首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously described a preferential reduction in the secretory response to nutrient secretagogues in pancreatic mouse islets maintained in culture after in vitro exposure to streptozotocin (SZ). This reduction was associated with an impaired substrate metabolism at the mitochondrial level. To further clarify this issue, mouse pancreatic islets were exposed in vitro to 2.2 mM SZ for 30 min. At 4 h after SZ treatment ultrastructural changes were apparent in the endoplasmic reticulum and Golgi areas of the B-cells. However, 2 and 6 days following SZ exposure the B-cells appeared well preserved, except for a marked decrease in the number of insulin-containing secretory granules. A morphometric analysis of the B-cells 6 days after SZ exposure showed a normal B-cell size and a normal volume fraction of B-cell mitochondria. However, there was a decrease in total islet size and a 13% decrease in the volume fraction of B-cells in the islets. These mouse islets exhibited a decreased content of the mitochondrial DNA-encoded cytochrome b mRNA, as evaluated by dot-blot analysis. As a whole, the data obtained indicate that SZ treatment does not induce a decrease in the number of mitochondria or long-lasting ultrastructural damage to this organelle. However, there is a clear decrease in the cytochrome b mRNA, suggesting that SZ can induce damage to the mitochondrial DNA.  相似文献   

2.
Subcellular localization of gamma aminobutyrate-alpha-ketoglutarate transaminase (GABA-T) in the pancreatic islets of Langerhans was determined by use of an electron microscopic, immunogold post-embedding protocol. The objective of this study was to define the islet cell distribution and subcellular localization of GABA-T. Within the islet, GABA-T was found only in the B-cells and was localized in mitochondria; 78 mitochondria contained 336 gold particles, whereas 245 secretory granules contained only 18 gold particles. Although studies utilizing either the isolated perfused pancreas or cultured islets have shown that exogenous GABA modulates D-cell secretion, in this study immunoreactive GABA-T, the catabolic enzyme for GABA, was not detectable in A- and D-cells of the islet. Control studies substituting normal rabbit serum for the GABA-T antiserum resulted in absence of labeling. These results indicate that the high concentration of GABA present in islet B-cells is catabolized by GABA-T in the mitochondrial compartment, consistent with the possibility that GABA functions as a mediator of B-cell activity.  相似文献   

3.
Using stereological techniques, including semi-automatic image analysis, the B-cell mitochondria were studied in the pancreatic islets from one group of control mice and two groups of mice killed 10 min and 60 min, respectively, after alloxan administration. Ten min following alloxan the mitochondrial volume and envelope surface densities, the mean mitochondrial volume and surface area, and the area of mitochondrial profiles were significantly increased, whereas the mitochondrial numerical density was not significantly altered. At the 60 min observation time the mitochondrial volume density, the mean mitochondrial volume and surface areas, and the area of mitochondrial profiles were significantly decreased, whereas the mitochondrial envelope surface was not significantly altered. The findings indicate a rapid swelling, followed by disintegration of the mitochondria in the B-cells of alloxan-treated mice, thereby supporting our view that mitochondrial lesions play a primary role in the development of alloxan diabetes. These lesions are believed to be due to ionic alterations in the B-cells ("Pi-pH hypothesis").  相似文献   

4.
V I Utekhin 《Tsitologiia》1979,21(1):21-24
The ultrastructure of B-cells in the rat pancreatic islets has been studied under various experimental conditions (thyroidectomy, continuous thyroxine treatment, regeneration after partial pancreatectomy, thyroidectomy with partial pancreatectomy, partial pancreatectomy, partial pancreatectomy with continuous thyroxine treatment). Five types of B-cells have been distinguished. It has been supposed that "light" B-cell 1 is related to the stage of secretory granule extrusion, "light" B-cell 2 reflects the extrusion of secretory material and the early stages of secretory granule synthesis; "dark" B-cell 1 is involved in the intensive synthesis, formation and extrusion of secretory material, and "dark" B-cell 2 in the intensive secretory granule synthesis, formation and storage.  相似文献   

5.
The effect of prolonged thyroxine administration (0.001 mg/g BW) on pancreatic islets has been studied on 64 Wistar male rats by means of radioautographic, morphometric and electron microscopic methods. The phase response in the amount of the DNA-synthesising cells of the middle class islets has been revealed: the initial increase (5 days) is followed by a decrease (30 days) and then by a return to the control levels (60 days). The level of metabolism in sulphur-containing proteins has decreased in both A- and B-cells. After 30 days of the experiment, B/A cell volume ratio has been shown to increase. Electron microscopic studies have revealed ultrastructural reorganization of B-cells from "resting" B-cells into "dark" B-cells at increased excretion of secretory material.  相似文献   

6.
Transamination of 3-phenylpyruvate in pancreatic B-cell mitochondria   总被引:1,自引:0,他引:1  
High aminotransferase activities catalyzing the reaction between L-glutamate and the aromatic ketomonocarboxylic acid, 3-phenylpyruvate, were observed in the mitochondria from pancreatic B-cells. At very low concentrations of 3-phenylpyruvate, L-glutamine was an effective amino group donor. The aminotransferase activities for the aliphatic ketomonocarboxylic acids, pyruvate and 2-ketoisovalerate, were lower in B-cell mitochondria. High rates of transamination of 2-ketoisocaproate with L-glutamine were observed and may be an important prerequisite for the insulin secretory potency of this 2-keto acid. Since B-cell mitochondria are well supplied with L-glutamine and L-glutamate, 3-phenylpyruvate-induced 2-ketoglutarate production may explain the insulin secretory potency of 3-phenylpyruvate which is not a fuel for pancreatic islet cells.  相似文献   

7.
The effect of cyclic AMP on calcium movements in the pancreatic beta-cell was evaluated using an experimental approach based on in situ labelling of intracellular organelles of ob/ob-mouse islets with 45Ca. Whereas the glucose-stimulated 14Ca incorporation by mitochondria and secretory granules was increased under a condition known to reduce cyclic AMP (starvation), raised levels of this nucleotide (addition of 3-isobutyl-1-methylxanthine or N6,O2'-dibutyryl adenosine 3',5'-cyclic monophosphate) reduced the mitochondrial accumulation of 45Ca. Conditions with increased cyclic AMP were associated with a stimulated efflux of 45Ca from the secretory granules but not from the mitochondria. The microsomal fraction differed from both the mitochondrial and secretory granule fractions by accumulating more 45Ca after the addition of 3-isobutyl-1-methylxanthine. The results suggest that cyclic AMP potentiates glucose-stimulaated insulin release by increasing cytoplasmic Ca2+ at the expense of the calcium taken up by the organelles of the pancreatic beta-cells.  相似文献   

8.
To gain better insight into the insulin secretory activity of fetal beta cells in response to glucose, the expression of glucose transporter 2 (GLUT-2), glucokinase and mitochondrial glycerol phosphate dehydrogenase (mGDH) were studied. Expression of GLUT-2 mRNA and protein in pancreatic islets and liver was significantly lower in fetal and suckling rats than in adult rats. The glucokinase content of fetal islets was significantly higher than of suckling and adult rats, and in liver the enzyme appeared for the first time on about day 20 of extrauterine life. The highest content of hexokinase I was found in fetal islets, after which it decreased progressively to the adult values. Glucokinase mRNA was abundantly expressed in the islets of all the experimental groups, whereas in liver it was only present in adults and 20-day-old suckling rats. In fetal islets, GLUT-2 and glucokinase protein and their mRNA increased as a function of increasing glucose concentration, whereas reduced mitochondrial citrate synthase, succinate dehydrogenase and cytochrome c oxidase activities and mGDH expression were observed. These findings, together with those reported by others, may help to explain the decreased insulin secretory activity of fetal beta cells in response to glucose.  相似文献   

9.
Behavior and the pancreatic islets morphology of golden hamsters exposed for different periods (24 h, 15 and 30 d) to crowding stress were investigated. The crowding induced an intensive turmoil and enhanced irritability and aggressiveness, particularly among the female specimens. Within a week, a rank hierarchy seemed to establish and therefore, later the fighting incidence was more reduced. Marked morphological alterations were recorded in the endocrine pancreas, affecting in various degrees all cell types, but especially the insulin-producing cells. The B-cells showed increased sizes, higher incidence of mitotic divisions, a drastical reduction of secretory granules amounts, enlargement of GOLGI complexes, mitochondria swelling and extension of the ergastoplasm. On the other hand, after 30 d, part of these cells displayed pycnotic nuclei, large cytoplasmic vacuoles and increased number of lasosomes and lipid inclusions. Due to the B-cell hyperplasia, the relative number of both A1- and A2-cells per islet occurred diminished and their typical localization modified. The islets of 15 and 30 d crowded specimens showed enlarged sinusoids and clear peri-insular spaces. The above morphological modifications, which suggest as a whole the global stimulation of gland secretory activity, are presented in relation with other authors findings. The presumably involvements of adrenal-cortex and -medulla hormones in the mediation of stress-induced glycemic and pancreatic alterations are discussed.  相似文献   

10.
Monoamine oxidase (MAO) is regarded as a mitochondrial enzyme. This enzyme localizes on the outer membrane of mitochondria. There are two kinds of MAO isozymes, MAO type A (MAOA) and type B (MAOB). Previous studies have shown that MAOB activity is found in the pancreatic islets. This activity in the islets is increased by the fasting-induced decrease of plasma glucose level. Islet B cells contain monoamines in their secretory granules. These monoamines inhibit the secretion of insulin from the B cells. MAOB is active in degrading monoamines. Therefore, MAOB may influence the insulin-secretory process by regulating the stores of monoamines in the B cells. However, it has not been determined whether MAOB is localized on B cells or other cell types of the islets. In the present study, we used both double-labeling immunofluorescence histochemical and electron microscopic immunohistochemical methods to examine the subcellular localization of MAOB in rat pancreatic islets. MAOB was found in the mitochondrial outer membranes of glucagon-secreting cells (A cells), insulin-secreting cells (B cells), and some pancreatic polypeptide (PP)-secreting cells (PP cells), but no MAOB was found in somatostatin-secreting cells (D cells), nor in certain other PP cells. There were two kinds of mitochondria in pancreatic islet B cells: one contains MAOB on their outer membranes, but a substantial proportion of them lack this enzyme. Our findings indicate that pancreatic islet B cells contain MAOB on their mitochondrial outer membranes, and this enzyme may be involved in the regulation of monoamine levels and insulin secretion in the B cells.  相似文献   

11.
Purified rat pancreatic insulin-producing B-cells, which display a 12-fold higher activity of FAD-linked glycerophosphate dehydrogenase than other islet endocrine cells, were exposed for 30 min to 2 mM streptozotocin and subsequently cultured for 2 days in the absence or presence of 2 mM nicotinamide. Streptozotocin decreased by 54% the number of B-cells and, in surviving cells, lowered by 75% the activity of FAD-linked glycerophosphate dehydrogenase, whilst failing to affect that of glutamate dehydrogenase. This coincided with a 42–51% reduction of insulin secretion, when expressed relative to either the DNA or hormonal content of surviving cells. After exposure to streptozotocin, the presence of nicotinamide in the culture medium reduced cell death by 44% and also reduced the deleterious effects of streptozotocin upon both the enzymic and secretory activities of surviving cells. These findings indicate that the decreased activity of FAD-linked glycerophosphate dehydrogenase previously documented in pancreatic islets from streptozotocin-injected rats, as well as the protective effect of nicotinamide thereupon, are not attributable solely to changes in the number of B-cells but also to an altered enzymic activity in surviving B-cells. The latter anomaly may account, in part at least, for an impaired B-cell secretory response to D-glucose. (Mol Cell Biochem120: 135–140, 1993)  相似文献   

12.
The development of gap junctions between pancreatic B-cells was quantitatively assessed in freeze-fracture replicas of isolated rat islets under different conditions of insulin secretion. The results show that in resting B-cells, gap junctions are small and scarce but that these junctions increase when insulin secretion is stimulated. Both a short (90 min) stimulation by glucose in vitro and a prolonged (2.5 d) stimulation by glibenclamide in vivo raise the number of gap junctions; in addition, the glibenclamide stimulation causes an increase in the size of individual gap junctions. As a consequence, the total area occupied by gap junctions on the B-cell membrane and the ratio of this area to the cell volume were found significantly increased in the latter condition. The slight increase of these values observed after the glucose stimulation did not reach significance. These data indicate a change of gap junctions during the secretory activity of the pancreatic B-cells. The possibility that the coupling of the cells is affected by the treatment is discussed.  相似文献   

13.
Cardiovascular risks are frequently accompanied by high serum fatty acid levels. Although recent studies have shown that fatty acids affect mitochondrial function and induce cell apoptosis, l-carnitine is essential for the uptake of fatty acids by mitochondria, and may attenuate the mitochondrial dysfunction and apoptosis of cardiocytes. This study aimed to elucidate the activity of l-carnitine in the prevention on fatty acid-induced mitochondrial membrane permeability transition and cytochrome c release using isolated cardiac mitochondria from rats. Palmitoyl-CoA-induced mitochondrial respiration that was observed with l-carnitine was inhibited with oligomycin. The palmitoyl-CoA-induced mitochondrial membrane depolarization and swelling were greatly inhibited by the presence of l-carnitine. In ultrastructural observations, terminally swollen and ruptured mitochondria with little or no distinguishable cristae structures were induced by treatment with palmitoyl-CoA. However, the severe morphological damage in cardiac mitochondria was dramatically inhibited by pretreatment with l-carnitine. Treatment with l-carnitine also attenuated 4-hydroxy-l-phenylglycine- and rotenone-induced mitochondrial swelling even when the l-carnitine could not protect against the decrease in oxygen consumption associated with these inhibitors. Furthermore, l-carnitine completely inhibited palmitoyl-CoA-induced cytochrome c release. We concluded that l-carnitine is essential for cardiac mitochondria to attenuate the membrane permeability transition, and to maintain the ultrastructure and membrane stabilization, in the presence of high fatty acid β-oxidation. Consequently, the cells may be protected against apoptosis by l-carnitine through inhibition of the fatty acid-induced cytochrome c release.  相似文献   

14.
Deregulated apoptosis represents an important hallmark of tumor cells. Here we investigated the induction of cell death signaling pathways in cell lines previously established from patients with Hodgkin's disease. Our data show that Hodgkin's disease derived B-cell lines uniformly proved resistant to staurosporine, a protein kinase C inhibitor that preferentially stimulates the mitochondrial apoptotic pathway. Contrary to control cell lines, staurosporine failed to induce cytochrome c release from mitochondria in Hodgkin derived B-cells. Correspondingly, activation of caspases was not observed in these cells. In staurosporine-treated Hodgkin cells Bax remained in its inactive state, indicating that these cell lines have a defect in this crucial step in apoptotic signaling upstream of the mitochondria. Our results suggest that the failure to activate Bax might represent a common defect of Hodgkin tumor cells of the B-cell lineage.  相似文献   

15.
The various neutral amino acids and aliphatic 2-keto acids exhibit differential effects on insulin secretion. The common denominator for all these effects is the 2-ketoglutarate generation in the pancreatic B-cell mitochondria. The neutral amino acidsl-leucine andl-norvaline and the aliphatic ketomonocarboxylic acids 2-ketoisocaproate, 2-ketocaproate, 2-ketovalerate, and 2-keto-3-methylvalerate all stimulate insulin secretion and increase 2-ketoglutarate generation in pancreatic B-cell mitochondria through activation of glutamate dehydrogenase and transamination withl-glutamate andl-glutamine, respectively. The neutral amino acidsl-valine,l-norleucine, andl-alanine and the aliphatic 2-keto acids 2-ketoisovalerate and pyruvate do not stimulate insulin secretion and do not increase 2-ketoglutarate generation in pancreatic B-cell mitochondria. Inhibition of 2-keto acid induced insulin secretion byl-valine andl-isoleucine is accompanied by reduced 2-ketoglutarate generation in pancreatic B-cell mitochondria. Thus intramitochondrial 2-ketoglutarate generation in pancreatic B-cells may regulate the insulin secretory potency of amino acids and 2-keto acids.  相似文献   

16.
Chronic exposure of rat pancreatic islets and INS-1 insulinoma cells to glucosamine (GlcN) produced a reduction of glucose-induced (22.2 mM) insulin release that was associated with a reduction of ATP levels and ATP/ADP ratio compared with control groups. To further evaluate mitochondrial function and ATP metabolism, we then studied uncoupling protein-2 (UCP2), F1-F0-ATP-synthase, and mitochondrial membrane potential, a marker of F1-F0-ATP-synthase activity. UCP2 protein levels were unchanged after chronic exposure to GlcN on both pancreatic islets and INS-1 beta-cells. Due to the high number of cells required to measure mitochondrial F1-F0-ATP-synthase protein levels and mitochondrial membrane potential, we used INS-1 cells, and we found that chronic culture with GlcN increased F1-F0-ATP-synthase protein levels but decreased glucose-stimulated changes of mitochondrial membrane potential. Moreover, F1-F0-ATP-synthase was highly glycosylated, as demonstrated by experiments with N-glycosidase F and glycoprotein staining. Tunicamycin (an inhibitor of protein N-glycosylation), when added with GlcN in the culture medium, was able to partially prevent all these negative effects on insulin secretion, adenine nucleotide content, mitochondrial membrane potential, and protein glycosylation. Thus we suggest that GlcN-induced pancreatic beta-cell toxicity might be mediated by reduced cell energy production. An excessive protein N-glycosylation of mitochondrial F1-F0-ATP-synthase might lead to cell damage and secretory alterations in pancreatic beta-cells.  相似文献   

17.
The endoplasmic reticulum (ER) and mitochondria are structurally connected with each other at specific sites termed mitochondria-associated membranes (MAMs). These physical links are composed of several tethering proteins and are important during varied cellular processes, such as calcium homeostasis, lipid metabolism and transport, membrane biogenesis, and organelle remodeling. However, the attributes of specific tethering proteins in these cellular functions remain debatable. Here, we present data to show that one such tether protein, glucose regulated protein 75 (GRP75), is essential in increasing ER–mitochondria contact during palmitate-induced apoptosis in pancreatic insulinoma cells. We demonstrate that palmitate increased GRP75 levels in mouse and rat pancreatic insulinoma cells as well as in mouse primary islet cells. This was associated with increased mitochondrial Ca2+ transfer, impaired mitochondrial membrane potential, increased ROS production, and enhanced physical coupling between the ER and mitochondria. Interestingly, GRP75 inhibition prevented these palmitate-induced cellular aberrations. Additionally, GRP75 overexpression alone was sufficient to impair mitochondrial membrane potential, increase mitochondrial Ca2+ levels and ROS generation, augment ER–mitochondria contact, and induce apoptosis in these cells. In vivo injection of palmitate induced hyperglycemia and hypertriglyceridemia, as well as impaired glucose and insulin tolerance in mice. These animals also exhibited elevated GRP75 levels accompanied by enhanced apoptosis within the pancreatic islets. Our findings suggest that GRP75 is critical in mediating palmitate-induced ER–mitochondrial interaction leading to apoptosis in pancreatic islet cells.  相似文献   

18.
The endocrine cells of the processus uncinatus in the dog pancreas were investigated with special reference to the formerly known F-cell. The F-cell was detected frequently in the periphery of pancreatic islets as well as among exocrine tissue. In both localizations the F-cell shows similar ultrastructural features. Membrane-bound irregularly shaped secretory granules of variable electron density were seen. The cell possesses all features of an endocrine polypeptide secreting cell. Using the immunofluorescence and immunoperoxidase technique in the uncinate processus of the dog, we could reveal that the anti-sera against bovine pancreatic polypeptide (BPP) reacts with the cell which is localized at the same sites as the F-cell. We therefore conclude that the pancreatic F-cell is identical to the pancreatic polypeptide-producing cell. The other endocrine cell types of the dog pancreas are glucagon-producing A-cells, insulin-producing B-cells, and somatostatin-producing D-cells, as well as serotonin-producing EC-cells which are regularly present in the dog pancreatic islets and also scattered among exocrine tissue and the duct epithelial cells.  相似文献   

19.
Summary Morphological changes in the adrenergic innervation of pancreatic islets after chemical sympathectomy by use of 6-hydroxydopamine and the influence of the sympatho-adrenal system on insulin secretion were investigated in the mouse and rat.Fluorescence histochemistry revealed a clear-cut reduction in the number of adrenergic nerve fibers in the pancreatic islets 2 days after administration of 6-hydroxydopamine; the reduction was more pronounced in the rat than in the mouse. In the rat, a partial regeneration was seen after 6 weeks. In the pancreas of the mouse, after administration of 6-hydroxydopamine, a severe damage of unmyelinated nerve fibers was revealed electron microscopically. However, no ultrastructural or immunohistochemical alterations could be demonstrated in the endocrine cells of the islets.6-Hydroxydopamine induced a depression of basal plasma insulin concentrations in mice and an elevation in rats. Adrenalectomy depressed basal plasma insulin levels in mice.The -adrenoceptor antagonist phentolamine enhanced insulin secretion in normal mice. The secretory response of insulin to phentolamine was diminished by chemical sympathectomy and almost abolished by adrenalectomy or the combination of chemical sympathectomy and adrenalectomy. Thus, the effect of phentolamine is probably mediated by liberated catecholamines.It is concluded that basal insulin secretion is partially regulated by the sympatho-adrenal system and that species differences exist in this respect. In addition, the results suggest that endogenous catecholamines have the ability to promote insulin secretion.  相似文献   

20.
To investigate the mechanism of hyperinsulinaemia in rats with acute liver failure induced by the administration of d-galactosamine (GalN), we focused on the role of polyprimidine tract-binding protein (PTB) in islet insulin synthesis. Recent reports indicate that PTB binds and stabilizes mRNA encoding insulin and insulin secretory granule proteins, including islet cell autoantigen 512 (ICA512), prohormone convertase 1/3 (PC1/3), and PC2. In the present study, glucose-stimulated insulin secretion was significantly increased in GalN-treated rats compared to controls. Levels of mRNA encoding insulin 1, ICA512, and PC1/3 were increased in the pancreatic islets of GalN-treated rats. This mRNA level elevation was not prevented by pretreatment with actinomycin D. When the PTB-binding site in insulin 1 mRNA was incubated with the islet cytosolic fraction, the RNA-protein complex level was increased in the cytosolic fraction obtained from GalN-treated rats compared to the level in control rats. The cytosolic fraction obtained from pancreatic islets obtained from GalN-treated rats had an increased PTB level compared to the levels obtained from the pancreatic islets of control rats. These findings suggest that, in rats with acute liver failure, cytosolic PTB binds and stabilizes mRNA encoding insulin and its secretory granule proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号