首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
2.
We describe an operon, copABCD, that encodes copper-binding and sequestering proteins for copper homeostasis in the copper-sensitive strain Pseudomonas putida PNL-MK25. This is the second operon characterized as being involved in copper homeostasis, in addition to a P1-type ATPase encoded by cueAR, which was previously shown to be active in the same strain. In this study, 3 copper-responsive mutants were obtained through mini-Tn5::gfp mutagenesis and were found to exhibit reduced tolerance to copper. Sequencing analysis of the transposon-tagged region in the 3 mutants revealed insertions in 2 genes of an operon homologous to the copABCD of P. syringae and pcoABCD of Escherichia coli. Gene expression studies demonstrated that the P. putida copABCD is inducible starting from 3 micromol/L copper levels. Copper-sensitivity studies revealed that the tolerance of the mutant strains was reduced only marginally (only 0.16-fold) in comparison to a 6-fold reduced tolerance of the cueAR mutant. Thus, the cop operon in this strain has a minimal role when compared with its role both in other copper-resistant strains, such as P. syringae pv. syringae, and in the cueAR operon of the same strain. We propose that the reduced function of the copABCD operon is likely to be due to the presence of fewer metal-binding domains in the encoded proteins.  相似文献   

3.
Specific induction of the copper resistance operon (cop) promoter from Pseudomonas syringae was measured by beta-galactosidase production from a cop promoter-lacZ fusion. Induction of the cop promoter in P. syringae pv. syringae required trans-acting factors from copper resistance plasmid pPT23D, from which cop was originally cloned. Tn5 mutagenesis of pPT23D was used to localize two complementation groups immediately downstream from copABCD. Cloning and sequencing of the DNA in this region revealed two genes, copR and copS, expressed in the same orientation as the cop operon but from a separate constitutive promoter. The amino acid sequence deduced from these genes showed distinct similarities to known two-component regulatory systems, including PhoB-PhoR and OmpR-EnvZ. In addition, CopR showed strong similarity to copper resistance activator protein PcoR from Escherichia coli. Functional chromosomal homologs to copRS activated the cop promoter, in a copper-inducible manner, in copper-resistant or -sensitive strains of P. syringae pv. tomato and other Pseudomonas species. This implies that copper-inducible gene regulation is associated with a common chromosomally encoded function, as well as plasmid-borne copper resistance, in Pseudomonas spp.  相似文献   

4.
The plant pathogen Pseudomonas syringae may cope with osmotic stress on plants, in part, by importing osmoprotective compounds. In this study, we found that P. syringae pv. tomato strain DC3000 was distinct from most bacterial species in deriving greater osmoprotection from exogenous choline than from glycine betaine. This superior osmoprotection was correlated with a higher capacity for uptake of choline than for uptake of glycine betaine. Of four putative osmoregulatory ABC transporters in DC3000, one, designated OpuC, functioned as the primary or sole transporter for glycine betaine and as one of multiple transporters for choline under high osmolarity. Surprisingly, the homolog of the well-characterized ProU transporter from Escherichia coli and Salmonella enterica serovar Typhimurium did not function in osmoprotection. The P. syringae pv. tomato OpuC transporter was more closely related to the Bacillus subtilis and Listeria monocytogenes OpuC transporters than to known osmoprotectant transporters in gram-negative bacteria based on sequence similarity and genetic arrangement. The P. syringae pv. tomato OpuC transporter had a high affinity for glycine betaine, a low affinity for choline, and a broad substrate specificity that included acetylcholine, carnitine, and proline betaine. Tandem cystathionine-beta-synthase (CBS) domains in the ATP-binding component of OpuC were required for transporter function. The presence of these CBS domains was correlated with osmoregulatory function among the putative transporters examined in DC3000 and was found to be predictive of functional osmoregulatory transporters in other pseudomonads. These results provide the first functional evaluation of an osmoprotectant transporter in a Pseudomonas species and demonstrate the usefulness of the CBS domains as predictors of osmoregulatory activity.  相似文献   

5.
The occurrence of strA-strB streptomycin-resistance genes within transposon Tn5393 was examined in Pseudomonas syringae pv. actinidiae, P. syringae pv. syringae, and P. marginalis, isolated from kiwifruit plants in Korea and Japan. PCR amplification with primers specific to strA-strB revealed that three of the tested Pseudomonas species harbored these genes for a streptomycin-resistance determinant. Tn5393, containing strA-strB, was also identified with PCR primers designed to amplify parts of tnpA, res, and tnpR. No IS elements were detected within tnpR, nor were they found in the intergenic region between tnpR and strA. Nucleotide sequence analysis indicated that the strA sequence of P. syringae pv. actinidiae contained a single nucleotide alteration at position 593 (CAA-->CGA), as compared to Tn5393a in P. syringae pv. syringae. This resulted in an amino acid change, from Gln to Arg.  相似文献   

6.
7.
To study the role of type III-secreted effectors in the host adaptation of the tobacco ( Nicotiana sp.) pathogen Pseudomonas syringae pv. tabaci , a selection of seven strains was first characterized by multilocus sequence typing (MLST) to determine their phylogenetic affinity. MLST revealed that all strains represented a tight phylogenetic group and that the most closely related strain with a completely sequenced genome was the bean ( Phaseolus vulgaris ) pathogen P. syringae pv. phaseolicola 1448A. Using primers designed to 21 P. syringae pv. phaseolicola 1448A effector genes, it was determined that P. syringae pv. phaseolicola 1448A shared at least 10 effectors with all tested P. syringae pv. tabaci strains. Six of the 11 effectors that failed to amplify from P. syringae pv. tabaci strains were individually expressed in one P. syringae pv. tabaci strain. Although five effectors had no effect on phenotype, growth in planta and disease severity of the transgenic P. syringae pv. tabaci expressing hopQ1-1 Pph1448A were significantly increased in bean, but reduced in tobacco. We conclude that hopQ1-1 has been retained in P. syringae pv. phaseolicola 1448A, as this effector suppresses immunity in bean, whereas hopQ1-1 is missing from P. syringae pv. tabaci strains because it triggers defences in Nicotiana spp. This provides evidence that fine-tuning effector repertoires during host adaptation lead to a concomitant reduction in virulence in non-host species.  相似文献   

8.
The plant pathogen Pseudomonas syringae derives better osmoprotection from choline than from glycine betaine, unlike most bacteria that have been characterized. In this report, we identified a betaine/carnitine/choline family transporter (BCCT) in P. syringae pv. tomato strain DC3000 that mediates the transport of choline and acetylcholine. This transporter has a particularly low affinity (K(m) of 876 microM) and high capacity (V(max) of 80 nmol/min/mg of protein) for choline transport relative to other known BCCTs. Although BetT activity increased in response to hyperosmolarity, BetT mediated significant uptake under low-osmolarity conditions, suggesting a role in transport for both osmoprotection and catabolism. Growth studies with mutants deficient in BetT and other choline transporters demonstrated that BetT was responsible for the superior osmoprotection conferred to P. syringae by choline over glycine betaine when these compounds were provided at high concentrations (>100 microM). These results suggest that P. syringae has evolved to survive in relatively choline-rich habitats, a prediction that is supported by the common association of P. syringae with plants and the widespread production of choline, but genus- and species-specific production of glycine betaine, by plants. Among the three putative BCCT family transporters in Pseudomonas aeruginosa and six in Pseudomonas putida, different transporters were predicted to function based on similarity to Escherichia coli BetT than to P. syringae BetT. Functional P. putida and P. aeruginosa transporters were identified, and their possession of a long C-terminal tail suggested an osmoregulatory function for this tail; this function was confirmed for P. syringae BetT using deletion derivatives.  相似文献   

9.
Resistance of tomato plants to the bacterial pathogen Pseudomonas syringae pv. tomato race 0 is controlled by the locus Pto. A bacterial avirulence gene was cloned by constructing a cosmid library from an avirulent P. syringae pv. tomato race, conjugating the recombinants into a strain of P. syringae pv. maculicola virulent on a tomato cultivar containing Pto, and screening for those clones that converted the normally virulent phenotype to avirulence. The cloned gene, designated avrPto, reduced multiplication of P. syringae pv. tomato transconjugants specifically on Pto tomato lines, as demonstrated by bacterial growth curve analyses. Analysis of F2 populations revealed cosegregation of resistance to P. syringae pv. tomato transconjugants carrying avrPto with resistance to P. syringae pv. tomato race 0. Surprisingly, mutation of avrPto in P. syringae pv. tomato race 0 does not eliminate the avirulent phenotype of race 0, suggesting that additional, as yet uncharacterized, avirulence genes and/or resistance genes may contribute to specificity in the avrPto-Pto interaction. Genetic analysis indicates that this resistance gene(s) would be tightly linked to Pto. Interestingly, P. syringae pv. glycinea transconjugants carrying avrPto elicit a typical hypersensitive resistant response in the soybean cultivar Centennial, suggesting conservation of Pto function between two crop plants, tomato and soybean.  相似文献   

10.
The 16S-23S rRNA gene internal transcribed spacer region (ITS1) from 34 strains of Pseudomonas avellanae and some strains of Pseudomonas syringae pathovars was amplified and assessed by restriction fragment length polymorphism (RFLP) using 10 restriction enzymes. In addition, the ITS1 region of four representative P. avellanae strains was sequenced and compared by the neighbour-joining algorithm with that of P. syringae pathovars. Two main groups of P. avellanae strains were observed that did not correlate with their origin. The ITS1 region sequencing revealed a high similarity with the P. syringae complex. One group of P. avellanae strains showed high similarity to P. s. pv. actinidiae and P. s. pv. tomato; another group showed similarity with P. s. pv. tabaci and P. s. pv. glycinea. Two strains clustered with P. s. pv. pisi. The difficulties to unambiguously classify the strains associated with hazelnut decline in Greece and Italy are discussed.  相似文献   

11.
12.
The production of peptide siderophores and the variation in siderophore production among strains of Pseudomonas syringae and Pseudomonas viridiflava were investigated. An antibiose test was used to select a free amino acid-containing agar medium favorable for production of fluorescent siderophores by two P. syringae strains. A culture technique in which both liquid and solid asparagine-containing culture media were used proved to be reproducible and highly effective for inducing production of siderophores in a liquid medium by the fluorescent Pseudomonas strains investigated. Using asparagine as a carbon source appeared to favor siderophore production, and relatively high levels of siderophores were produced when certain amino acids were used as the sole carbon and energy sources. Purified chelated siderophores of strains of P. syringae pv. syringae, P. syringae pv. aptata, P. syringae pv. morsprunorum, P. syringae pv. tomato, and P. viridiflava had the same amino acid composition and spectral characteristics and were indiscriminately used by these strains. In addition, nonfluorescent strains of P. syringae pv. aptata and P. syringae pv. morsprunorum were able to use the siderophores in biological tests. Our results confirmed the proximity of P. syringae and P. viridiflava; siderotyping between pathovars of P. syringae was not possible. We found that the spectral characteristics of the chelated peptide siderophores were different from the spectral characteristics of typical pyoverdins. Our results are discussed in relation to the ecology of the organisms and the conditions encountered on plant surfaces.  相似文献   

13.
The lemA gene is conserved among strains and pathovars of Pseudomonas syringae. In P. syringae pv. syringae B728a, a causal agent of bacterial brown spot disese of bean, the lemA gene is required for lesion formation on leaves and pods. Using lemA-containing DNA as a probe, we determined that 80 P. syringae pv. syringae strains isolated from bean leaves could be grouped into seven classes based on restriction fragment length polymorphism. Marker exchange mutagenesis showed that the lemA gene was required for lesion formation by representative strains from each restriction fragment length polymorphism class. Hybridization to the lemA locus was detected within six different P. syringae pathovars and within Pseudomonas aeruginosa. Interestingly, a lemA homolog was present and functional within the nonpathogenic strain P. syringae Cit7. We cloned a lemA homolog from a genomic library of P. syringae pv. phaseolicola NPS3121, a causal agent of halo blight of bean, that restored lesion formation to a P. syringae pv. syringae lemA mutant. However, a lemA mutant P. syringae pv. phaseolicola strain retained the ability to produce halo blight disease symptoms on bean plants. Therefore, the lemA gene played an essential role in disease lesion formation by P. syringae pv. syringae isolates, but was not required for pathogenicity of a P. syringae pv. phaseolicola strain.  相似文献   

14.
Nicotiana plumbaginifolia NpPDR1, a plasma membrane pleiotropic drug resistance-type ATP-binding cassette transporter formerly named NpABC1, has been suggested to transport the diterpene sclareol, an antifungal compound. However, direct evidence for a role of pleiotropic drug resistance transporters in the plant defense is still lacking. In situ immunolocalization and histochemical analysis using the gusA reporter gene showed that NpPDR1 was constitutively expressed in the whole root, in the leaf glandular trichomes, and in the flower petals. However, NpPDR1 expression was induced in the whole leaf following infection with the fungus Botrytis cinerea, and the bacteria Pseudomonas syringae pv tabaci, Pseudomonas fluorescens, and Pseudomonas marginalis pv marginalis, which do not induce a hypersensitive response in N. plumbaginifolia, whereas a weaker response was observed using P. syringae pv syringae, which does induce a hypersensitive response. Induced NpPDR1 expression was more associated with the jasmonic acid than the salicylic acid signaling pathway. These data suggest that NpPDR1 is involved in both constitutive and jasmonic acid-dependent induced defense. Transgenic plants in which NpPDR1 expression was prevented by RNA interference showed increased sensitivity to sclareol and reduced resistance to B. cinerea. These data show that NpPDR1 is involved in pathogen resistance and thus demonstrate a new role for the ATP-binding cassette transporter family.  相似文献   

15.
Sequencing of an approximately 3.9-kb fragment downstream of the syrD gene of Pseudomonas syringae pv. syringae strain B301D revealed that this region, designated sypA, codes for a peptide synthetase, a multifunctional enzyme involved in the thiotemplate mechanism of peptide biosynthesis. The translated protein sequence encompasses a complete amino acid activation module containing the conserved domains characteristic of peptide synthetases. Analysis of the substrate specificity region of this module indicates that it incorporates 2,3-dehydroaminobutyric acid into the syringopeptin peptide structure. Bioassay and high performance liquid chromatography data confirmed that disruption of the sypA gene in strain B301D resulted in the loss of syringopeptin production. The contribution of syringopeptin and syringomycin to the virulence of P. syringae pv. syringae strain B301D was examined in immature sweet cherry with sypA and syrB1 synthetase mutants defective in the production of the two toxins, respectively. Syringopeptin (sypA) and syringomycin (syrB1) mutants were reduced in virulence 59 and 26%, respectively, compared with the parental strain in cherry, whereas the syringopeptin-syringomycin double mutant was reduced 76% in virulence. These data demonstrate that syringopeptin and syringomycin are major virulence determinants of P. syringae pv. syringae.  相似文献   

16.
Nitrilase enzymes catalyse the hydrolysis of nitrile compounds to the corresponding carboxylic acid and ammonia, and have been identified in plants, bacteria and fungi. There is mounting evidence to support a role for nitrilases in plant–microbe interactions, but the activity of these enzymes in plant pathogenic bacteria remains unexplored. The genomes of the plant pathogenic bacteria Pseudomonas syringae pv. syringae B728a and Pseudomonas syringae pv. tomato DC3000 contain nitrilase genes with high similarity to characterized bacterial arylacetonitrilases. In this study, we show that the nitrilase of P. syringae pv. syringae B728a is an arylacetonitrilase, which is capable of hydrolysing indole-3-acetonitrile to the plant hormone indole-3-acetic acid, and allows P. syringae pv. syringae B728a to use indole-3-acetonitrile as a nitrogen source. This enzyme may represent an additional mechanism for indole-3-acetic acid biosynthesis by P. syringae pv. syringae B728a, or may be used to degrade and assimilate aldoximes and nitriles produced during plant secondary metabolism. Nitrilase activity was not detected in P. syringae pv. tomato DC3000, despite the presence of a homologous nitrilase gene. This raises the interesting question of why nitrilase activity has been retained in P. syringae pv. syringae B728a and not in P. syringae pv. tomato DC3000.  相似文献   

17.
Ferredoxin-I (Fd-I) is a fundamental protein that is involved in several metabolic pathways. The amount of Fd-I found in plants is generally regulated by environmental stress, including biotic and abiotic events. In this study, the correlation between quantity of Fd-I and plant disease resistance was investigated. Fd-I levels were increased by inoculation with Pseudomonas syringae pv. syringae but were reduced by Erwinia carotovora ssp. carotovora . Transgenic tobacco over-expressing Fd-I with the sense sweet pepper Fd-I gene ( pflp ) was resistant to E. carotovora ssp. carotovora and the saprophytic bacterium P. fluorescens. By contrast, transgenic tobacco with reduced total Fd-I and the antisense pflp gene was susceptible to E. carotovora ssp. carotovora and P. fluorescens . Both of these transgenic tobaccos were resistant to P. syringae pv. syringae . By contrast, the mutated E. carotovora ssp. carotovora , with a defective harpin protein, was able to invade the sense- pflp transgenic tobacco as well as the non-transgenic tobacco. An in vitro kinase assay revealed that harpin could activate unidentified kinases to phosphorylate PFLP. These results demonstrate that Fd-I plays an important role in the disease defence mechanism.  相似文献   

18.
A mutational analysis of lesion-forming ability was undertaken in Pseudomonas syringae pv. syringae B728a, causal agent of bacterial brown spot disease of bean. Following a screen of 6,401 Tn5-containing derivatives of B728a on bean pods, 26 strains that did not form disease lesions were identified. Nine of the mutant strains were defective in the ability to elicit the hypersensitive reaction (HR) and were shown to contain Tn5 insertions within the P. syringae pv. syringae hrp region. Ten HR+ mutants were defective in the production of the toxin syringomycin, and a region of the chromosome implicated in the biosynthesis of syringomycin was deleted in a subset of these mutants. The remaining seven lesion-defective mutants retained the ability to produce protease and syringomycin. Marker exchange mutagenesis confirmed that the Tn5 insertion was causal to the mutant phenotype in several lesion-defective, HR+ strains. KW239, a lesion- and syringomycin-deficient mutant, was characterized at the molecular level. Sequence analysis of the chromosomal region flanking the Tn5 within KW239 revealed strong similarities to a number of known Escherichia coli gene products and DNA sequences: the nusA operon, including the complete initiator tRNA(Met) gene, metY; a tRNA(Leu) gene; the tpiA gene product; and the MrsA protein. Removal of sequences containing the two potential tRNA genes prevented restoration of mutant KW239 in trans. The Tn5 insertions within the lesion-deficient strains examined, including KW239, were not closely linked to each other or to the lemA or gacA genes previously identified as involved in lesion formation by P. syringae pv. syringae.  相似文献   

19.
The hrp pathogenicity island of Pseudomonas syringae encodes a type III secretion system (TTSS) that translocates effectors into plant cells. Most genes encoding effectors are dispersed in the P. syringae genome. Regardless of location, all are regulated coordinately by the alternative sigma factor HrpL. An HrpL-dependent promoter-trap assay was developed to screen genomic libraries of P. syringae strains for promoters whose activity in Escherichia coli is dependent on an inducible hrpL construct. Twenty-two HrpL-dependent promoter fragments were isolated from P. syringae Psy61 that included promoters for known HrpL-dependent genes. One fragment also was isolated that shared no similarity with known genes but retained a near consensus HrpL-dependent promoter. The sequence of the region revealed a 375-amino acid open reading frame encoding a 40.5-kDa product that was designated HopPsyL. HopPsyL was structurally similar to other secreted effectors and carried a putative chloroplast-targeting signal and two predicted transmembrane domains. HopPsyL':'AvrRpt2 fusions were translocated into host cells via the P. syringae pv. tomato DC3000 hrp TTSS. A hopPsyL::kan mutant of Psy61 exhibited strongly reduced virulence in Phaseolus vulgaris cv. Kentucky Wonder, but did not appear to act as a defense response suppressor. The ectopically expressed gene reduced the virulence of Pseudomonas syringae DC3000 transformants in Arabidopsis thaliana Col-0. The gene was shown to be conserved in 6 of 10 P. syringae pv. syringae strains but was not detected in 35 strains of other pathovars. HopPsyL appears to be a novel TTSS-dependent effector that functions as a host-species-specific virulence factor in Psy61.  相似文献   

20.
Polyacrylamide gel electrophoresis of proteins was carried out to characterize eight bacterial strains belonging to the genus Pseudomonas. The sampling included three species (P. cichorii, P. viridiflava and P. syringae), with three pathovars for this last species (pv. pisi, pv. syringae, pv. tomato). Several molecular markers were evaluated: native proteins, denatured proteins, esterases, superoxide dismutases (SOD) and polyphenoloxidases (PPO). Each species or pathovar of Pseudomonas was clearly differentiated by esterase patterns. SOD, PPO and native protein patterns allowed strains of P. cichorii, P. viridiflava and P.s. pv. tomato also to be distinguished. Strains of P.s. pv. pisi and P.s. pv. syringae were identical for these criteria. Denatured protein patterns of these two pathovars and P. viridiflava were similar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号