首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 588 毫秒
1.
Mutant derivatives of a plasmid, pCF20, which carries the XhoI-D fragment of the TOL plasmid pWW0 have been isolated using Tn5 transposon mutagenesis. Insertion mutations of the xylR and xylS regulatory genes of the catabolic pathway have been isolated and characterized and their ability to induce catechol 2,3-oxygenase activity determined. Analysis of the insertion mutants and also segments of the XhoI-D fragment cloned into plasmid pUC8 in maxicells has identified a 68 kDa polypeptide product encoded by the xylR gene. No clear candidate for the xylS polypeptide was observed. The nucleotide sequence of the xylS region, the intergenic region and part of the xylR region has been determined and open reading frames (ORFs) assigned for both genes. The ORF designated xylS appears capable of encoding a polypeptide of approximately 37 kDa.  相似文献   

2.
The regulatory gene xylR of the TOL plasmid, which functions positively on both xylABC and xylDEGF operons in the presence of m-xylene or m-methylbenzyl alcohol, was cloned onto an Escherichia coli vector, pACYC177. A fused operon consisting of the operator-promoter region of the xylABC operon and the xylE gene was cloned onto pBR322. The xylE product, catechol 2,3-dioxygenase, was induced by m-xylene or m-methylbenzyl alcohol in the cells containing the fused operon when a 2.8-kilobase segment of the TOL plasmid was provided in trans. Therefore, the segment appeared to contain the regulatory gene xylR. The xylR gene was mapped very close to the other regulatory gene, xylS, determined previously. The xylR gene was not effective on activation of the xylDEGF operon unless an additional region containing xylS was provided together with the inducer. These results indicate that both xylR and xylS are essential to the m-methylbenzyl alcohol-dependent induction of the xylDEGF operon. The map positions of xylR and xylS were precisely determined by subcloning or insertion inactivation. In addition, the operator-promoter regions of the xylABC and xylDEGF operons were mapped to the 0.6- and 0.4-kilobase regions of the TOL plasmid, respectively.  相似文献   

3.
The xylDEGF operon and the regulatory gene xylS of the TOL plasmid found in Pseudomonas putida mt-2 were cloned onto Escherichia coli vector plasmids. A 9.5-kilobase fragment, derived from the TOL segment of pTN2 deoxyribonucleic acid, carried the xyl genes D, E, G, and F, which encode toluate oxygenase, catechol 2,3-oxygenase, 2-hydroxymuconic semialdehyde dehydrogenase, and 2-hydroxymuconic semialdehyde hydrolase, respectively. The enzymes were noninducible unless a 3-kilobase PstI fragment, derived also from the TOL segment, was provided in either cis or trans. The PstI fragment appeared to contain the regulatory gene xylS, which produced a positive regulator. The regulator was activated by m-toluate or benzoate, but not by m-xylene or m-methylbenzyl alcohol. the map positions of xylG and xylF were also determined.  相似文献   

4.
Control of catechol meta-cleavage pathway in Alcaligenes eutrophus   总被引:8,自引:6,他引:2       下载免费PDF全文
Alcaligenes eutrophus 335 (ATCC 17697) metabolizes phenol and p-cresol via a catechol meta-cleavage pathway. Studies with mutant strains, each defective in an enzyme of the pathway, showed that the six enzymes assayed are induced by the primary substrate. Studies with a putative polarity mutant defective in the expression of aldehyde dehydrogenase suggested that the structural genes encoding this and subsequent enzymes of the pathway exist in the same operon. From studies with mutant strains that constitutively synthesize catechol 2,3-oxygenase and subsequent enzymes and from the coordination of repression of these enzymes by p-toluate, benzoate, and acetate, it is proposed the catechol 2,3-oxygenase structural gene is situated in this operon (2,3-oxygenase operon). Studies with regulatory mutant strains suggest that the 2,3-oxygenase operon is under negative control.  相似文献   

5.
Expression of the lower catabolic pathway of the TOL plasmid pWWO requires an aromatic acid inducer and the product of the xylS regulatory gene. Pseudomonas putida cells transformed with a plasmid containing the operator-promoter region of the lower pathway (OP2 [or Pm]), upstream from the catechol 2,3-dioxygenase structural gene, showed enzyme induction in the absence of known TOL plasmid regulatory genes. Induction was not seen in transformed Escherichia coli cells or in a P. putida mutant lacking chromosomally encoded benzoate catabolic functions.  相似文献   

6.
7.
Hybrid plasmids containing the regulated meta-cleavage pathway operon of TOL plasmid pWWO were mutagenized with transposon Tn1000 or Tn5. The resulting insertion mutant plasmids were examined for their ability to express eight of the catabolic enzymes in Escherichia coli. The physical locations of the insertions in each of 28 Tn1000 and 5 Tn5 derivative plasmids were determined by restriction endonuclease cleavage analysis. This information permitted the construction of a precise physical and genetic map of the meta-cleavage pathway operon. The gene order xylD (toluate dioxygenase), L (dihydroxycyclohexidiene carboxylate dehydrogenase), E (catechol 2,3-dioxygenase), G (hydroxymuconic semialdehyde dehydrogenase), F (hydroxymuconic semialdehyde hydrolase), J (2-oxopent-4-enoate hydratase), I (4-oxalocrotonate decarboxylase), and H (4-oxalocrotonate tautomerase) was established, and gene sizes were estimated. Tn1000 insertions within catabolic genes exerted polar effects on distal structural genes of the operon, but not on an adjacent regulatory gene xylS.  相似文献   

8.
9.
10.
Pseudomonas putida MT53 contains a TOL plasmid, pWW53, that encodes toluene-xylene catabolism. pWW53 is nonconjugative, is about 105 to 110 kilobase pairs (kbp) in size, and differs significantly in its restriction endonuclease digestion pattern and incompatibility group from the archetypal TOL plasmid pWW0. An RP4::pWW53 cointegrate plasmid, pWW53-4, containing about 35 kbp of pWW53 DNA, including the entire catabolic pathway genes, was formed, and a restriction map for KpnI, HindIII, and BamHI was derived. The entire regulated meta pathway genes for the catabolism of m-toluate were cloned into pKT230 from pWW53 on a 17.5-kbp HindIII fragment. The recombinant plasmid supported growth on m-toluate when mobilized into plasmid-free P. putida PaW130. A restriction map of the insert for 10 restriction enzymes was derived, and the locations of xylD, xylL, xylE, xylG, and xylF were determined by subcloning and assaying for their gene products in both Escherichia coli and P. putida hosts. Good induction of the enzymes by m-toluate and m-methylbenzyl alcohol but not by m-xylene was measured in P. putida, but little or no regulation was found in E. coli. The restriction map and the gene order showed strong similarities with published maps of the DNA encoding both the entire meta pathway operon (xylDLEGFJIH) and the regulatory genes xylS and xylR on the archetype TOL plasmid pWW0, suggesting a high degree of conservation in DNA structure for the catabolic operon on the two different plasmids.  相似文献   

11.
Pseudomonas putida (arvilla) mt-2 carries genes for the catabolism of toluene, m-xylene, and p-xylene on a transmissible plasmid, TOL. These compounds are degraded by oxidation of one of the methyl substituents via the corresponding alcohols and aldehydes to benzoate and m- and p-toluates, respectively, which are then further metabolised by the meta pathway, also coded for by the TOL plasmid. The specificities of the benzyl alcohol dehydrogenase and the benzaldehyde dehydrogenase for their three respective substrates are independent of the carbon source used for growth, suggesting that a single set of nonspecific enzymes is responsible for the dissimilation of the breakdown products of toluene and m- and p-xylene. Benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase are coincidently and possible coordinately induced by toluene and the xylenes, and by the corresponding alcohols and aldehydes. They are not induced in cells grown on m-toluate but catechol 2,3-oxygenase can be induced by m-xylene.  相似文献   

12.
Synthesis of enzymes of the 4-hydroxyphenylacetate meta-cleavage pathway was studied in Pseudomonas putida wild-type strain P23X1 (NCIB 9865) and mutant strains which had either structural or regulatory gene mutations. Induction studies with mutant strains each defective in an enzyme of the pathway showed that 4-hydroxyphenylacetate induced the hydroxylase and that 3,4-dihydroxyphenylacetate induced the 2,3-oxygenase, aldehyde dehydrogenase, isomerase, decarboxylase, and hydratase. This showed that the hydroxylase structural gene does not exist in an operon that contains any other structural gene of this meta pathway. Studies of mutant strains that synthesized constitutively the 2,3-oxygenase and subsequent enzymes suggested that the regulation of synthesis of these enzymes was coincident, and, in such strains, the hydroxylase was inducible only. Observations made with a putative polarity mutant that lacked 2,3-oxygenase activity suggested that the structural genes encoding this enzyme and subsequent enzymes of the pathway exist in the same operon. Studies of a regulatory mutant strain that was defective in the induction of the 2,3-oxygenase and subsequent enzymes suggest that the 2,3-oxygenase operon is under positive control.  相似文献   

13.
P R Lehrbach  D J Jeenes  P Broda 《Plasmid》1983,9(2):112-125
A physical and genetic map of the Tol catabolic region of pWWO (TOL) was obtained by restriction endonuclease analysis of several DNA insertion mutants (xylA, xylA xylS, xylS, and xylR) of R plasmid--TOL derivatives. In two cases, the inserted DNA was shown from restriction, DNA hybridization, or heteroduplex analysis of cloned Hind III fragments to originate from within pWWO fragment Hind III-E. The effect of these DNA insertions on Tol catabolic activity and on structural alterations to the TOL plasmid is discussed.  相似文献   

14.
The meta-cleavage operon of the TOL plasmid pWW0 of Pseudomonas putida contains 13 genes responsible for the oxidation of benzoate and toluates to Krebs cycle intermediates via estradiol (meta) cleavage of (methyl)catechol. The functions of all the genes are known with the exception of xylT. We constructed pWW0 mutants defective in the xylT gene, and found that these mutants were not able to grow on p-toluate while they were still capable of growing on benzoate and m-toluate. In the xylT mutants, all the meta-cleavage enzymes were induced by p-toluate with the exception of catechol 2,3-dioxygenase whose activity was 1% of the p-toluate-induced activity in wild-type cells. Addition of 4-methylcatechol to m-toluate-grown wild-type and xylT cells resulted in the inactivation of catechol 2,3-dioxygenase in these cells. In the wild-type strain but not in the xylT mutant, the catechol 2,3-dioxygenase activity was regenerated in a short time. The regeneration of the catechol 2,3-dioxygenase activity was also observed in H2O2-treated wild-type cells, but not in H2O2-treated xylT cells. We concluded that the xylT product is required for the regeneration of catechol 2,3-dioxygenase.  相似文献   

15.
Mutants of Pseudomonas putida mt-2 that are unable to convert benzoate to catechol were isolated and grouped into two classes: those that did not initiate attack on benzoate and those that accumulated 3,5-cyclohexadiene-1,2-diol-1-carboxylic acid (benzoate diol). The latter mutants, represents by strain PP0201, were shown to lack benzoate diol dehydrogenase (benD) activity. Mutants from the former class were presumed either to carry lesions in one or more subunit structural genes of benzoate dioxygenase (benABC) or the regulatory gene (benR) or to contain multiple mutations. Previous work in this laboratory suggested that benR can substitute for the TOL plasmid-encoded xylS regulatory gene, which promotes gene expression from the OP2 region of the lower or meta pathway operon. Accordingly, structural and regulatory gene mutations were distinguished by the ability of benzoate-grown mutant strains to induce expression from OP2 without xylS by using the TOL plasmid xylE gene (encoding catechol 2,3-dioxygenase) as a reporter. A cloned 12-kb BamHI chromosomal DNA fragment from the P. aeruginosa PAO1 chromosome complemented all of the mutations, as shown by restoration of growth on benzoate minimal medium. Subcloning and deletion analyses allowed identification of DNA fragments carrying benD, benABC, and the region possessing xylS substitution activity, benR. Expression of these genes was examined in a strain devoid of benzoate-utilizing ability, Pseudomonas fluorescens PFO15. The disappearance of benzoate and the production of catechol were determined by chromatographic analysis of supernatants from cultures grown with casamino acids. When P. fluorescens PFO15 was transformed with plasmids containing only benABCD, no loss of benzoate was observed. When either benR or xylS was cloned into plasmids compatible with those plasmids containing only the benABCD regions, benzoate was removed from the medium and catechol was produced. Regulation of expression of the chromosomal structural genes by benR and xylS was quantified by benzoate diol dehydrogenase enzyme assays. The results obtained when xylS was substituted for benR strongly suggest an isofunctional regulatory mechanism between the TOL plasmid lower-pathway genes (via the OP2 promoter) and chromosomal benABC. Southern hybridizations demonstrated that DNA encoding the benzoate dioxygenase structural genes showed homology to DNA encoding toluate dioxygenase from the TOL plasmid pWW0, but benR did not show homology to xylS. Evolutionary relationships between the regulatory systems of chromosomal and plasmid-encoded genes for the catabolism of benzoate and related compounds are suggested.  相似文献   

16.
TOL plasmid pWW0 specifies enzymes for the oxidative catabolism of toluene and xylenes. The upper pathway converts the aromatic hydrocarbons to aromatic carboxylic acids via corresponding alcohols and aldehydes and involves three enzymes: xylene oxygenase, benzyl alcohol dehydrogenase, and benzaldehyde dehydrogenase. The synthesis of these enzymes is positively regulated by the product of xylR. Determination of upper pathway enzyme levels in bacteria carrying Tn5 insertion mutant derivatives of plasmid pWW0-161 has shown that the genes for upper pathway enzymes are organized in an operon with the following order: promoter-xylC (benzaldehyde dehydrogenase gene[s])-xylA (xylene oxygenase gene[s])-xylB (benzyl alcohol dehydrogenase gene). Subcloning of the upper pathway genes in a lambda pL promoter-containing vector and analysis of their expression in Escherichia coli K-12 confirmed this order. Two distinct enzymes were found to attack benzyl alcohol, namely, xylene oxygenase and benzyl alcohol dehydrogenase; and their catalytic activities were additive in the conversion of benzyl alcohol to benzaldehyde. The fact that benzyl alcohol is both a product and a substrate of xylene oxygenase indicates that this enzyme has a relaxed substrate specificity.  相似文献   

17.
Two psychrotolerant toluene-degrading Pseudomonas spp. were isolated from JP8 jet-fuel-contaminated soils, Scott Base, Antarctica. Isolates metabolized meta-toluate as sole carbon source at temperatures ranging from 6 to 30 degrees C. Large plasmids (>64kb) were isolated from both isolates. Sequence analysis of PCR products amplified using xylB (the gene encoding benzyl alcohol dehydrogenase) primers revealed that isolates 7/167 and 8/46 were 100% and 92% homologous, respectively, to the xylB gene of the meta-cleavage toluene degradative pathway encoded by the TOL plasmid (pWWO) of Pseudomonas putida mt-2. Assays of cell-free extracts of 7/167 and 8/46 demonstrated activity of catechol 2,3-dioxygenase, benzyl alcohol dehydrogenase, and benzaldehyde dehydrogenase, indicating that the isolates use the meta-cleavage pathway enzymes of toluene degradation typical of TOL type plasmids. As both isolates are able to grow at 6 degrees C ex situ it is feasible that they would be able to metabolize toluene in the Antarctic soils from where they were originally isolated.  相似文献   

18.
A restriction endonuclease map was derived for the aromatic amine and m-toluate catabolic plasmid pTDN1 present in Pseudomonas putida UCC22, a derivative of P. putida mt-2. The plasmid is 79 +/- 1 kbp in size and can be divided into a restriction-site-deficient region of 51 +/- 1 kbp and a restriction-site-profuse region of 28 kbp which begins and ends with directly repeating sequences of at least 2 kbp in length. A mutant plasmid isolated after growth of the host on benzoate had lost the restriction-profuse region by a straightforward recombinational loss retaining one copy of the direct repeat. Analysis of clones, deletion and Tn5 insertion mutants strongly suggested that the meta-cleavage pathway of pTDN1 was situated in the region readily deleted. The catechol 2,3-dioxygenase (C23O) gene of pTDN1 showed no hybridization or restriction homology to previously described C23O genes of TOL plasmids pWW0 and pWW15. In addition, there was little homology between intact pTDN1, pWW0 and pWW15, suggesting the presence of a unique meta-cleavage pathway. We also demonstrated that pTDN1 did not originate from P. putida mt-2 chromosome.  相似文献   

19.
Pseudomonas putida mt-2 carries a plasmid (TOL, pWWO) which codes for a single set of enzymes responsible for the catabolism of toluene and m- and p-xylene to central metabolites by way of benzoate and m- and p-toluate, respectively, and subsequently by a meta cleavage pathway. Characterization of strains with mutations in structural genes of this pathway demonstrates that the inducers of the enzymes responsible for further degradation of m-toluate include m-xylene, m-methylbenzyl alcohol, and m-toluate, whereas the inducers of the enzymes responsible for oxidation of m-xylene to m-toluate include m-xylene and m-methylbenzyl alcohol but not m-toluate. A regulatory mutant is described in which m-xylene and m-methylbenzyl alcohol no longer induce any of the pathway enzymes, but m-toluate is still able to induce the enzymes responsible for its own degradation. Among revertants of this mutant are some strains in which all the enzymes are expressed constitutively and are not further induced by m-xylene. A model is proposed for the regulation of the pathway in which the enzymes are in two regulatory blocks, which are under the control of two regulator gene products. The model is essentially the same as proposed earlier for the regulation of the isofunctional pathway on the TOL20 plasmid from P. putida MT20.  相似文献   

20.
Pseudomonas putida CSV86 metabolizes 1- and 2-methylnaphthalene through distinct catabolic and detoxification pathways. In spite of the similarity in the steps involved in the methylnaphthalene detoxification and the toluene side-chain hydroxylation pathways, the strain failed to utilize toluene or xylenes. However, it could grow on benzyl alcohol, 2- and 4-hydroxybenzyl alcohol. Metabolic studies suggest that the benzyl alcohol metabolism proceeds via the benzaldehyde, benzoate, and catechol ortho-cleavage pathway, in contrast to the well established catechol meta-cleavage pathway. Carbon source-dependent enzyme activity studies suggest that the degradation of aromatic alcohol involves two regulons. Aromatic alcohol induces the upper regulon, which codes for aromatic alcohol- and aromatic aldehyde-dehydrogenase and converts alcohol into acid. The aromatic acid so generated induces the specific lower regulon and is metabolized via either the ortho- or the meta-cleavage pathway. CSV86 cells transform 1- and 2-methylnaphthalene to 1- and 2-hydroxymethyl naphthalene, which are further converted to the respective naphthoic acids due to the basal level expression and broad substrate specificity of the upper regulon enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号