theK m was 1×10–5 m hemoglobin. No enzyme activation was observed with any cation studied and EDTA had no inhibitory effect; (10mm Fe+3 and Hg+2 were inhibitory). The pH 3.4 protease was stable indefinitely at –20°C in 0.1% Triton X-100. Gel electrophoresis was performed on a sodium dodecylsulfate-mercaptoethanol enzyme preparation and two protein bands (mol. wt. 33,000 and 54,000) were evident for the Sephadex G-200 eluate containing the pH 3.4 protease.  相似文献   

11.
Among the various bacterial isolates, the strain MSF 46 isolated from thorn forest soil samples, Tamil Nadu, India, was screened and characterized for its proteolytic activity. While the 16S rRNA sequencing and biochemical characterization revealed that the strain closely resembles Methylobacterium sp., methylotrophy of the strain was confirmed by the sequence homology of mxaF gene with other relative Methylobacterium sp. The alkaline protease was purified to homogeneity using DEAE cellulose ion exchange chromatography, with a 5.2-fold increase in specific activity and 34% recovery. The apparent molecular weight of the enzyme was determined as 40 kDa by SDS–PAGE study. The pH and temperature optima were 9.0 and 50 °C respectively with maximum protease activity of 1164 U/ml. Protease of MSF 46 was active in a broad pH range 7.0–11.0 with a maximum at pH 8.5 and exhibited thermostability at 50 °C. The enzyme activity was inhibited by PMSF but showed stability with Tween 20, Triton X-100 and hydrogen peroxide. Nearly 30% reduction in enzyme activity was observed in the presence of EDTA and DTT. The enzyme was effective in hydrolyzing gelatin, skimmed milk and blood clots and exhibited the potency for dehairing of goat skin and removing blood stain from cotton fabric. Significant morphological changes were observed under scanning electron microscope between cells grown in normal and casein amended medium. This first detailed report on the production of alkaline protease by a PPFM strain appears promising toward development of protocols for mass production, study of the molecular mechanism and other applications.  相似文献   

12.
A proteolytic enzyme was purified from Xenopus embryos. The purification procedure consisted of fractionation of an extract of embryos with acetone, gel filtration of Sephadex G-75 and chromatography on carboxymethyl-cellulose and hydroxylapatite. The preparation of enzyme appeared to be homogeneous as judged by electrophoresis in polyacrylamide gels. This protease had a molecular mass of 43-44 kDa and was composed of two subunits with molecular masses of 30 kDa and 13 kDa. The optimal pH of the reaction catalysed by the protease was approximately 4.0. This proteolytic activity was inhibited by antipain, leupeptin and iodoacetic acid; it was not affected by phenylmethylsulfonyl fluoride and pepstatin; and it was enhanced by dithiothreitol. In the presence of RNA, the optimal pH was shifted from pH 4.0 to pH 4.5. The protease was activated by addition of total RNA from Xenopus embryos, by poly(rU) or poly(rG). In contrast, after addition of tRNA or poly(rC), no activation of the protease was observed.  相似文献   

13.
A combination of chromatofocusing and gel filtration chromatography resulted in a simple purification of -amylase from Bacillus licheniformis. The purification was approximately 77-fold. Identification of the purity was established by SDS–PAGE. Molecular weight and isoelectric point of the purified enzyme were 58 kDa and 7.18 respectively. Western blot analysis confirms the specificity of antibody raised against purified -amylase.  相似文献   

14.
The focus of this study was on production, purification and characterization of dehairing protease from Pseudomonas aeruginosa MCM B-327, isolated from vermicompost pit soil. Optimum protease activity, 395 U mL(-1), was observed in the medium containing soybean meal and tryptone, at pH 7 and 30 °C. The crude enzyme exhibited dehairing activity. As compared to chemical method, enzymatic method of dehairing showed reduction in COD, TDS and TSS by 34.28%, 37.32% and 51.58%, respectively. Zymogram of crude enzyme on native-PAGE presented two bands with protease activity of molecular weights of 56 and 67 kDa. Both proteases showed dehairing activity. Out of these, 56kDa protease (PA02) was purified 3.05-folds with 2.71% recovery. The enzyme was active in pH range 7-9 and temperature 20-50 °C with optimum pH of 8 and temperature 35°C. Moreover, the enzyme activity of PA02 protease was not strongly inhibited by specific inhibitor showing the novel nature of enzyme compared to serine, cysteine, aspartyl and metalloproteases. Kinetic studies indicated that substrate specificity of PA02 protease was towards various natural and synthetic proteolytic substrates but inactive against collagen and keratin. These findings suggest protease secreted by P. aeruginosa MCM B-327 may have application in dehairing for environment-friendly leather processing.  相似文献   

15.
This study reports the purification and biochemical characterization of a raw starch-digesting α-amylase from Geobacillus thermoleovorans subsp. stromboliensis subsp. nov. (strain PizzoT). The molecular weight was estimated to be 58 kDa by SDS–PAGE. The enzyme was highly active over a wide range of pH from 4.0–10.0. The optimum temperature of the enzyme was 70°C. It showed extreme thermostability in the presence of Ca2+, retaining 50% of its initial activity after 90 h at 70°C. The enzyme efficiently hydrolyzed 20% (w/v) of raw starches, concentration normally used in starch industries. The α-amylase showed an high stability in presence of many organic solvents. In particular the residual activity was of 73% in presence of 15% (v/v) ethyl alcohol, which corresponds to ethanol yield in yeast fermentation process. By analyzing its complete amyA gene sequence (1,542 bp), the enzyme was proposed to be a new α-amylase.  相似文献   

16.
A 1.4-kb gene encoding the “small” sialidase isoenzyme ofClostridium perfringensA99, including its own promoter, was previously cloned in and expressed byEscherichia coliJM 101. Since all attempts to purify this enzyme to homogeneity were unsuccessful, a new strategy was developed. The structural gene was amplified by means of a PCR technique and inserted into the plasmid vector pQE-10, transferring a six-histidine affinity tag (His6) to the N-terminus of the protein. In order to minimize proteolytic degradation of the sialidase protein, the gene was subcloned into theEscherichia colistrain BL21(DE3)pLys S with reduced protease activity. The sialidase production was increased about 2.5-fold when compared with that of the original clone. The enzyme, released by lysozyme treatment of the bacterial cells, was purified by metal chelate chromatography on Ni–nitrilo-triacetic acid agarose to apparent homogeneity in SDS–PAGE. The 42-kDa protein was enriched 62-fold with a yield of 82% and a specific activity of 280 U mg−1. A total amount of 1 mg sialidase was obtained from 1 liter of bacterial culture. For future studies, including crystallization experiments, the histidine affinity tag was removed from the sialidase enzyme by aminopeptidase K. The sialidase was then separated from aminopeptidase K by ion-exchange chromatography, resulting in an overall yield of 83% and a specific activity of 305 U mg−1using 4-methylumbelliferyl-α- -N-acetylneuraminic acid under standard conditions. The two forms (with or without the histidine tag) of sialidase exhibited similar kinetic properties when compared to the wild-type enzyme.  相似文献   

17.
Extracellular chitinase from Alcaligenes xylosoxydans was purified to electrophoretic homogeneity using affinity and gel filtration chromatography. The molecularmass of chitinase was estimated to be 45 kDa and44 kDa by SDS-PAGE and gel-filtration, respectively. The enzyme was optimally active at 50 °C (over 30 min) and pH 5. Activity staining after PAGE showed a single band. The Km for chitin was 3 g l–1. Cu2+ and Na+ at 5 mM inhibited chitinase activity to 25% while Ca2+, Mg2+ and Ba2+ had no effect at the same concentration. The purified enzyme degraded mycelia of Aspergillus niger.  相似文献   

18.
Proenzyme dipeptidyl peptidase I (DPP I) of Schistosoma japonicum was expressed in a baculovirus expression system utilizing Trichoplusia ni BTI-5B1-4 (High Five) strain host insect cells. The recombinant enzyme was purified from cell culture supernatants by affinity chromatography on nickel–nitriloacetic acid resin, exploiting a polyhistidine tag fused to the COOH-terminus of the recombinant protease. The purified recombinant enzyme resolved in reducing SDS–PAGE gels as three forms, of 55, 39, and 38 kDa, all of which were reactive with antiserum raised against bacterially expressed S. japonicum DPP I. NH2-terminal sequence analysis of the 55-kDa polypeptide revealed that it corresponded to residues −180 to −175, NH2-SRXKXK, of the proregion peptide of S. japonicum DPP I. The 39- and 38-kDa polypeptides shared the NH2-terminal sequence, LDXNQLY, corresponding to residues −73 to −67 of the proregion peptide and thus were generated by removal of 126 residues from the NH2-terminus of the proenzyme. Following activation for 24 h at pH 7.0, 37°C under reducing conditions, the recombinant enzyme exhibited exopeptidase activity against synthetic peptidyl substrates diagnostic of DPP I. Specificity constants (kcat/Km) for the recombinant protease for the substrates H-Gly-Arg-NHMec and H-Gly-Phe-NHMec were found to be 14.4 and 10.7 mM1 s−1, respectively, at pH 7.0. Approximately 1 mg of affinity-purified schistosome DPP I was obtained per liter of insect cell culture supernatant, representing 2 × 109 High Five cells.  相似文献   

19.
Type 4 glutathione peroxidase (GPx4) is a widely expressed mammalian selenoenzyme known to play a vital role in cytoprotection against lipid hydroperoxide (LOOH)-mediated oxidative stress and regulation of oxidative signaling cascades. Since prokaryotes are not equipped to express mammalian selenoproteins, preparation of recombinant GPx4 via commonly used bacterial transformation is not feasible. A published procedure for isolating the enzyme from rat testis employs affinity chromatography on bromosulfophthalein–glutathione-linked agarose as the penultimate step in purification. Since this resin is no longer commercially available and preparing it in satisfactory operational form is tedious, we have developed an alternative purification approach based on sequential anion exchange, size exclusion, and cation exchange chromatography. Final preparations were found to be essentially homogeneous in GPx4 (Mr  20 kDa), as demonstrated by SDS–PAGE with protein staining and immunoblotting. Specific enzymatic activity was determined using a novel thin-layer chromatographic approach in which the kinetics of phosphatidylcholine hydroperoxide loss or cholesterol-7α-hydroperoxide loss was monitored. A >400-fold purification of active enzyme has been attained. The relatively straightforward isolation procedure described should prove valuable for further functional studies on GPx4, e.g. how its ability to catalyze LOOH reduction compares with that of other LOOH detoxifying enzymes.  相似文献   

20.
A fibrinolytic enzyme from Bacillus subtilis BK-17 has been purified to homogeneity by gel-filtration and ion-exchange chromatography. Compared to the crude enzyme extract, the specific activity of the enzyme increased 929-fold with a recovery of 29%. The subunit molecular mass of the purified enzyme was estimated to be 31 kDa by SDS–PAGE. The N-terminal amino acid sequence of the purified fibrinolytic enzyme was: A-Q-S-V-P-Y-G-V-S-Q-I-K-A-P-A-A-H-N. The sequence was highly homologous to the fibrinolytic enzymes nattokinase, subtilisin J and subtilisin E from Bacillus spp. However, there was a substitution of three amino acid residues in the N-terminal sequence. The amidolytic activity of the purified enzyme for several substrates was assessed. In comparison with nattokinase and CK (fibrinolytic enzyme from a Bacillus spp.), which showed strong fibrinolytic activity, the amidolytic activity of the enzyme for the synthetic substrate, kallikrein (H-D-Val-Leu-Arg-pNA, S-2266) increased 2.4- and 11.8-fold, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号