首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Summary. The purpose of this study was to delineate the effects of hyperthermia and physical exercise on the heat shock protein 70 (HSP70) response in circulating peripheral blood mononuclear cells (PBMCs). Six healthy, young (age: 24 ± 3 yrs), moderately trained males (VO2max: 48.9 ± 2.7 ml · kg · min−1) undertook two experimental trials in a randomised fashion in which the core temperature (T c) was increased and then maintained at 39 °C during a 90 min bout by either active (AH) or passive (PH) means. AH involved subjects cycling at 90% of their lactate threshold in attire designed to impede heat loss mechanisms. In the PH trial, subjects were immersed up to the neck in a hot bath (40.2 ± 0.4 °C), once the critical T c was achieved, intermittent cycling and water immersions were prescribed for the AH and PH conditions, respectively, to maintain the T c at 39 °C. HSP70 was measured intracellularly pre, post and 4 h after trials, from circulating PBMCs using an ELISA technique. T c reached 39 °C quicker in PH than during AH trials (PH: 21 ± 4 min vs. AH: 39 ± 6 min; P < 0.01), thereafter T c was maintained around 39 °C (PH: 39.1 ± 0.2 °C; AH: 38.8 ± 0.3 °C; P > 0.05). AH induced a marked leukocytosis in all sub-sets (P < 0.05). PH generated significant monocytosis and granulocytosis (P < 0.05), without changes in lymphocyte counts (P > 0.05). There were no significant increases in intracellular HSP70 at 0 h (AH: Δ − 21.1 ± 44.8; PH: Δ + 12.5 ± 32.4 ng/mg TP/103/μl PBMCs; P > 0.05) and 4 h (AH: Δ − 30.0 ± 40.1; PH: Δ + 36.3 ± 70.4 ng/mg TP/103/μl PBMCs; P > 0.05) post active and passive heating. Peak HSP70 expressed as a fold-change from rest was also not increased by AH (1.1 ± 0.9; P > 0.05) or PH (3.2 ± 4.8; P > 0.05). There were no significant differences between the AH and PH trials at any time-point, and the HSP70 response appeared to be individual specific. These results did not allow us to delineate the effects of hyperthermia and other exercise associated stressors on the heat shock response and therefore further work is warranted. Authors’ address: Ric Lovell, Department of Sport, Health and Exercise Science, University of Hull, Hull HU6 7RX, U.K.  相似文献   

2.
Summary A micropropagation system was developed forAcacia mearnsii De Wild., which is the principal source of the world’s tanbark and an excellent firewood. Shoot tips 5-mm long from 3-wk-old seedlings germinated in vitro served as explants. The seeds were germinated on hormone-free MS medium and the shoot tips were cultured on three-fourth-strength MS medium supplemented with combinations of auxins [indole-3-butyric acid (IBA) andα-naphthaleneacetic acid (NAA)] and cytokinins [kinetin and benzylaminopurine (BAP)]. Cultures were maintained at 25° ± 5° C and exposed to 12-h photoperiods of cool-white fluorescent light (70 μEm−2·s−1). Multiple shoot formation was promoted by BAP at 2 mg · liter−1 (8.87μM) and higher combined with or without 0.01 mg · liter−1 (0.049μM) IBA. Cytokinins at concentrations of less than 1 mg · liter−1 combined with 0.01 to 0.1 mg · liter−1 auxin inhibited multiple shoot formation and promoted rooting of the shoot tip explants. Shoot multiplication cultures were maintained by transferring segments of multiple-shoot clusters onto a medium containing 2 mg · liter−1 BAP and 0.01 mg · liter−1 IBA. Although higher levels of BAP promoted more multiple shoot formation, this BAP level allowed shoot elongation as well as multiplication. In-vitro-produced shoots were induced to root on a range of NAA concentrations (0.0 to 0.8 mg · liter−1[4.3μM]) supplemented to half- or full-strength MS medium. The highest frequency of root proliferation was on half-strength MS medium supplemented with 0.6 mg · liter−1 (3.22μM) NAA. Plantlets survived in potting soil and exhibited normal growth under greenhouse conditions.  相似文献   

3.
The goal of the experiment was to monitor the changes in the selenium concentration in goat milk during short-term oral supplementation of three different forms of selenium. The experiment involved 24 lactating goats of white shorthaired breed. Group C was the control; group S received selenium in the form of selenium-enriched yeast, group L in the form of lactate, and group B in the form of proteinate. Individual selenium preparations were administered individually orally in 250 μg Se dose per animal for 20 days. After the beginning of selenium supplementation, the selenium concentration in milk during the first 5 days grew gradually in group S. Between days 7 and 20 of Se supplementation, the mean Se concentrations in milk in groups were 12.53 ± 3.69 μg l−1 (C), 25.90 ± 6.30 μg l−1 (S), 13.14 ± 3.54 μg l−1 (L), 11.70 ± 3.69 μg l−1 (B). Differences between group S and other groups (C, B, L) were highly significant (p < 0.0001). Based on our results, selenium in the form of lactate and proteinate was excreted into the milk similarly, but selenium in the form of yeast, which contains high amount of selenomethionine, was excreted by milk in the highest amounts.  相似文献   

4.
Zinc (Zn) and copper (Cu) concentrations in hair and urine of patients diagnosed and hospitalized for myocardial infarction (MI patients) and in their descendants (MI descendants) were estimated and compared with their age-matched healthy volunteers with no family history of MI (control group and control descendants). The data revealed approximately twofold higher Zn and twofold lower Cu in the urine of the patients; Zn was lower and Cu was higher in the urine of MI descendants than those of the patients (p<0.001), but Zn in hair and urine was higher and Cu in hair was lower in MI descendants compared with their control counterparts (p<0.001). The data suggested that there was a consistent rise in Zn and fall in Cu reserves in the genetically predisposed subjects (MI descendants) prior to the manifestation of clinical symptoms. Based on this, the data were subjected to logistic regression and a model was obtained to predict the susceptibility to MI (LR-MI), having impact factors values as follows: constant (C), −3.342; impact factor of body mass index, −0.776; impact factor of hair Zn, −2.449; impact factor of urine Zn, +3.441; impact factor of hair Cu, −15.077; impact factor of urine Cu, −24.153. For the equation Y=e x (1+e x ), the value of x was obtained as follows: −3.342+[BMI (kg/m2) (−0.776)]+[Hair Zn (μmol/g) (−2.449)]+[Urine Zn (μmol/L) (3.441)]+[Hair Cu (μmol/g) (−15.077)]+[Urine Cu (μmol/L) (−24.153)]. On substituting the values of BMI, hair Zn, urine Zn, hair Cu, and urine Cu in x, the response variable Y as zero for healthy controls and 0.99 or 99.9% susceptibility in MI patients were obtained. In between these two extremes, the response variable ranged between 0 and 0.99 or 99.9% susceptibility to MI in their descendants. It is envisaged that the MI patients have an operational component of a genetic disorder of ionic imbalance at a young age that can be exploited in making a prediction of susceptibility to heart stroke in individuals much before its onset and diagnosis in asymptomatic patients, particularly in genetic and epidemiological studies of MI.  相似文献   

5.
Summary Short-term culture of rainbow trout (Onchorhynchus mykiss) hepatocytes was used to examine the effect of dexamethasone (DEX) on microsomal CYP 1A1 protein content and 7-ethoxyresorufin-O-deethylase (EROD) activity in vitro. Hepatocytes prepared by controlled collagenase digestion and plated at a density of 0.25 × 106 cells/cm2 in plastic culture dishes precoated with trout skin extract (7.6 μg skin protein/cm2) to facilitate cell attachment were maintained at 16° C. Cells were treated with DEX (10−9 to 10−7 M) or vehicle (dimethyl sulfoxide, DMSO) at 24 h. Microsomal CYP 1A1 protein content and EROD activities were measured at 72 h. Both CYP 1A1 protein as measured by Western blots using CYP 1A1 specific anti-sera and EROD activity were significantly lower in DEX (10−8 to 10−7 M)-treated hepatocytes compared to untreated (control) or DMSO-treated cells. The effect was dose dependent in that a gradual decrease of CYP 1A1 protein and EROD activities were seen with increasing doses of DEX (10−8 to 10−7 M). DEX at 10−9 M was ineffective. Concomitant addition of 10−6 M RU486, a type II specific glucocorticoid receptor antagonist, to hepatocytes treated with 10−7 M DEX abolished the DEX effect. RU486 at 10−8 M was ineffective. Spironolactone (10−8 to 10−6 M), a type I specific glucocorticoid receptor antagonist, did not counteract the DEX effect. RU486 or spironolactone (10−6 M) alone had no effect on CYP 1A1 under similar conditions. DEX thus down regulates CYP 1A1 in fish cultured hepatocytes and this regulation is mediated through the type II glucocorticoid receptor(s).  相似文献   

6.
Summary MicropropagatedSpathiphyllum “Petite” plantlets were acclimatized at low- or high-light intensities [photosynthetic photon flux density (PPFD) 100 or 300 μmol·m−2·s−1]. During the first days chlorophyll fluorescence measurements show a partial photoinhibition of the photosynthetic apparatus, expressed by a decrease of the variable over maximal fluorescence ratio (Fv/Fm). This inhibition of Fv/Fm was significantly higher for plants grown at high-light intensity, leading to a photooxidation of chlorophyll. Newly formed leaves were better adapted to the ex vitro climatic condition (as shown by the increase of the Fv/Fm ratio) and had a higher net photosynthesis compared with in vitro formed leaves. Nevertheless, plants grown at 300 μmol·m−2·s−1 were photoinhibited, compared with those at 100 μmol·m−2·s−1. A sudden exposure to high-light intensity of 1-, 10- or 25-d-old transplanted plants (shift in PPFD from 100 to 300 μmol·m−2·s−1) gave a linear decrease of Fv/Fm over a 12-h period, which was reflected in a 50% reduction of net photosynthesis. No significant interaction between day and hour was found, indicating high-light exposure causes the same photoinhibitory effect on in vitro and ex vitro formed leaves.  相似文献   

7.
The aim of the presented methodical experiments was 1) the evaluation if callus of winter oilseed rape (Brassica napus var. oleifera L.) initiates a defence reaction to fungal elicitors: pectinase (polygalacturonase) or chitosan, and 2) the choice of the elicitor doses, which evoke the strongest tissue reaction. The results obtained will be used in the next experiments relating the studies of pathogenesis mechanisms proceeding in rape plants infected by necrotrophic fungi. The defence response was estimated on the basis of changes in electrolyte leakage from cells, metabolic efficiency, phenolic content and catalase activity. In the experiment pectinase was used at concentration of 3, 8, 16, 133 and 166 μl per 1 cm3 of culture medium while chitosan at: 25, 50, 75 and 100 μg·cm−3. Both elicitors increased cell membrane permeability: pectinase at the doses equal or greater to 16 μl·cm−3 while chitosan of 25 μg·cm−3. The greatest metabolic inefficiency was observed in calli elicited with 16 μl·cm−3 pectinase and with chitosan of 100 μg·cm−3. The decrease in phenolic content was noted under influence of most doses of both elicitors. The highest catalase activity was evoked by pectinase of 8 μl·cm−3 and chitosan of 75 and 100 μg·cm−3. The results indicated that 8–16 μl·cm−3 of pectinase and 100 μg·cm−3 of chitosan caused the strongest defence reaction of oilseed rape tissue.  相似文献   

8.
Miscanthus x ogiformis Honda 'Giganteus' shoot cultures were stored in vitro on proliferation or rooting medium for up to 27 weeks at temperatures of 8, 12, 16, or 20 °C and photosynthetic photon flux densities of 5, 10, or 20 μmol m−2 s−1. Plants survived storage much better on rooting medium than on proliferation medium. Plants stored on rooting medium for 1 week survived well when survival was assessed immediately after storage or after 14 days of acclimatization, but had the lowest survival 28 days after transplantation. With increasing storage period on rooting medium increasing survival was found 28 days after transplantation. This was probably a result of the development of rhizomes and/or roots during storage. Best survival was observed at 20 μmol m−2 s−1 and a temperature of 8-16 °C. Increasing the temperature to 25 °C during the last week of storage improved survival considerably. Root formation was slow at 8 °C, but after 27 weeks of storage the rooting percentage was the same at all storage temperatures. An increasing number of shoots per plant 28 days after transplantation was found with increasing PPFD during storage.Miscanthus shoot cultures can be stored in vitro for at least 27 weeks with limited losses when stored on rooting medium at 20 μmol m−2 s−1, a temperature of 16 °C, and given a 1-week end-of-storage treatment of 25 °C. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
Pre-matured florets of Benibana, a cultivar of saffron thistle (Carthamus tinctorius L.) was irradiated with UV-B (280–320 nm) or UV-C (254 nm) light for 48 h at 23±1 °C and the influence of UV-light on carthamin accumulation and floret elongation was investigated. UV-C light enhances carthamin accumulation most prominently, showing a specific value of 52.3 nmol carthamin·dm−3·h−1·25μm−2 (13.9 times of control), while it restricts floret elongation by a light-suppression manner (net elongation: 0.058 mm·h−1, one ninth of control). UV-B light is also promotive for the red colour appearance (25.0 nmol carthamin·dm−3·h−1·25 μm−2, 6.7 times of control) with suppressing floret elongation (net elongation: 0.17 mm·h−1, one third of control). Heterogeneous productivity of carthamin was seen in floret tissues after continuous treating under UV-C light. Carthamin accumulation, heterogeneous carthamin productivity and decrease of floret elongation restraint under UV-lights are discussed.  相似文献   

10.
Effects of three levels of photosynthetic photon flux (PPF: 60, 160 and 300 μmol m−2s−1) were investigated in one-month-old Phalaenopsis plantlets acclimatised ex vitro. Optimal growth, chlorophyll and carotenoid concentations, and a high carotenoid:chlorophyll a ratio were obtained at 160 μmol m−2s−1, while net CO2 assimilation (A), stomatal conductance (g), transpiration rate (E) and leaf temperature peaked at 300 μmol m−2s−1, indicating the ability of the plants to grow ex vitro. Adverse effects of the highest PPF were reflected in loss of chlorophyll, biomass, non-protein thiol and cysteine, but increased proline. After acclimatisation, glucose-6-phosphate dehydrogenase, shikimate dehydrogenase, phenylalanine ammonia-lyase (PAL) and cinnamyl alcohol dehydrogenase (CAD) increased, as did lignin. Peroxidases (POD), which play an important role in lignin synthesis, were induced in acclimatised plants. Polyphenol oxidase (PPO) and β-glucosidase (β-GS) activities increased to a maximum in acclimatised plants at 300 μmol m−2s−1. A positive correlation between PAL, CAD activity and lignin concentration was observed, especially at 160 and 300 μmol m−2s−1. The study concludes that enhancement of lignin biosynthesis probably not only adds rigidity to plant cell walls but also induces defence against radiation stress. A PPF of 160 μmol m−2s−1was suitable for acclimatisation when plants were transferred from in vitro conditions.  相似文献   

11.
The effect of elevated CO2 concentration (CE) on leaf chlorophyll (Chl) and nitrogen (N) contents and photosynthetic rate (PN) was evaluated during the post-flowering stages of rice grown at CE (570 ± 50 μmol mol−1) in open top chamber (OTC), at ambient CO2 concentration (∼ 365 μmol mol−1) in OTC and at open field. Thirty-five day old seedlings were transplanted in OTCs or in field and allowed to grow till maturity. Chl and N contents were highest at the time of flowering and thereafter it started to decline. The rate of decline in Chl and N contents was faster in plants grown under CE mostly in later part of growth. Irrespective of treatment difference, flag leaf contained the highest amount of Chl and N than penultimate and third leaf. The higher PN was observed in leaves under CE than in the leaves in other two growing conditions. Considering growth stage, PN was the highest at flowering which reduced at the later part of growth due to degradation of Chl and N content of the leaf. Under CE it was 40.02 μmol m−2 s−1 at flowering and it reduced to only 14.77 μmol m−2 s−1 at maturity stage. The beneficial effect of CE in increasing leaf PN may be maintained by applying extra dose of nitrogen at the later stages of plant growth.  相似文献   

12.
 The impact of ozone fumigation on chlorophyll a fluorescence parameters and chlorophyll content of birch trees grown at high and low fertilization were studied for 6-, 8-, and 12-week old leaves. Fluorescence parameters were measured with a portable fluorometer with its fibre optics tightly inserted in a gas exchange cuvette at light intensities from 0 to 220 μmol photons m−2 s−1. Ozone caused significant changes of primary photosynthetic reactions: a decrease of the quantum yield of photosystem II and an increase of non-photochemical quenching. In all leaves a biphasic light response of non-photochemical quenching was observed. Ozone fumigation shifted the onset of the second phase from a PFD of about 60 μmol m−2 s−1 to about 30 μmol m−2 s−1. While the fertilizer concentration had no influence on this character, high fertilization supply of plants partially reduced O3-induced damage. The light responses of Ft, Fm′ and NPQ observed in birch leaves grown in O3-free air indicate the existence of at least two different processes governing energy conversion of the photosynthetic apparatus at PS II in the range of PFD 0–200 μmol photons m−2 s−1. The first phase was attributed to a rather slowly relaxing type of non-photochemical quenching, which, at least at low PFD, is thought to be related to a state 1–2 transition. The further changes of the fluorescence parameters studied at higher PFD might be explained by an increase of energy-dependent quenching, connected with the energization of the thylakoid membrane and zeaxanthin synthesis. A major effect of ozone treatment was a lowering of PS II quantum yield. This reflects a reduction of PS II electron transport and corresponds to the reduction of CO2-fixation observed in ozonated leaves. Received: 24 September 1996 / Accepted: 27 January 1999  相似文献   

13.
Parental genotypes (cv. Aramir and line R567) and the selected doubled haploid (DH) lines C23, C47/1, C41, C55 did not differ in NR activity when they grew on a nutrient solution containing 10 mM KNO3 and were illuminated with light at 124 μmol·m−2·s−1 intensity. A decrease of nitrate content in the nutrient medium to 0.5 mM at 44 μmol·m−2·s−1 light intensity caused a significant reduction of NR activity in the parental genotypes as well as in the lines C41 and C55. An increase in light intensity to 124 μmol·m−2·s−1 raised NR activity in the leaf extracts of these genotypes. However, independently of light intensity, a high level of this enzyme activity was maintained in the line C23 growing on the nutrient medium with 10 mM and 0.5 mM KNO3. The NR activity in that line dropped only when nitrate content in the medium decreased to 0.1 mM. NR in the leaves of the line C23, as compared to C41, was characterized by a higher thermal stability in all experimental combinations. An increase in light intensity had no significant influence on NR thermal stability in the leaves of the line C41, but induced a significant increase of this enzyme stability in the line C23. The lines C23 and C41 growing on the nutrient medium with 0.5 mM KNO3 differed appreciably by nitrate concentration in leaves. A higher accumulation of nitrates was detected in the leaves of the line C41.  相似文献   

14.
Deficiency of intracellular magnesium (icMg) may coexist with normal serum Mg levels. Little is known about clinical and pharmacological factors affecting icMg in normomagnesemic patients with diabetes mellitus (DM). Moreover, no information exists regarding the icMg state in diabetic patients after acute illness and before hospital discharge. We have evaluated the effect of antihyperglycemic medications and other relevant clinical variables on icMg in 119 such patients. Total icMg was measured in peripheral blood mononuclear cells. Twenty healthy volunteers served as controls. IcMg content (μg/mg cell protein) was lower in DM compared to controls (1.74 ± 0.44 vs 2.4 ± 0.39, p < 0.001). It was also significantly lower in patients treated with insulin (1.57 ± 0.31 vs 1.8 ± 0.46, p = 0.01), while metformin treatment was associated with higher icMg (1.86 ± 0.49 vs 1.63 ± 0.35, p = 0.003). After adjustment for age, gender, and concomitant use of other hypoglycemic drugs, only treatment with metformin was independently associated with increased icMg (p = 0.03). No statistically significant association or correlation was found between icMg content and age, causes of hospitalization, comorbid conditions, treatment with other drugs, concentrations of HbA1c, serum glucose, Mg, or creatinine. In conclusion, icMg is depleted in normomagnesemic DM patients. Insulin treatment is associated with worsening of icMg status, while metformin treatment may confer protective effect.  相似文献   

15.
Rates of carbon flow from phytoplankton to bacteria were estimated for Lake Arlington, Texas. The lake is a warm (annual temperature range 7 to 35 °C), shallow, monomictic reservoir with limited macrophyte development in the littoral zone. Samples were collected from 6 depths within the photic zone from a site located over the deepest portion of the lake. Primary production and exudate production were calculated from NaH14CO3 incorporation. Bacterial production was calculated from [methyl-3H]-thymidine incorporation. Depth averaged primary production ranged from a seasonal low of 9.0 μg C l−1 h−1 in January to a seasonal maximum of 153 μg C l−1 h−1 during holomixis in September. Annual depth-averaged production was 67.8 ± 7.3 μg C l−1 h−1. Exudate production ranged between 21.9 and 54.2% of primary production and annually averaged 30.8%. Bacterial production ranged between 1.7 and 46.0 μg C l−1 h−1 and annually averaged 16.0 ± 1.9 μg C l−1 h−1. Bacteria processed approximately 70% of exudate and incorporated 35% into biomass. Bacterial production was positively correlated with total primary production (r = 0.38, p < 0.003, n = 6), particulate primary production (r = 0.34, p < 0.004, n = 70) and bacterial uptake of exudate (r = 0.43, p < 0.001, n = 68). While exudate was readily utilized by bacteria it dit not appear to be produced in sufficient quantity or at a sufficient rate to serve as the sole or a major source of carbon supporting bacterial growth.  相似文献   

16.
Maize (Zea mays L.) seedlings of two cultivars (cv. Bastion adapted to W. Europe, and cv. Batan 8686 adapted to the highlands of Mexico), raised in a glasshouse (19–25 °C), were transferred to 4.5 or 9 °C at photon flux density (PPFD) of 950 μmol m−2 s−1 with 10-h photoperiod for 58 h and then allowed to recover at 22 °C for 16 h (14 h dark and 2 h at PPFD of 180 μmol m−2 s−1). The ultrastructural responses after 4 h or 26 h at 4.5 °C were the disappearance of starch grains in the bundle sheath chloroplasts and the contraction of intrathylakoid spaces in stromal thylakoids of the mesophyll chloroplasts. At this time, bundle sheath chloroplasts of cv. Batan 8686 formed peripheral reticulum. Prolonged stress at 4.5 °C (50 h) caused plastid swelling and the dilation of intrathylakoid spaces, mainly in mesophyll chloroplasts. Bundle sheath chloroplasts of cv. Batan 8686 seedlings appeared well preserved in shape and structure. Batan 8686 had also higher net photosynthetic rates during chilling and recovery than Bastion. Extended leaf photobleaching developed during the recovery period after chilling at 4.5 °C. This was associated with collapsed chloroplast envelopes, disintegrated chloroplasts and very poor staining.  相似文献   

17.
It has been demonstrated that during the whole year the stems are photosyntheticaly active and capable of assimilating atmospheric CO2. The intensity of photosynthesis varies. During the vegetation period the registered net photosynthesis lasted up to 13 hours per day, and in the leafless period for 2–3 hours a day. Photosynthesis was registered also at temperatures below zero (−3 °C) as a reduced CO2 evolution in light in comparison with darkness. The maximal net photosynthesis values during the vegetation period amounted to 6 up 8 μmol (CO2)·m−2·s−1, and in the leafless period 0.5 – 1 μmol (CO2)·m−2·s−1, and they were close to being up to twice as big as the values obtained of darkness respiration. An increase of the photosynthetic activity of stems preceded the spring development of the leaves.  相似文献   

18.
 Exposure to high altitude causes loss of body mass and alterations in metabolic processes, especially carbohydrate and protein metabolism. The present study was conducted to elucidate the role of glutamine synthetase, glutaminase and glycogen synthetase under conditions of chronic intermittent hypoxia. Four groups, each consisting of 12 male albino rats (Wistar strain), were exposed to a simulated altitude of 7620 m in a hypobaric chamber for 6 h per day for 1, 7, 14 and 21 days, respectively. Blood haemoglobin, blood glucose, protein levels in the liver, muscle and plasma, glycogen content, and glutaminase, glutamine synthetase and glycogen synthetase activities in liver and muscle were determined in all groups of exposed and in a group of unexposed animals. Food intake and changes in body mass were also monitored. There was a significant reduction in body mass (28–30%) in hypoxia-exposed groups as compared to controls, with a corresponding decrease in food intake. There was rise in blood haemoglobin and plasma protein in response to acclimatisation. Over a three-fold increase in liver glycogen content was observed following 1 day of hypoxic exposure (4.76±0.78 mg·g−1 wet tissue in normal unexposed rats; 15.82±2.30 mg·g−1 wet tissue in rats exposed to hypoxia for 1 day). This returned to normal in later stages of exposure. However, there was no change in glycogen synthetase activity except for a decrease in the 21-days hypoxia-exposed group. There was a slight increase in muscle glycogen content in the 1-day exposed group which declined significantly by 56.5, 50.6 and 42% following 7, 14, and 21 days of exposure, respectively. Muscle glycogen synthetase activity was also decreased following 21 days of exposure. There was an increase in glutaminase activity in the liver and muscle in the 7-, 14- and 21-day exposed groups. Glutamine synthetase activity was higher in the liver in 7- and 14-day exposed groups; this returned to normal following 21 days of exposure. Glutamine synthetase activity in muscle was significantly higher in the 14-day exposed group (4.32 μmol γ-glutamyl hydroxamate formed·g protein−1·min−1) in comparison to normal (1.53 μmol γ-glutamyl hydroxamate formed·g protein−1·min−1); this parameter had decreased by 40% following 21 days of exposure. These results suggest that since no dramatic changes in the levels of protein were observed in the muscle and liver, there is an alteration in glutaminase and glutamine synthetase activity in order to maintain nitrogen metabolism in the initial phase of hypoxic exposure. Received: 30 March 1998 / Revised: 18 November 1998 / Accepted: 25 November 1998  相似文献   

19.
Inhibitory action of Fumonisin B1 (FB1) on eukaryotic protein synthesis was investigated, both in animal and plant system, and was compared with cycloheximide. Inhibitory effect of FB1 was monitored in the TCA precipitable proteins of rabbit reticulocyte lysates exposed to various concentrations of the mycotoxin (0.0013–2.76 mM), using 35 S-methionine as a tracer. FB1 inhibited the protein synthesis by 6%, at 0.0013 mM and by 88%, at a higher concentration of 2.76 mM. Cycloheximide at a concentration of 0.355 mM was found to inhibit protein synthesis by 88%. Inhibitory action of FB1 (1 mg kg−1 body mass and a higher dose of 10 mg kg−1 body mass) or cycloheximide (10 mg kg−1 body mass; positive controls), injected intra-peritoneally into BALB/c mice was studied using 14C-l-Leucine as a tracer. FB1 at lower dose of 1 mg kg−1 body mass inhibited protein synthesis in liver by 8% and at a higher dose of 10 mg kg−1 body mass by 38% in the BALB/c mice, when compared to cycloheximide which inhibited protein synthesis by 61%. The effects of FB1 on protein synthesis in plant system was studied in germinated maize seedlings exposed to FB1 at 0.9 μM, 0.009 mM and 0.09 mM concentrations, using 14C-l-Leucine as a tracer. Fumonisin B1 at low, middle, and higher concentrations (0.9 μM, 0.009 mM, and 0.09 mM) inhibited protein synthesis in the seedlings by 4%, 12% and 22%, respectively. The inhibitory effects of FB1 on the protein synthesis in the animal system in vitro and in vivo conditions, and in the plant system were found to be dose-dependent, though it was less potent compared to cycloheximide.  相似文献   

20.
Protoplasts isolated from wild cotton Gossypium davidsonii were cultured in KM8P medium supplemented with different phytohormones. The most effective combination was 0.45 μM 2,4-dichlorophenoxyacetic acid, 2.68 μM α-naphthaleneacetic acid and 0.93 μM kinetin and the division percentage at the 8th day was 30.78 ± 3.04 %. The density of protoplasts at 2–10 × 105 cm−3 was suitable for protoplast division and calli formation, with a division percentage of 32.21 ± 3.64 % and a plating efficiency of 9.12 ± 2.61 % at the 40th day. The optimal osmotic potential was achieved using 0.5 M glucose or 0.1 M glucose plus 0.5 M mannitol. Protoplasts were cultured in three ways, a double-layer culture system, with liquid over solid medium was proved to be the best way. Embryo induction was further increased by addition of 0.14 μM gibberellic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号