首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Helicobacter pylori is associated with chronic gastritis, peptic ulcers, and gastric cancer. Two major virulence factors of H. pylori have been described: the pathogenicity island cag (cag PAI) and the vacuolating cytotoxin gene (vacA). Virtually all strains have a copy of vacA, but its genotype varies. The cag PAI is a region of 32 genes in which the insertion of IS605 elements in its middle region has been associated with partial or total deletions of it that have generated strains with varying virulence. Accordingly, the aim of this work was to determine the cag PAI integrity, vacA genotype and IS605 status in groups of isolates from Mexican patients with non-peptic ulcers (NPU), non-bleeding peptic ulcers (NBPU), and bleeding peptic ulcers (BPU).

Methods

The cag PAI integrity was performed by detection of eleven targeted genes along this locus using dot blot hybridization and PCR assays. The vacA allelic, cag PAI genotype 1 and IS605 status were determined by PCR analysis.

Results

Groups of 16-17 isolates (n = 50) from two patients with NPU, NBPU, and BPU, respectively, were studied. 90% (45/50) of the isolates harbored a complete cag PAI. Three BPU isolates lacked the cag PAI, and two of the NBPU had an incomplete cag PAI: the first isolate was negative for three of its genes, including deletion of the cagA gene, whereas the second did not have the cagM gene. Most of the strains (76%) had the vacA s1b/m1 genotype; meanwhile the IS605 was not present within the cag PAI of any strain but was detected elsewhere in the genome of 8% (4/50).

Conclusion

The patients had highly virulent strains since the most of them possessed a complete cag PAI and had a vacA s1b/m1 genotype. All the isolates presented the cag PAI without any IS605 insertion (genotype 1). Combined vacA genotypes showed that 1 NPU, 2 NBPU, and 1 BPU patients (66.6%) had a mixed infection; coexistence of H. pylori strains with different cag PAI status was observed in 1 NBPU and 2 BPU (50%) of the patients, but only two of these patients (NBPU and BPU) had different vacA genotypes.  相似文献   

2.
The Helicobacter pylori cag pathogenicity island (cagPAI) encodes a type IV secretion system. Humans infected with cagPAI–carrying H. pylori are at increased risk for sequelae such as gastric cancer. Housekeeping genes in H. pylori show considerable genetic diversity; but the diversity of virulence factors such as the cagPAI, which transports the bacterial oncogene CagA into host cells, has not been systematically investigated. Here we compared the complete cagPAI sequences for 38 representative isolates from all known H. pylori biogeographic populations. Their gene content and gene order were highly conserved. The phylogeny of most cagPAI genes was similar to that of housekeeping genes, indicating that the cagPAI was probably acquired only once by H. pylori, and its genetic diversity reflects the isolation by distance that has shaped this bacterial species since modern humans migrated out of Africa. Most isolates induced IL-8 release in gastric epithelial cells, indicating that the function of the Cag secretion system has been conserved despite some genetic rearrangements. More than one third of cagPAI genes, in particular those encoding cell-surface exposed proteins, showed signatures of diversifying (Darwinian) selection at more than 5% of codons. Several unknown gene products predicted to be under Darwinian selection are also likely to be secreted proteins (e.g. HP0522, HP0535). One of these, HP0535, is predicted to code for either a new secreted candidate effector protein or a protein which interacts with CagA because it contains two genetic lineages, similar to cagA. Our study provides a resource that can guide future research on the biological roles and host interactions of cagPAI proteins, including several whose function is still unknown.  相似文献   

3.
Helicobacter pylori infection has been proposed to be associated with various diseases of the hepatobiliary tract, including cancer of the bile duct epithelial cells (cholangiocarcinoma, CCA). The ability of H. pylori bacteria to cause pathogenic effects in these cells has, however, yet to be investigated. Given that the cag pathogenicity island (cagPAI) is required for H. pylori pathogenesis in gastric epithelial cells, we investigated wild-type and cag mutant strains for their ability to adhere, be internalized and induce pro-inflammatory responses in two bile duct epithelial cell lines derived from cases of CCA. The findings from these experiments were compared to results obtained with the well-characterized AGS gastric cancer cell line. We showed that the cagPAI encodes factors involved in H. pylori internalization in CCA cells, but not for adhesion to these cells. Consistent with previous studies in hepatocytes, actin polymerization and α5β1 integrin may be involved in H. pylori internalization in CCA cells. As for AGS cells, we observed significantly reduced levels of NF-κB activation and IL-8 production in CCA cells stimulated with either cagA, cagL or cagPAI bacteria, when compared with wild-type bacteria. Importantly, these IL-8 responses could be inhibited via either pre-treatment of cells with antibodies to α5β1 integrins, or via siRNA-mediated knockdown of the innate immune signaling molecules, nucleotide oligomerization domain 1 (NOD1) and myeloid differentiation response gene 88 (MyD88). Taken together, the data demonstrate that the cagPAI is critical for H. pylori pathogenesis in bile duct cells, thus providing a potential causal link for H. pylori in biliary tract disease.  相似文献   

4.
Helicobacter pylori (H. pylori) is a human gastric pathogen that colonizes the stomach in more than 50 % of the world’s human population. Infection with this bacterium can induce several gastric diseases ranging from gastritis to peptic ulcer and gastric cancer. Virulent H. pylori isolates harboring the cag pathogenicity island (cag PAI), which encodes a Type IV Secretion System (T4SS), form a pilus for the injection of its major virulence protein CagA into gastric cells. Several cag PAI genes have been identified as homologues of T4SS genes from Agrobacterium tumefaciens, while the other members in cag PAI still have no known function. We studied one of such proteins with unknown function, CagM, which was predicted to have a putative N-terminal signal sequence and at least three transmembrane helices. To determine the subcellular localization of CagM, we performed a cell fractionation procedure and produced rabbit anti-CagM polyclonal antibodies for immunoblotting assays. Furthermore, we generated an isogenic ΔcagM mutant to investigate the ability of CagA translocation compared with the wild-type NCTC 11637 strain using GES-1 and MKN-45 cell infection experiments. Our results indicated that CagM was mainly located in the bacterial membrane, partially located in the periplasm, and essential for CagA translocation both in GES-1 and MKN-45 cells, which suggested that CagM was one of the core members of Cag T4SS and localized in the transmembrane channel.  相似文献   

5.
cag pathogenicity island of Helicobacter pylori in Korean children   总被引:1,自引:0,他引:1  
Ko JS  Seo JK 《Helicobacter》2002,7(4):232-236
Background. cag pathogenicity island is reported to be a major virulence factor of Helicobacter pylori. The aim of this study was to investigate the status of cag pathogenicity island genes and gastric histology in Korean children with H. pylori gastritis. Methods. Helicobacter pylori DNA was extracted from antral biopsy specimens from 25 children with H. pylori gastritis. Specific polymerase chain reaction assays were used for four genes of cag pathogenicity island. The features of gastritis were scored in accordance with the updated Sydney System. Results. cagA was present in 23 (92%) of 25 children, and cagE in 24 (96%). Twenty‐two (88%) children were cagT positive and 19 (76%) virD4 positive. All of the selected genes of the cag pathogenicity island were present in 17 (68%) children and completely deleted in one child. There were no differences in neutrophil activity and chronic inflammation between children infected with intact cag pathogenicity island strains and those with partially or totally deleted‐cag pathogenicity island strains. Conclusion. cag pathogenicity island is not a uniform, conserved entity in Korea. Completeness of cag pathogenicity island may not be the major factor to determine the severity of H. pylori gastritis in children.  相似文献   

6.
Background. The cag pathogenicity island (cag PAI) is a major virulence factor. The ability of Helicobacter pylori to adhere to gastric epithelial cells is an important initial step for virulence. The aim of this study was to evaluate the relationship between genetic variations of cag PAI in Japanese clinical isolates and the ability of H. pylori to adhere to gastric epithelial cells. Materials and Methods. The polymerase chain reaction and Southern blot analysis were used to verify the presence or absence of cagA, cagE, cagG, cagI and cagM in the cag PAI in 236 Japanese clinical isolates. The ability of H. pylori to adhere to KATOIII cells was examined by flow cytometry. Results. Seven (3.0%) cag PAI partial‐deleted strains were found in 236 clinical isolates, and these strains showed three patterns in the deleted region within the cag PAI. All of the cagG‐deleted strains showed decreased adherence to KATOIII cells, in comparison with cagG‐positive strains. These strains had abolished IL‐8 induction despite the presence of cagE, which is essential for IL‐8 induction. Conclusions. Our results suggest that cagG or surrounding genes in the cag PAI has a function related to adhesion to epithelial cells.  相似文献   

7.
The aim of this study was to investigate the Lewis antigen expression in Helicobacter pylori gastric MALT lymphoma associated strains in comparison to chronic gastritis only strains. Forty MALT strains (19 cagPAI (−) and 21 cagPAI (+)) and 39 cagPAI frequency-matched gastritis strains (17 cagPAI (−) and 22 cagPAI (+)) were included in this study. The lipopolyssacharide for each strain was extracted using a hot phenol method and the expression of Lex and Ley were investigated using Western Blot. The data were analyzed according to the strains'' cagPAI status and vacA genotype. Lex was identified in 21 (52.5%) MALT strains and 29 (74.3%) gastritis strains. Ley was identified in 30 (75%) MALT strains and 31 (79.5%) gastritis strains. There was an association between cagPAI positivity and Lex expression among MALT strains (p<0.0001), but not in gastritis strains (p = 0.64). Among cagPAI (−) strains, isolates expressing solely Ley were associated with MALT with an odds ratio of 64.2 (95% CI 4.9–841.0) when compared to strains expressing both Lex and Ley. vacA genotypes did not modify the association between Lewis antigen expression and disease status. In conclusion, cagPAI (−) MALT strains have a particular Lewis antigen profile which could represent an adaptive mechanism to the host response or participate in MALT lymphomagenesis.  相似文献   

8.
Infection with Helicobacter pylori strains containing high number of EPIYA-C phosphorylation sites in the CagA is associated with significant gastritis and increased risk of developing pre-malignant gastric lesions and gastric carcinoma. However, these findings have not been reproduced in animal models yet. Therefore, we investigated the effect on the gastric mucosa of Mongolian gerbil (Meriones unguiculatus) infected with CagA-positive H. pylori strains exhibiting one or three EPIYA-C phosphorilation sites. Mongolian gerbils were inoculated with H. pylori clonal isolates containing one or three EPIYA-C phosphorylation sites. Control group was composed by uninfected animals challenged with Brucella broth alone. Gastric fragments were evaluated by the modified Sydney System and digital morphometry. Clonal relatedness between the isolates was considered by the identical RAPD-PCR profiles and sequencing of five housekeeping genes, vacA i/d region and of oipA. The other virulence markers were present in both isolates (vacA s1i1d1m1, iceA2, and intact dupA). CagA of both isolates was translocated and phosphorylated in AGS cells. After 45 days of infection, there was a significant increase in the number of inflammatory cells and in the area of the lamina propria in the infected animals, notably in those infected by the CagA-positive strain with three EPIYA-C phosphorylation sites. After six months of infection, a high number of EPIYA-C phosphorylation sites was associated with progressive increase in the intensity of gastritis and in the area of the lamina propria. Atrophy, intestinal metaplasia, and dysplasia were also observed more frequently in animals infected with the CagA-positive isolate with three EPIYA-C sites. We conclude that infection with H. pylori strain carrying a high number of CagA EPIYA-C phosphorylation sites is associated with more severe gastric lesions in an animal model of H. pylori infection.Key words: Gastritis, atrophy, intestinal metaplasia, dysplasia, Mongolian gerbil, cagA EPIYA C motif  相似文献   

9.
10.
Analyses of the cag pathogenicity island of Helicobacter pylori   总被引:26,自引:0,他引:26  
Most strains of Helicobacter pylori from patients with peptic ulcer disease or intestinal-type gastric cancer carry cagA, a gene that encodes an immunodominant protein of unknown function, whereas many of the strains from asymptomatically infected persons lack this gene. Recent studies showed that the cagA gene lies near the right end of a ≈37 kb DNA segment (a pathogenicity island, or PAI) that is unique to cagA+ strains and that the cag PAI was split in half by a transposable element insertion in the reference strain NCTC11638. In complementary experiments reported here, we also found the same cag PAI, and sequenced a 39 kb cosmid clone containing the left ‘cagII’ half of this PAI. Encoded in cagII were four proteins each with homology to four components of multiprotein complexes of Bordetella pertussis (‘Ptl’), Agrobacterium tumefaciens (‘Vir’), and conjugative plasmids (‘Tra’) that help deliver pertussis toxin and T (tumour inducing) and plasmid DNA, respectively, to target eukaryotic or prokaryotic cells, and also homologues of eukaryotic proteins that are involved in cytoskeletal structure. To the left of cagII in this cosmid were genes for homologues of HslU (heat-shock protein) and Era (essential GTPase); to the right of cagII were homologues of genes for a type I restriction endonuclease and ion transport functions. Deletion of the cag PAI had no effect on synthesis of the vacuolating cytotoxin, but this deletion and several cag insertion mutations blocked induction of synthesis of proinflammatory cytokine IL-8 in gastric epithelial cells. Comparisons among H. pylori strains indicated that cag PAI gene content and arrangement are rather well conserved. We also identified two genome rearrangements with end-points in the cag PAI. One, in reference strain NCTC11638, involved IS605, a recently described transposable element (as also found by others). Another rearrangement, in 3 of 10 strains tested (including type strain NCTC11637), separated the normally adjacent cagA and picA genes and did not involve IS605. Our results are discussed in terms of how cag-encoded proteins might help trigger the damaging inflammatory responses in the gastric epithelium and possible contributions of DNA rearrangements to genome evolution.  相似文献   

11.
Isolates of Helicobacter pylori can be classified phylogeographically. High genetic diversity and rapid microevolution are a hallmark of H. pylori genomes, a phenomenon that is proposed to play a functional role in persistence and colonization of diverse human populations. To provide further genomic evidence in the lineage of H. pylori and to further characterize diverse strains of this pathogen in different human populations, we report the finished genome sequence of Sahul64, an H. pylori strain isolated from an indigenous Australian. Our analysis identified genes that were highly divergent compared to the 38 publically available genomes, which include genes involved in the biosynthesis and modification of lipopolysaccharide, putative prophage genes, restriction modification components, and hypothetical genes. Furthermore, the virulence-associated vacA locus is a pseudogene and the cag pathogenicity island (cagPAI) is not present. However, the genome does contain a gene cluster associated with pathogenicity, including dupA. Our analysis found that with the addition of Sahul64 to the 38 genomes, the core genome content of H. pylori is reduced by approximately 14% (∼170 genes) and the pan-genome has expanded from 2,070 to 2,238 genes. We have identified three putative horizontally acquired regions, including one that is likely to have been acquired from the closely related Helicobacter cetorum prior to speciation. Our results suggest that Sahul64, with the absence of cagPAI, highly divergent cell envelope proteins, and a predicted nontransportable VacA protein, could be more highly adapted to ancient indigenous Australian people but with lower virulence potential compared to other sequenced and cagPAI-positive H. pylori strains.  相似文献   

12.
13.
Helicobacter pylori (HP) is a bacterium that colonizes the human stomach and can establish a long-term infection of the gastric mucosa. Persistent Hp infection often induces gastritis and is associated with the development of peptic ulcer disease, atrophic gastritis, and gastric adenocarcinoma. Virulent HP isolates harbor the cag (cytotoxin-associated genes) pathogenicity island (cagPAI), a 40 kb stretch of DNA that encodes components of a type IV secretion system (T4SS). This T4SS forms a pilus for the injection of virulence factors into host target cells, such as the CagA oncoprotein. We analyzed the genetic variability in cagA and other selected genes of the HP cagPAI (cagC, cagE, cagL, cagT, cagV and cag Gamma) using DNA extracted from frozen gastric biopsies or from clinical isolates. Study subjects were 95 cagA+ patients that were histologically diagnosed with chronic gastritis or gastric cancer in Venezuela and Mexico, areas with high prevalence of Hp infection. Sequencing reactions were carried out by both Sanger and next-generation pyrosequencing (454 Roche) methods. We found a total of 381 variants with unambiguous calls observed in at least 10% of the originally tested samples and reference strains. We compared the frequencies of these genetic variants between gastric cancer and chronic gastritis cases. Twenty-six SNPs (11 non-synonymous and 14 synonymous) showed statistically significant differences (P<0.05), and two SNPs, in position 1039 and 1041 of cagE, showed a highly significant association with cancer (p-value = 2.07×10−6), and the variant codon was located in the VirB3 homology domain of Agrobacterium. The results of this study may provide preliminary information to target antibiotic treatment to high-risk individuals, if effects of these variants are confirmed in further investigations.  相似文献   

14.

Background

The prevalence of Helicobacter pylori including strains with putatively virulent genotypes is high, whereas the H. pylori-associated disease burden is low, in Africa compared to developed countries. In this study, we investigated the prevalence of virulence-related H. pylori genotypes and their association with gastroduodenal diseases in The Gambia.

Methods and Findings

DNA extracted from biopsies and H. pylori cultures from 169 subjects with abdominal pain, dyspepsia or other gastroduodenal diseases were tested by PCR for H. pylori. The H. pylori positive samples were further tested for the cagA oncogene and vacA toxin gene.One hundred and twenty one subjects (71.6%) were H. pylori positive. The cagA gene and more toxigenic s1 and m1 alleles of the vacA gene were found in 61.2%, 76.9% and 45.5% respectively of Gambian patients harbouring H. pylori. There was a high prevalence of cagA positive strains in patients with overt gastric diseases than those with non-ulcerative dyspepsia (NUD) (p = 0.05); however, mixed infection by cagA positive and cagA negative strains was more common in patients with NUD compared to patients with gastric disease (24.5% versus 0%; p = 0.002).

Conclusion

This study shows that the prevalence of H. pylori is high in dyspeptic patients in The Gambia and that many strains are of the putatively more virulent cagA+, vacAs1 and vacAm1 genotypes. This study has also shown significantly lower disease burden in Gambians infected with a mixture of cag-positive and cag-negative strains, relative to those containing only cag-positive or only cag-negative strains, which suggests that harbouring both cag-positive and cag-negative strains is protective.  相似文献   

15.
Phosphorylation of ATM-kinase substrates in HeLa and AGS cells in response to Helicobacter pylori infection has been characterized. Infection with wild-type (cagPAI-positive) and corresponding isogenic cagPAI negative mutant induced activation of Chk1 and Chk2 kinases. However, only Chk1 was directly activated by ATM-kinase. Using 2D-electrophoresis and mass spectrometry a group of proteins phosphorylated in AGS cells by ATM1/ATR kinases during H. pylori infection has been identified.  相似文献   

16.
Background Helicobacter pylori infection presents as many different diseases, including asymptomatic gastritis, peptic ulcer disease, and gastric cancer. Although the virulence factor(s) responsible for different H. pylori-related diseases have not been identified, several candidate genes are being investigated for such an association. The polymerase chain reaction (PCR) frequently is used to assess the presence of genetic factors associated with pathogenesis of disease; the cagA gene and its product have been postulated to have a disease-specific relationship to peptic ulcer and gastric cancer because of differential expression in these diseases compared to histological gastritis alone. Materials and Methods. Genomic DNA was amplified by PCR, using synthetic oligonucleotide primers to the cagA gene to determine the prevalence of the cagA gene in 60 H. pylori isolates obtained from well-documented duodenal ulcer or asymptomatic gastritis patients (30 each). Results were confirmed by hybridization with a 1.4-Kb cagA probe. Results. The expected PCR product was obtained in 90% of isolates from duodenal ulcer patients, compared to 70% of isolates from individuals with asymptomatic gastritis. The PCR products were polymorphic in size, suggesting cagA gene sequence differences among isolates. Evaluation for the presence of the cagA gene by hybridization with a 1.4-Kb cagA probe showed a homologous product in 29 of 30 strains [96.7%; 95% confidence interval (CI) = 83–100%] from duodenal ulcer patients versus 25 of 30 strains (83.3%; 95% CI = 65–94%) obtained from individuals with asymptomatic gastritis (p= 0.19). Conclusions. The high prevalence of the cagA gene in asymptomatic gastritis suggests that it will not prove to be a useful marker to distinguish more virulent or disease-specific H. pylori strains. The genetic heterogeneity among H. pylori strains makes PCR an unwise choice as the single method to determine prevalence of a putative virulence factor. In evaluation of the prevalence of a gene or genetic factor in a population of H. pylori, hybridization with extended probes might be important to ensure that the results are representative of the organism's genotype.  相似文献   

17.
The cytosolic innate immune molecule, NOD1, recognizes peptidoglycan (PG) delivered to epithelial cells via the Helicobacter pylori cag pathogenicity island (cagPAI), and has been implicated in host defence against cagPAI+H. pylori bacteria. To further clarify the role of NOD1 in host defence, we investigated NOD1‐dependent regulation of human β‐defensins (DEFBs) in two epithelial cell lines. Our findings identify that NOD1 activation, via either cagPAI+ bacteria or internalized PG, was required for DEFB4 and DEFB103 expression in HEK293 cells. To investigate cell type‐specific induction of DEFB4 and DEFB103, we generated stable NOD1‘knockdown’ (KD) and control AGS cells. Reporter gene assay and RT‐PCR analyses revealed that only DEFB4 was induced in an NOD1‐/cagPAI‐dependent fashion in AGS cells. Moreover, culture supernatants from AGS control, but not AGS NOD1 KD cells, stimulated with cagPAI+H. pylori, significantly reduced H. pylori bacterial numbers. siRNA studies confirmed that human β‐defensin 2 (hBD‐2), but not hBD‐3, contributes to the antimicrobial activity of AGS cell supernatants against H. pylori. This study demonstrates, for the first time, the involvement of NOD1 and hBD‐2 in direct killing of H. pylori bacteria by epithelial cells and confirms the importance of NOD1 in host defence mechanisms against cagPAI+H. pylori infection.  相似文献   

18.
Helicobacter pylori is a common pathogen correlated with several severe digestive diseases. It has been reported that isolates associated with different geographic areas, different diseases and different individuals might have variable genomic features. Here, we describe draft genomic sequences of H. pylori strains YN4-84 and YN1-91 isolated from patients with gastritis from the Naxi and Han populations of Yunnan, China, respectively. The draft sequences were compared to 45 other publically available genomes, and a total of 1059 core genes were identified. Genes involved in restriction modification systems, type four secretion system three (TFS3) and type four secretion system four (TFS4), were identified as highly divergent. Both YN4-84 and YN1-91 harbor intact cag pathogenicity island (cagPAI) and have EPIYA-A/B/D type at the carboxyl terminal of cagA. The vacA gene type is s1m2i1. Another major finding was a 32.5-kb prophage integrated in the YN4-84 genome. The prophage shares most of its genes (30/33) with Helicobacter pylori prophage KHP30. Moreover, a 1,886 bp transposable sequence (IS605) was found in the prophage. Our results imply that the Naxi ethnic minority isolate YN4-84 and Han isolate YN1-91 belong to the hspEAsia subgroup and have diverse genome structure. The genome has been extensively modified in several regions involved in horizontal DNA transfer. The important roles played by phages in the ecology and microevolution of H. pylori were further emphasized. The current data will provide valuable information regarding the H. pylori genome based on historic human migrations and population structure.  相似文献   

19.
Helicobacter pylori infection is one of the most common infections worldwide and is associated with gastric diseases. Virulence factors such as VacA and CagA have been shown to increase the risk of these diseases. Studies have suggested a causal role of CagA EPIYA-C in gastric carcinogenesis and this factor has been shown to be geographically diverse. We investigated the number of CagA EPIYA motifs and the vacA i genotypes in H. pylori strains from asymptomatic children. We included samples from 40 infected children (18 females and 22 males), extracted DNA directly from the gastric mucus/juice (obtained using the string procedure) and analysed the DNA using polymerase chain reaction and DNA sequencing. The vacA i1 genotype was present in 30 (75%) samples, the i2 allele was present in nine (22.5%) samples and both alleles were present in one (2.5%) sample. The cagA-positive samples showed distinct patterns in the 3’ variable region of cagA and 18 of the 30 (60%) strains contained 1 EPIYA-C motif, whereas 12 (40%) strains contained two EPIYA-C motifs. We confirmed that the studied population was colonised early by the most virulent H. pylori strains, as demonstrated by the high frequency of the vacA i1 allele and the high number of EPIYA-C motifs. Therefore, asymptomatic children from an urban community in Fortaleza in northeastern Brazil are frequently colonised with the most virulent H. pylori strains.  相似文献   

20.
In order to better understand pathogenicity of Helicobacter pylori, particularly in the context of its carcinogenic activity, we analysed expression of virulence genes: cagA, virB/D complex (virB4, virB7, virB8, virB9, virB10, virB11, virD4) and vacA in strains of the pathogen originating from persons with gastric diseases. The studies were conducted on 42 strains of H. pylori isolated from patients with histological diagnosis of non-atrophic gastritis—NAG (group 1, including subgroup 1 containing cagA+ isolates and subgroup 2 containing cagA- strains), multifocal atrophic gastritis—MAG (group 2) and gastric adenocarcinoma—GC (group 3). Expression of H. pylori genes was studied using microarray technology. In group 1, in all strains of H. pylori cagA+ (subgroup 1) high expression of the gene as well as of virB/D was disclosed, accompanied by moderate expression of vacA. In strains of subgroup 2 a moderate expression of vacA was detected. All strains in groups 2 and 3 carried cagA gene but they differed in its expression: a high expression was detected in isolates of group 2 and its hyperexpression in strains of group 3 (hypervirulent strains). In both groups high expression of virB/D and vacA was disclosed. Our results indicate that chronic active gastritis may be induced by both cagA+ strains of H. pylori, manifesting high expression of virB/D complex but moderate activity of vacA, and cagA- strains with moderate expression of vacA gene. On the other hand, in progression of gastric pathology and carcinogenesis linked to H. pylori a significant role was played by hypervirulent strains, manifesting a very high expression of cagA and high activity of virB/D and vacA genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号