首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 71 毫秒
1.
Chromatic information is carried only by the parvocellular pathway, giving the neurophysiologist the opportunity for eliciting specific responses. Further subdivision of the parvo chromatic system in two opponent chromatic mechanisms is potentially of great interest, given that the anatomical correlate seems to reside in subclasses of parvo ganglion cells that show differences both in size and in susceptibility to disease. We separately recorded responses arising from each chromatic opponent mechanism using visual stimuli chosen to belong to one of the “cardinal” chromatic axes. A calibrated color monitor, driven by a high resolution (14 bits/gun) computer board, was used for visualization of 1 c/deg isoluminant color gratings, sinusoidally modulated in time at 4 Hz. VECPs were recorded at several color contrasts along both cardinal axes, allowing extrapolation of contrast thresholds. Psychophysical thresholds were derived in the same stimulus conditions for comparison and found to correlate very well with the electrophysiologically derived values, both as intersubject and axis differences. The S-(L+M) opponent mechanism consistently yielded higher thresholds, smaller amplitude, and higher phase lag than the L-M mechanism. This finding was largely explained by the perceptual non-uniformity of the CIE chromaticity diagram. Correcting the VECP data for the perceptual differences yielded comparable responses, supporting the view that the two mechanisms are similarly represented in the cortex. In conclusion, recording of cortical responses to color contrast stimuli belonging to the cardinal chromatic axes seems a reliable procedure and may prove to be useful in performing clinical evaluations that refine the assessment of the physiology of the visual system.  相似文献   

2.
Latency of pupillary responses to light stimuli are smaller for larger steps of light, and larger for smaller steps of light (Alpern 1954; Lowenstein et al. 1964; Lee et al. 1969; Terdiman et al. 1969; Cibis et al. 1977; and many others). Miller and Thompson (1978), however, reported negligible change in pupil cycle time (period of high gain instability oscillations) with increased mean brightness. Sandberg and Stark (1968) reportd a negligible reduction in phase lag of pupillary responses to sinusoidal light stimuli as the modulation coefficient (m) increased. To resolve the inconsistency between the well-documented dependence of latency upon brightness, and the apparent absence of level dependence in the phase characteristics (as reflected directly in the responses to sinusoidal stimuli and indirectly in pupil cycle time experiments) we measured: 1. Latency to step stimuli of light, 2. Phase of responses to sinusoidal light stimuli and 3. Period (pupil cycle time) of high gain instability oscillations. The dependence of pupillary latency upon stimulus level (both light and accommodation) and the interaction between accommodation and light responses were investigated. We show that most of the level dependence of light-pupil latency resides in the afferent path. In the companion papers, we demonstrate that: 1. Phase of pupillary response to sinusoidal light stimuli is reduced by increased mean light level, but is independent of pupil size and accommodative stimulus level; and 2. The period of high gain oscillations is shown to decrease with increased mean light level. Taken together, these results imply the existence of a Level Dependent Signal Flow (LDSF) operator that resides in the light-pupil pathway, but not in the accommodation-pupil pathway. We propose a systems model of this operator in which the neural signals controlling pupil size are treated as waves whose phase velocity increases in response to brighter stimuli, and decreases in response to dimmer stimuli. When parameters of the model are adjusted to fit measured pupillary latency over a range of light levels, the model exhibits reduced phase lag in response to increased mean light level in the sinusoidal paradigm, and it exhibits reduced pupil cycle time in the high-gain oscillation paradigm. The model exhibits saturation of the LDSF effect in all paradigms at high light levels, as do experimental results. It simulates directional asymmetry of pupillary response to positive and negative steps of light, with constriction more rapid than dilatation. Finally, it simulates tonic pupillary constriction in response to modulation of a light simulus without changing average light level (Varju 1964; Troelstra 1968). All of these stimulated results are in accord with experimental observation.  相似文献   

3.
等亮度彩色运动条纹产生视动震颤(OKN)眼动反应揭示了OKN眼动控制系统中存在颜色通道;而在两个相反方向运动的等亮度彩色运动条纹图象同时显示刺激时能引起交替的两个方向的OKN跟踪眼动。故表明了在OKN眼动控制系统中各个颜色通道交替地控制产生OKN眼动反应。  相似文献   

4.
Color signals in area MT of the macaque monkey   总被引:5,自引:0,他引:5  
The relationship between the neural processing of color and motion information has been a contentious issue in visual neuroscience. We examined this relationship directly by measuring neural responses to isoluminant S cone signals in extrastriate area MT of the macaque monkey. S cone stimuli produced robust, direction-selective responses at most recording sites, indicating that color signals are present in MT. While these responses were unequivocal, S cone contrast sensitivity was, on average, 1.0-1.3 log units lower than luminance contrast sensitivity. The presence of S cone responses and the relative sensitivity of MT neurons to S cone and luminance signals agree with functional magnetic resonance imaging (fMRI) measurements in human MT+. The results are consistent with the hypothesis that color signals in MT influence behavior in speed judgment tasks.  相似文献   

5.
The visual pigment in the peripheral retinular cells of the hoverfly Syrphus balteatus was investigated by absorbance difference measurements. Different visual pigments were found in the dorsal versus the ventral part of the eye in the male, but not in the female. In the male in the dorsal part of the eye the visual pigment has an isosbestic point at 513 nm; in the ventral part this value is 490 nm. The latter value is found in the female in both parts of the eye.Prolonged pupillary responses were studied in the male Syrphus and appeared to be most marked in the ventral part of the eye. In both hoverfly and blowfly prolonged pupillary responses are induced by short wavelength light only; i.e., by light which excessively can convert rhodopsin into metarhodopsin. By contrast, in butterflies red light (and a long dark adaptation time) is necessary to evoke a prolonged pupillary response. It was demonstrated in both hoverfly and blowfly that long wavelength light, which reconverts metarhodopsin into rhodopsin, inhibits a prolonged pupillary response; or, accelerates pupil opening.Based on material presented at the European Neurosciences Meeting, Florence, September 1978  相似文献   

6.
The focal length of the vertebrate eye is a function of wavelength, i.e. the eye suffers from longitudinal chromatic aberration. Chromatic defocus is a particularly severe problem in eyes with high light-gathering ability, since depth of field is small due to a pupillary opening that is large in relation to the focal length of the eye. Calculations show that in such eyes only a narrow spectral band of light can be in focus on the retina. For the major part of the visual spectrum, spatial resolution should be limited by the optics of the eye and far lower than the resolving power achievable by the retinal cone photoreceptor mosaic. To solve this problem, fishes with irises unresponsive to light have developed lenses with multiple focal lengths. Well-focused images are created at the wavelengths of maximum absorbance of all spectral cone types. Multifocal lenses also appear to be present in some terrestrial species. In eyes with mobile irises, multifocal lenses are correlated with pupil shapes that allow all zones of the lens, with different refractive powers, to participate in the imaging process, irrespective of the state of pupil constriction. Accepted: 6 November 1998  相似文献   

7.
A recent paper by Oh and Sakata investigates the “incompletely solved mystery” of how the three cone responses map onto perceived hue, and particularly the S cone’s well-known problematic contribution to blueness and redness. Citing previous workers, they argue the twentieth century traditional multistage model does not satisfactorily account for color appearance. In their experiment, increasing S cone excitation with shortening wavelength from about 480–460 nm increased perceived blueness up to the unique Blue point at 470 nm, when (a) it began decreasing and (b) redness perception began increasing. The authors asked, What mechanism can be responsible for such functions? I demonstrate a solution. First, it is shown the problem does not lie in the traditional opponent color chromatic responses yellow-blue, red-green (y-b, r-g, which accurately predict the above functions), but in the traditional multistage model of mapping cone responses to chromatic response functions. Arguably, this is due to the S cone’s hypothetically signaling both blueness and redness by the same mechanism rather than by different, independent, mechanisms. Hence a new distinction or mechanism is proposed for a more accurate model, that introduces the new terms primary and secondary cone outputs. However, this distinction requires that the cones S, M, L each directly produce one of the three spectral chromatic responses b, g, y. Such a model was recently published, based on extremely high correlation of SML cone responsivities with the three spectral (bgy) chromatic responses. This model encodes the former directly onto the latter one-to-one as cone primary outputs, whilst S and L cones have a further or secondary function where each produces one of the two spectral lobes of r chromatic response. The proposed distinction between primary and secondary cone outputs is a new concept and useful tool in detailing cone outputs to chromatic channels, and provides a solution to the above “incompletely solved mystery.” Thus the S cone has a primary output producing the total b chromatic response and a secondary output that shares with the L cone the production of r chromatic response, thus aligning with Oh and Sokata’s results. The model similarly maps L cone to yellowness as primary output and to redness as secondary output.  相似文献   

8.
We have monitored the development of infant colour vision by measuring chromatic contrast sensitivity and acuity in eight young infants over a period of 6 months. Steady-state visual evoked potentials (VEPS) were recorded in response to both chromatic (red-green) and luminance (red-black or green-black) patterns that were reversed in contrast over time. For most infants, no response could be obtained to chromatic stimuli of any size or contrast before 5 weeks of age, although luminance stimuli of 20% contrast gave reliable responses at that age. When responses to chromatic stimuli first appeared, they could be obtained only with stimuli of very low spatial frequency, 20 times lower than the acuity for luminance stimuli. Both contrast sensitivity and acuity for chromatic stimuli increased steadily, more rapidly than for luminance stimuli. As the spectral selectivities of infant cones are similar to those of adults, the difference in rate of development of luminance and chromatic contrast sensitivity and acuity stimuli probably reflects neural development of the infant colour system.  相似文献   

9.
视动震颤(OKN)眼动控制系统中的颜色通道   总被引:1,自引:1,他引:0  
用亮度相等的不同颜色构成的等亮度彩色运动条纹(Isoluminant chromatic moving gratings)来进行OKN眼动跟踪实验,探讨它是否与由亮度差别构成的黑白运动条纹图象一样引起OKN反应。实验结果表明在等亮度彩色运动条纹图象(没有亮度差别只有颜色差别)刺激下,视动系统可产生与黑白运动条纹刺激下同样的OKN反应,并且与各单原色运动条纹刺激下的OKN反应也一致。说明0KN眼动跟踪中的运动检测存在颜色通道。本文并提出了一种基于颜色的运动检测模型。  相似文献   

10.
Chromatic and achromatic visual evoked potentials (VEP) were evaluated in 39 patients with idiopathic Parkinson's disease (PD) (age 64.0 ± 8.6 years) and 43 healthy controls (age 62.8 ± 8.7 years). The following pattern-reversal checkerboard stimuli were performed: (1) achromatic with luminance contrast 86% (achr.hk.); (2) achromatic with luminance contrast 20% (achr.lk.); (3) chromatic isoluminant blue-yellow (by.); (4) chromatic isoluminant red-green (rg.). The mean latencies N70, P100, and N135 of chromatic and achromatic VEP were significantly delayed in patients with PD as compared to controls. The highest rate (41.0%) of pathological findings could be demonstrated by achromatic stimulation (luminance contrast 86%). Isolated abnormalities of chromatic VEP (in combination with normal achromatic VEP) were found in 5 (12.8%) patients. The delay of VEP-latencies was significantly correlated with the severity of motor symptoms in PD patients. We conclude that VEP are valuable tools to demonstrate a dysfunction of the visual system in PD. Although chromatic VEP are less sensitive than achromatic VEP, the combination of both will increase the diagnostic yield. Therefore, there seems to exist a variety of individual characters of visual impairment in PD.  相似文献   

11.
Coloured surfaces in the normal environment may be brighter or dimmer than the mean adaptation level. Changes in the firing rate of cells of the parvocellular layers of macaque lateral geniculate nucleus were studied with such stimuli; chromatic mixtures briefly replaced a white adaptation field. This paradigm is therefore one of successive contrast. Families of intensity-response curves for different wavelengths were measured. When taking sections at different luminance ratios through these families of curves, strongly opponent cells displayed spectrally selective responses at low luminance ratios, while weakly opponent cells had higher chromatic thresholds and responded well to stimuli at higher luminance ratios, brighter than the adaptation field. Strength of cone opponency, defined as the weight of the inhibitory cone mechanism relative to the excitatory one, was thus related to the range of intensity in which cells appeared to operate most effectively. S-cone inputs, as tested with lights lying along tritanopic confusion lines, could either be excitatory or inhibitory. Families of curves for different wavelengths can be simulated mathematically for a given cell by a simple model by using known cone absorption spectra. Hyperbolic response functions relate cone absorption to the output signals of the three cone mechanisms, which are assumed to interact linearly. Parameters from the simulation provided estimates of strength of cone opponency and cone sensitivity which were shown to be continuously distributed. Cell activity can be related to cone excitation in a trichromatic colour space with the help of the model, to give an indication of suprathreshold coding of colour and lightness.  相似文献   

12.
In addition to rods and cones, the human retina contains light-sensitive ganglion cells that express melanopsin, a photopigment with signal transduction mechanisms similar to that of invertebrate rhabdomeric photopigments (IRP). Like fly rhodopsins, melanopsin acts as a dual-state photosensitive flip-flop in which light drives both phototransduction responses and chromophore photoregeneration that bestows independence from the retinoid cycle required by rods and cones to regenerate photoresponsiveness following bleaching by light. To explore the hypothesis that melanopsin in humans expresses the properties of a bistable photopigment in vivo we used the pupillary light reflex (PLR) as a tool but with methods designed to study invertebrate photoreceptors. We show that the pupil only attains a fully stabilized state of constriction after several minutes of light exposure, a feature that is consistent with typical IRP photoequilibrium spectra. We further demonstrate that previous exposure to long wavelength light increases, while short wavelength light decreases the amplitude of pupil constriction, a fundamental property of IRP difference spectra. Modelling these responses to invertebrate photopigment templates yields two putative spectra for the underlying R and M photopigment states with peaks at 481 nm and 587 nm respectively. Furthermore, this bistable mechanism may confer a novel form of “photic memory” since information of prior light conditions is retained and shapes subsequent responses to light. These results suggest that the human retina exploits fly-like photoreceptive mechanisms that are potentially important for the modulation of non-visual responses to light and highlights the ubiquitous nature of photoswitchable photosensors across living organisms.  相似文献   

13.
The human pupillary control system has been the subject of interest to biologists and engineers as an example of a sensorimotor reflex which can be embedded in a control system paradigm. We present a nonlinear feedback model whose compact structure allows us to hypothesize possible physiological mechanisms which generate the proper behavior of the pupil system. The important pupil responses, including pupil size effect, asymmetry, and response to high-frequency stimuli, are defined. This model was simulated on a digital computer and comparisons to the paradigm experimental responses were performed, demonstrating a fit to each of the observed conditions. Improvements on previous models are discussed.  相似文献   

14.
Crewther DP  Crewther SG 《PloS one》2010,5(12):e15266
Physiological studies of color processing have typically measured responses to spatially varying chromatic stimuli such as gratings, while psychophysical studies of color include color naming, color and light, as well as spatial and temporal chromatic sensitivities. This raises the question of whether we have one or several cortical color processing systems. Here we show from non-linear analysis of human visual evoked potentials (VEP) the presence of distinct and independent temporal signatures for form and surface color processing. Surface color stimuli produced most power in the second order Wiener kernel, indicative of a slowly recovering neural system, while chromatic form stimulation produced most power in the first order kernel (showing rapid recovery). We find end-spectral saturation-dependent signals, easily separable from achromatic signals for surface color stimuli. However physiological responses to form color stimuli, though varying somewhat with saturation, showed similar waveform components. Lastly, the spectral dependence of surface and form color VEP was different, with the surface color responses almost vanishing with yellow-grey isoluminant stimulation whereas the form color VEP shows robust recordable signals across all hues. Thus, surface and form colored stimuli engage different neural systems within cortex, pointing to the need to establish their relative contributions under the diverse chromatic stimulus conditions used in the literature.  相似文献   

15.
While some lower vertebrates, such as zebrafish, do not appear to possess anatomically separate pathways of processing visual information (such as M-pathways and P-pathways), it is believed that separate processing of the visual stimulus (such as luminance and chromatic processing) is a basic requirement of vertebrate vision. In this study, spectral sensitivity functions were obtained from electroretinogram responses to heterochromatic flicker photometry stimuli at several flicker rates, including a low flicker rate (2 Hz), in an attempt to predominantly stimulate chromatic processes and a high flicker rate (16 Hz), in an attempt to predominantly stimulate luminance processes. In addition, chromatic adaptation was used to isolate and examine the temporal properties of the different cone-type contributions to the electroretinogram response. Spectral sensitivity functions based on responses to heterochromatic stimuli of a low flicker rate appeared to receive both opponent and nonopponent contributions; however, when the stimulus flicker rate was high, spectral sensitivity appeared to be a function of only nonopponent mechanisms. Also, the differences in cone contributions to the spectral sensitivity functions across the different flicker rates appear to be related to the temporal properties of the cone contributions to the electroretinogram response.  相似文献   

16.
The relation between visual acuity and illumination was measured in red and blue light, using a broken circle or C and a grating as test objects. The red light data fall on single continuous curves representing pure cone vision. The blue light data fall on two distinct curves with a transition at about 0.03 photons. Values below this intensity represent pure rod vision. Those immediately above represent the cooperative activity of rods and cones, and yield higher visual acuities than either. Pure cone vision in this intensity region is given by central fixation (C test object). All the rest of the values above this transition region represent pure cone vision. In blue light the rod data with the C lie about 1.5 log units lower on the intensity axis (cone scale) than they do in white light, while with the grating they lie about 1.0 log unit lower than in white light. Both the pure rod and cone data with the C test object are precisely described by one form of the stationary state equation. With the grating test object and a non-limiting pupil, the pure rod and cone data are described by another form of the same equation in which the curve is half as steep. The introduction of a small pupil, which limits maximum visual acuity, makes the relation between visual acuity and illumination appear steeper. Determinations of maximum visual acuities under a variety of conditions show that for the grating the pupil has to be larger, the longer the wavelength of the light, in order for the pupil not to be the limiting factor. Similar measurements with the C show that when intensity discrimination at the retina is experimentally made the limiting factor in resolution, visual acuity is improved by conditions designed to increase image contrast. However, intensity discrimination cannot be the limiting factor for the ordinary test object resolution because the conditions designed to improve image contrast do not improve maximum visual acuity, while those which reduce image contrast do not produce proportional reductions of visual acuity.  相似文献   

17.
孙复川  赵信珍  G.Hung 《生理学报》1990,42(6):547-554
本文用实验揭示了瞳孔对光动态反应具有采样控制特性。实验中采用各种不同时间间隔的双脉冲光,以开环的方式(Maxwellian View)刺激瞳孔,当双脉冲之间间隔较长时,瞳孔反应相当于对双脉冲光的两次脉冲分别产生瞬态收缩;当双脉冲时间间隔短于0.6s 时,其反应就成了一次瞬态收缩,与单个光脉冲所引起的瞳孔反应一样。同—受试者的多次实验结果相同,不同受试者所得结果也基本一致。故瞳孔对脉冲刺激光引起反应后,必须至少约隔0.6s 才能对另一次脉冲光产生反应,这就说明了瞳孔动态反应具有离散的采样控制特性。实验还进一步证明,瞳孔系统的控制机制是双重模式的控制:不同的刺激条件下,瞳孔反应可呈现为瞬态反应(AC)或持续反应(DC),瞬态反应的 AC 通道为离散的采样控制,持续反应的 DC 通道为连续控制。  相似文献   

18.
This paper relates major functions at the start and end of the color vision process. The process starts with three cone photoreceptors transducing light into electrical responses. Cone sensitivities were once expected to be Red Green Blue color matching functions (to mix colors) but microspectrometry proved otherwise: they instead peak in yellowish, greenish, and blueish hues. These physiological functions are an enigma, unmatched with any set of psychophysical (behavioral) functions. The end-result of the visual process is color sensation, whose essential percepts are unique (or pure) hues red, yellow, green, blue. Unique hues cannot be described by other hues, but can describe all other hues, e.g., that hue is reddish-blue. They are carried by four opponent chromatic response curves but the literature does not specify whether each curve represents a range of hues or only one hue (a unique) over its wavelength range. Here the latter is demonstrated, confirming that opponent chromatic responses define, and may be termed, unique hue chromatic responses. These psychophysical functions also are an enigma, unmatched with any physiological functions or basis. Here both enigmas are solved by demonstrating the three cone sensitivity curves and the three spectral chromatic response curves are almost identical sets (Pearson correlation coefficients r from 0.95–1.0) in peak wavelengths, curve shapes, math functions, and curve crossover wavelengths, though previously unrecognized due to presentation of curves in different formats, e.g., log, linear. (Red chromatic response curve is largely nonspectral and thus derives from two cones.) Close correlation combined with deterministic causation implies cones are the physiological basis of unique hues. This match of three physiological and three psychophysical functions is unique in color vision.  相似文献   

19.
It has long been thought that the eyes index the inner workings of the mind. Consistent with this intuition, empirical research has demonstrated that pupils dilate as a consequence of attentional effort. Recently, Smallwood et al. (2011) demonstrated that pupil dilations not only provide an index of overall attentional effort, but are time-locked to stimulus changes during attention (but not during mind-wandering). This finding suggests that pupil dilations afford a dynamic readout of conscious information processing. However, because stimulus onsets in their study involved shifts in luminance as well as information, they could not determine whether this coupling of stimulus and pupillary dynamics reflected attention to low-level (luminance) or high-level (information) changes. Here, we replicated the methodology and findings of Smallwood et al. (2011) while controlling for luminance changes. When presented with isoluminant digit sequences, participants'' pupillary dilations were synchronized with stimulus onsets when attending, but not when mind-wandering. This replicates Smallwood et al. (2011) and clarifies their finding by demonstrating that stimulus-pupil coupling reflects online cognitive processing beyond sensory gain.  相似文献   

20.
The howler monkeys (Alouatta sp.) are the only New World primates to exhibit routine trichromacy. Both males and females have three cone photopigments. However, in contrast to Old World monkeys, Alouatta has a locus control region upstream of each opsin gene on the X-chromosome and this might influence the retinal organization underlying its color vision. Post-mortem microspectrophotometry (MSP) was performed on the retinae of two male Alouatta to obtain rod and cone spectral sensitivities. The MSP data were consistent with only a single opsin being expressed in each cone and electrophysiological data were consistent with this primate expressing full trichromacy. To study the physiological organization of the retina underlying Alouatta trichromacy, we recorded from retinal ganglion cells of the same animals used for MSP measurements with a variety of achromatic and chromatic stimulus protocols. We found MC cells and PC cells in the Alouatta retina with similar properties to those previously found in the retina of other trichromatic primates. MC cells showed strong phasic responses to luminance changes and little response to chromatic pulses. PC cells showed strong tonic response to chromatic changes and small tonic response to luminance changes. Responses to other stimulus protocols (flicker photometry; changing the relative phase of red and green modulated lights; temporal modulation transfer functions) were also similar to those recorded in other trichromatic primates. MC cells also showed a pronounced frequency double response to chromatic modulation, and with luminance modulation response saturation accompanied by a phase advance between 10–20 Hz, characteristic of a contrast gain mechanism. This indicates a very similar retinal organization to Old-World monkeys. Cone-specific opsin expression in the presence of a locus control region for each opsin may call into question the hypothesis that this region exclusively controls opsin expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号