首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Interspecific hybridisations between Hordeum vulgare L. (cultivated barley) and H. bulbosum L. (bulbous barley grass) have been carried out to transfer desirable traits, such as disease resistance, from the wild species into barley. In this paper we report the results of an extensive backcrossing programme of triploid hybrids (H. vulgare 2x x H. bulbosum 4x) to two cultivars of H. vulgare. Progenies were characterised cytologically and by restriction fragment length polymorphism analysis and comprised (1) haploid and diploid H. vulgare plants, (2) hybrids and aneuploids, (3) single and double monosomic substitutions of H. bulbosum chromosomes into H. vulgare and (4) chromosomal rearrangements and recombinants. Five out of the seven possible single monosomic chromosome substitutions have now been identified amongst backcross progeny and will be valuable for directed gene introgression and genome homoeology studies. The presence amongst progeny of 1 plant with an H. vulgare-H. bulbosum translocated chromosome and one recombinant indicates the value of fertile triploid hybrids for interspecific gene introgression.  相似文献   

2.
Summary One of the aims of the interspecific crossing programme between Hordeum vulgare L. and H. bulbosum L. has been to introgress desirable genes into barley from the wild species. However, despite their close taxonomic relationship there have been few reports of achieving this objective using amphidiploid hybrids. In order to broaden the range of available hybrids, partially fertile triploids between H. vulgare (2n = 2x = 14) and H. bulbosum (2n = 4x = 28) were developed and crossed with H. vulgare as female parent. From 580 progeny which were screened, eight putative single monosomic chromosome substitution lines and one double monosomic substitution were identified by cytological analysis. These involved the substitution of H. vulgare chromosome 1 (two lines), 6 (four lines), 6L (one line), 7 (one line) and 1 + 4 (one line) by their respective H. bulbosum homoeologues. The H. bulbosum chromosome was frequently eliminated during plant development, but it was observed regularly in pollen mother cells of two lines. However, pairing between the H. bulbosum chromosome and its H. vulgare homoeologue was low. Several of the lines were more resistant than their H. vulgare parents to powdery mildew (Erysiphe graminis DC. f.sp. hordei Em. Marchai), net blotch (Drechslera teres Sacc.) and scald (Rhynchosporium secalis (Oudem.) Davis). Apart from their use in studying genome relationships, their value to plant breeders will depend on the ease of inducing translocations between the parental chromosomes.  相似文献   

3.
Summary The C0 tetraploid counterparts of diploid hybrids of Hordeum vulgare × H. bulbosum were meiotically analysed, and were found to be chromosomally less stable than the same genotypes had been as diploids. The 14 bulbosum chromosomes present in the tetraploid cytotypes were probably eliminated as pairs rather than randomly or one genome at the time. Development of the vulgare and bulbosum genomes was asynchronous in some hybrids, the bulbosum chromosomes appearing less advanced than the vulgare chromosomes in the same cell. This appeared to reduce pairing between bulbosum homologues and also suppressed homoeologous pairing.  相似文献   

4.
M. W. Humphreys 《Chromosoma》1978,65(4):301-307
Chromosome number in Hordeum vulgare x H. bulbosum hybrids ranged between the haploid and diploid number but with peaks in frequency occurring at the 14 and 7 chromosome level. This was reflected in a gradual change from hybrid morphology to that of haploid H. vulgare. The rate of chromosome elimination differed significantly between hybrids, while within each hybrid, differences in mean chromosome number were recorded between and within individual tillers. An increase in temperature from 25–30° C caused a significant increase in the rate of elimination of H. bulbosum chromosomes.  相似文献   

5.
W. Lange  G. Jochemsen 《Genetica》1976,46(2):217-233
Chromosome measurements were carried out in Hordeum vulgare, H. bulbosum, and their diploid, triploid, and tetraploid hybrids. The chromosomes were classified by using relative values, and thus karyotypes were established. For comparison of these karyotypes both relative and absolute values were used. It was concluded that differential amphiplasty occurred, whereas neutral amphiplasty could not be demonstrated. In the hybrids the relative length of the parts of the chromosomes (long arm, short arm, satellite) was not changed in comparison with these lengths in the pure species. The karyotypes of both species had considerable similarities. From comparing the mean absolute genome lengths, it was, however, concluded that in the pure species, as well as in all hybrid types, the chromosomes of H. vulgare were longer than those of H. bulbosum. In the diploid and tetraploid hybrids the mean genome lengths were shorter than those in the pure species and the triploid hybrids. The differential amphiplasty was such that the secondary constriction of chromosome 6 of H. bulbosum, did not show up in the hybrids. This could be related to the suppression of nucleolar formation in the genome of H. bulbosum, because the maximum number of nucleoli in root tip cells equalled the number of satellite chromosomes. Finally it was found that the pattern of nucleolar fusion in diploid and triploid hybrids deviated from the expectation. The results were discussed in relation to chromosomal disturbances that occurred in the hybrid tissues and that resulted in elimination of chromosomes and other effects.  相似文献   

6.
Summary Diploid hybrids between Hordeum chilense and three other species, namely H. vulgare, H. bulbosum and Secale cereale, are described together with the amphidiploid of H. chilensexH. vulgare. Both the diploid hybrid and the amphidiploid of H. chilensexH. vulgare were chromosomally unstable, H. chilensexH. bulbosum was less so, while H. chilensexS. cereale was stable. Differential amphiplasty was found in all combinations. No homoeologous pairing was found in the Hordeum hybrids but in H. chilensexS. cereale there was chromosome pairing both within the two genomes and between the genomes.  相似文献   

7.
Summary The progeny from a cross between diploid H. vulgare and triploid H. bulbosum were mostly triploid (VBB) hybrids, the other progeny were haploid (V) barley (H. vulgare). From a cross between diploid and triploid H. bulbosum, four of the seven possible trisomic lines were isolated. The Giemsa banded karyotype of H. bulbosum was produced, and two of the lines were identified as trisomic for chromosomes 6 and 7. The cytology and transmission rates of the trisomics were examined.  相似文献   

8.
Summary The PMCs of 74 diploid hybrids involving ten H. vulgare varieties and three H. bulbosum lines were analysed at metaphase I and chromosome number and chiasma frequency recorded. There were differences between parental combinations and between plants within those combinations for both chromosome and chiasma number. It is suggested that these characters are controlled by both parents and that differences between plants within families reflect the heterozygosity of the H. bulbosum parents. Chromosomally stable, high pairing lines have been identified for use in a backcrossing programme to introduce H. bulbosum characters to the H. vulgare germplasm.  相似文献   

9.
Summary Interspecific crosses of Hordeum brachyantherum (2n = 28) and H. depressum (2n = 28) with H. bulbosum (2n = 14 or 28) and H. vulgare (2n = 14 or 28) were made. Crosses between brachyantherum and diploid bulbosum resulted in dihaploids (2n = 14) of brachyantherum and hybrids (2n = 21), whilst the crosses of brachyantherum by tetraploid bulbosum or vulgare gave hybrid progeny. Similarly, crosses between H. depressum and diploid bulbosum resulted in dihaploids (2n = 14) of depressum and hybrids (2n = 21), whereas depressum by tetraploid bulbosum or vulgare invariably produced hybrids.Cytological observations on 12 day old embryos obtained from these crosses revealed chromosome variability down to 14 in crosses with diploid bulbosum indicating thereby that chromosome elimination leads to haploid formation. Embryonic cells from the brachyantherum by diploid vulgare cross also exhibited a certain degree of chromosomal instability as micronuclei.The results indicate that the ratio of parental genomes in the zygote determines whether haploids or hybrids will be produced in crosses of brachyantherum or depressum with bulbosum. Furthermore, brachyantherum appears to be more efficient in eliminating bulbosum chromosomes in comparison with depressum.  相似文献   

10.
Summary In an attempt to transfer traits of agronomic importance from H. bulbosum into H. vulgare we carried out crosses between four diploid barley cultivars and a tetraploid H. bulbosum. Eleven viable triploid F1 plants were produced by means of embryo rescue techniques. Meiotic pairing between H. vulgare and H. bulbosum chromosomes was evidenced by the formation of trivalents at a mean frequency of 1.3 with a maximum of five per cell. The resulting triploid hybrids were backcrossed to diploid barley, and nine DC1 plants were obtained. Three of the BC1 plants exhibited H. bulbosum DNA or disease resistance. A species specific 611-bp DNA probe, pSc119.2, located in telomeres of the H. bulbosum genome, clearly detected five H. bulbosum DNA fragments of about 2.1, 2.4, 3.4, 4.0 and 4.8 kb in size present in one of the BC1 plants (BC1-5) in BamHI-digésted genomic Southern blots. Plant BC1-5 also contained a heterozygous chromosomal interchange involving chromosomes 3 and 4 as identified by N-banding. One of the two translocated chromosomes had the H. bulbosum sequence in the telomeric region as detected using in situ hybridization with pSc119.2. Two other BC1 plants (BC1-1 and BC1-2) were resistant to the powdery mildew isolates to which the barley cultivars were susceptible. Seventy-nine BC2 plants from plant BC1-2 segregated 32 mildew resistant to 47 susceptible, which fits a ratio of 11, indicating that the transferred resistance was conditioned by a single dominant gene. Reciprocal crosses showed a tendency towards gametoselection that was relative to the resistance. Mildew resistant plant BC1-2 also had a 1-kb H. bulbosum DNA fragment identified with a ten-base random primer using polymerase chain reaction (PCR). Forty-three BC1 plants, randomly sampled from the 79 BC1 plants, also segregated 2320 for the presence versus absence of this 1-kb H. bulbosum DNA fragment, thereby fitting a 11 ratio and indicating that the PCR product originated from a single locus. The 1-kb DNA fragment and disease resistance were independently inherited as detected by PCR analysis of bulked DNA from 17 resistant and 17 susceptible plants as well as by trait segregation in the 43 individual plants. The progenies produced could serve as an important resistant source in plant breeding. This is the first conclusive report of the stable transfer of disease resistance and DNA from H. bulbosum to H. vulgare.  相似文献   

11.
Hordeum bulbosum L. is a source of disease resistance genes that would be worthwhile transferring to barley (H. vulgare L.). To achieve this objective, selfed seed from a tetraploid H. vulgare x H. bulbosum hybrid was irradiated. Subsequently, a powdery mildew-resistant selection of barley phenotype (81882/83) was identified among field-grown progeny. Using molecular analyses, we have established that the H. bulbosum DNA containing the powdery mildew resistance gene had been introgressed into 81882/83 and is located on chromosome 2 (2I). Resistant plants have been backcrossed to barley to remove the adverse effects of a linked factor conditioning triploid seed formation, but there remains an association between powdery mildew resistance and non-pathogenic necrotic leaf blotching. The dominant resistance gene is allelic to a gene transferred from H. bulbosum by co-workers in Germany, but non-allelic to all other known powdery mildew resistance genes in barley. We propose Mlhb as a gene symbol for this resistance.  相似文献   

12.
The time rate and mechanism of chromosome elimination in Hordeum hybrids   总被引:1,自引:1,他引:0  
Seed development at 20±1° C in continuous light was studied during the first 5 days after pollination in diploid Hordeum vulgare, diploid H. bulbosum and the cross, H. vulgare x H. bulbosum, where H. bulbosum chromosomes were eliminated. Developing seeds were fixed and stained at known intervals after pollination and the embryo sac contents dissected out for cytological examination. — In all cases, the pattern of development was similar to that previously described for the Triticeae. After intraspecific pollination, the rate of endosperm and embryo development was significantly faster in H. vulgare than in H. bulbosum. In hybrid tissues, the rate was intermediate, but often much nearer to that of H. vulgare at first. Elimination of H. bulbosum chromosomes occurred only during endosperm and embryo mitoses. Usually, 0–3 chromosomes were lost at any one division but up to 7 were lost at some. Elimination, which occurred as early as zygotic anaphase, was nearly or quite complete in all dividing cells in both embryo and endosperm after 5 days. The mean number of chromosomes lost per nucleus per nuclear cycle was low at first but rose rapidly and stayed high for about a day in each tissue before falling quickly. The rate of elimination in each tissue was maximal when that tissue first synthesized significant amounts of new cytoplasm (day 2 after pollination in the endosperm and day 3 in the embryo). At mitosis, chromosomes being eliminated differed from others only in failing to congress at metaphase or to reach a pole at anaphase or both. — It is noted that in several widely different examples where either haploids are produced when only hybrids are expected, or where chromosomes of one species are preferentially eliminated from hybrid cells, nucleolar activity was suppressed in chromosomes of the genome which was selectively or preferentially eliminated. Consequently, it is suggested that chromosome elimination in Hordeum hybrids may be caused by a disturbed control of protein metablism in hybrid seeds and perhaps H. bulbosum chromosomes are selectively eliminated because they are less efficient than H. vulgare chromosomes at forming normal attachments to spindle protein.  相似文献   

13.
Summary Interspecific crosses of Hordeum parodii (2n = 42) with H. bulbosum (2n = 14 or 28) and H. vulgare (2n = 14;, and of H. proaerum (2n = 42) with H. bulboswn, H. vulgare and H. parodii were made. Crosses between parodii and diploid bulbosum resulted in haploids (2n = 21) of parodii, whilst the crosses of parodii by tetraploid bulbosum or diploid vulgare gave hybrid progeny. The procerum by diploid bulbosum cross invariably produced haploids (2n = 21) of procerum, whereas procerum by tetraploid bulbosum or diploid vulgare crosses resulted in both hybrids and haploids of procerum. The cross between procerum and parodii gave hybrid progeny which did not reach maturity.Cytological observations on two-week-old embryos obtained from reciprocal crosses revealed chromosome variability (not less than 21 in any cell) in haploid producing crosses. This shows that chromosome elimination leads to haploid formation irrespective of which species was used as female parent.The results indicate that the ratio of the parental genomes in the zygote determines whether predominantly haploids or hybrids will be produced in any cross combination. Furthermore, procerum appears to be not only more efficient in eliminating bulbosum chromosomes in comparison with parodii, but also capable of eliminating vulgare chromosomes. The possibility of stability factors in overcoming chromosome elimination, a hierarchy of chromosome elimination and the general existence of genome balance for chromosome stability in interspecific crosses, are discussed.  相似文献   

14.
Non-denaturing FISH (ND-FISH) was used to compare the distribution of four simple sequence repeats (SSRs)—(AG) n , (AAG) n , (ACT) n and (ATC) n —in somatic root tip metaphase spreads of 12 barley (H. vulgare ssp. vulgare) cultivars, seven lines of their wild progenitor H. vulgare ssp. spontaneum, and four lines of their close relative H. bulbosum, to determine whether the range of molecular diversity shown by these highly polymorphic sequences is reflected at the chromosome level. In both, the cultivated and wild barleys, clusters of AG and ATC repeats were invariant. In contrast, clusters of AAG and ACT showed polymorphism. Karyotypes were prepared after the identification of their seven pairs of homologous chromosomes. Variation between these homologues was only observed in one wild accession that showed the segregation of a reciprocal translocation involving chromosomes 5H and 7H. The two subspecies of H. vulgare analysed were no different in terms of their SSRs. Only AAG repeats were found clustered strongly on the chromosomes of all lines of H. bulbosum examined. Wide variation was seen between homologous chromosomes within and across these lines. These results are the first to provide insight into the cytogenetic diversity of SSRs in barley and its closest relatives. Differences in the abundance and distribution of each SSR analysed, between H. vulgare and H. bulbosum, suggest that these species do not share the same H genome, and support the idea that these species are not very closely related. Southern blotting experiments revealed the complex organization of these SSRs, supporting the findings made with ND-FISH.  相似文献   

15.
Cytological observations were made on embryo and endosperm tissues with different genome combinations that were produced by crossing the diploid and tetraploid cytotypes of Hordeum vulgare and H. bulbosum. The high frequency of barley haploids results from hybridization followed by the selective elimination of bulbosum chromosomes during the early development of embryos which initially contained a ratio of 1 vulgare to 1 bulbosum genomes. Elimination is gradual as indicated by the increase in the percentage of cells with the gametic chromosome number. However, the balance between genetic factors of the two parents appears to regulate the stability or elimination of chromosomes. Triploid embryos containing 1 vulgare to 2 bulbosum genomes are relatively stable. The most stable endosperm tissues examined had a ratio of 1 vulgare to 4 bulbosum genomes. Evidence of genetic control in both the vulgare and bulbosum chromosomes and their interaction is discussed. As has been suggested by Lange (1971) and also found in mammalian somatic cell hybrids, the most probable basis for selective chromosome elimination relates to mitotic rhythm and the duration of cell cycle phases.  相似文献   

16.
Prem P. Jauhar 《Chromosoma》1975,52(2):103-121
With a view to eclucidating chromosome relationships between Lolium perenne (Lp), L. multiflorum (Lm) and Festuca pratensis (Fp), chromosome pairing in different diploid (2n=14), auto-allotriploid (2n=3x=21), trispecific (2n=3x=21), amphidiploid (2n=4x=28) and auto-allohexaploid (2n=6x=42) hybrids between them was analysed. At all these levels of ploidy there was very good chiasmate pairing between the chromosomes of the three species and, on the whole, there was little evidence of preferential pairing of the chromosomes of a particular species in the triploid, tetraploid and hexaploid hybrids. A critical test for this also came from the synaptic ability of the chromosomes of the single genome with those of the duplicated genome in the auto-allotriploids which formed predominantly trivalents with 2, 3 or even 4 chiasmata. Moreover, the homology between the Lp and Lm chromosomes seems strong enough to pass the discrimination limits of the B-chromosomes which do not suppress homoeologous pairing in the Lp LmLm triploid and LpLm diploid hybrids. — The triploids having two genomes of a Lolium species and one of F. pratensis had some male and female fertility which suggested genetic compatibility of the parental chromosomes resulting, presumably, in compensation at the gametic level. Also, the occurrence of comparable chiasma frequencies in the auto-allotriploids and trispecific hybrids showed that they were not markedly affected whether two doses of one genome and one of the other or all the three different genomes from the three species were present. From the trend of chromosome pairing in all these hybrids it is concluded that there is little structural differentiation between the chromosomes of the three species, no effective isolation barrier to gene-flow between them, and that they are closely related phylogenetically, having possibly evolved from a common progenitor. Taxonomic revision of the two Lolium species is suggested.  相似文献   

17.
Summary Triticales (XTriticosecale Wittmack) at three ploidy levels (8x, 6x, 4x, x=7) were crossed with diploid rye (Secale cereale L.) to produce a solitary hypopentaploid hybrid (2n=32), and a number of tetraploid (2n=4x=28) and triploid (2n=3x=21) hybrids. The hybrids exhibited a morphology which was intermediate between the parents. The number of bivalents ranged from 1–7 (4.65 per cell) in hypopentaploid, from 2–12 (7.13 per cell) in tetraploid and from 4–9 (6.84 per cell) in triploid hybrids. In 4x and 3x hybrids, trivalents and quadrivalents were also observed at low frequencies (range 0–1; mean 0.01–0.03 per cell). Chiasmata frequency was highest in triploid hybrids (12.44 per cell), lowest in hypopentaploid (5.37 per cell) and intermediate in tetraploids (10.54 per cell). More than 711 were found in 39.7% pollen mother cells (PMC's) in the 4x hybrids and in 5.0% PMCs in 3x hybrids. It is concluded that an increase in the relative proportion of wheat chromosomes in the hybrids had a slight suppression effect on homologous as well as homoeologous pairing of rye chromosomes. Contrary to this, the relative increase in rye complement promoted homoeologous pairing between wheat chromosomes. In triploid hybrids, the chiasmata frequency as well as the c value were the highest, suggesting that in tetraploid hybrids rye chromosomes had a reduced pairing (low frequency of ring bivalents).  相似文献   

18.
Summary Several interspecific and intergeneric crosses involving five Hordeum species, Triticum aestivum and Secale cereale were carried out to investigate the influence of two contrasting temperatures on chromosome elimination during embryo development. In four of the interspecific Hordeum crosses, chromosome elimination was significantly increased at the higher of the two temperatures, resulting in greater proportions of haploid plant progenies. However, there was no significant effect of temperature in the other interspecific cross between H. lechleri x H. bulbosum nor in the two intergeneric crosses between H. vulgare x S. cereale and T. aestivum x H. bulbosum whose progeny were exclusively hybrid and haploid, respectively.  相似文献   

19.
Ho KM  Kasha KJ 《Genetics》1975,81(2):263-275
Genetic control over chromosome stability in the interspecific hybrid embryos of Hordeum vulgare and H. bulbosum has been hypothesized to reside on specific chromosomes. In this study, crosses between the primary trisomic lines for the seven different H. vulgare chromosomes and tetraploid H. bulbosum revealed that both chromosomes 2 and 3 of H. vulgare were involved in the control of chromosome elimination. Subsequent crosses using the available monotelotrisomics for chromosomes 2 and 3 led to the conclusion that both arms of chromosome 2 and the short arm of chromosome 3 most likely contain major genetic factors.—From the results of this study and the genome balance observed in the interspecific crosses between H. vulgare and H. bulbosum at the diploid and tetraploid cytotypes, it appears that the factors causing the elimination of the bulbosum chromosomes are located on the H. vulgare chromosome. These factors are offset or balanced by factors on the H. bulbosum chromosomes which, when present in sufficient dosage, either neutralize the effects of the vulgare factors or are able to "protect" the bulbosum chromosomes.  相似文献   

20.
Summary Seeds formed in crosses Hordeum lechleri (6x) x H. vulgare (2x and 4x), H. arizonicum (6x) x H. v. (2x), H. parodii (6x) x H. v. (2x), and H. tetraploidum (4x) x H. v. (2x) produced plants at high or rather high frequencies through embryo rescue. Giemsa C-banding patterns were used to analyze chromosomal constitutions and chromosomal locations on the methaphase plate. Among 100 plants obtained from H. vulgare (2x) crosses, 32 plants were aneuploid with 2n=29 (1), 28 (3), 27 (13), 26 (5), 25 (4), 24 (4), or 22 (2); 50 were euploid (12 analyzed), and 18 were polyhaploid (5 analyzed). Four plants had two sectors differing in chromosome number. Two of four hybrids with H. vulgare (4x) were euploid and two were aneuploid. Parental genomes were concentrically arranged with that of H. vulgare always found closest to the metaphase centre. Many plants showed a certain level of intraplant variation in chromosome numbers. Except for one H. vulgare (4x) hybrids, this variation was restricted to peripherally located non-H. vulgare genomes. This may reflect a less firm attachment of the chromosomes from these genomes to the spindle. Interplant variation in chromosome numbers was due to the permanent elimination or, far less common, duplication of the centrally located H. vulgare chromosomes in all 34 aneuploids, and in a few also to loss/gain of non-H, vulgare chromosomes. This selective elimination of chromosomes of the centrally located genome contrasts conditions found in diploid interspecific hybrids, which eliminate the peripherally located genome. The difference is attributed to changed genomic ratios. Derivatives of various H. vulgare lines were differently distributed among euploid hybrids, aneuploids, and polyhaploids. Chromosomal constitutions of hypoploid hybrids revealed a preferential elimination of H. vulgare chromosomes 1, 5, 6, and 7, but did not support the idea that H. vulgare chromosomes should be lost in a specific order. H. vulgare SAT-chromosomes 6 and 7 showed nucleolar dominance. Aneuploidy is ascribed to the same chromosome elimination mechanism that produces haploids in cross-combinations with H. vulgare (2x). The findings have implications for the utilization of interspecific Hordeum hybrids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号