首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SYNOPSIS. Molecular studies have revealed many new hypothesesof metazoan evolution in recent years. Previously, using morphologicalmethods, it was difficult to relate "minor" animal groups representingmicroscopic metazoans to larger, more well known groups suchas arthropods, molluscs, and annelids. Molecular studies suggestthat acanthocephalans evolved from rotifers, that priapulidsshare common ancestry with all other molting animals (Ecdysozoa),and that flatworms, gnathostomulids and rotifers form a sistergroup to the remaining non-molting protostomes (Lophotrochozoa),together forming Spiralia. The lophophorate phyla (phoronids,brachiopods and bryozoans) appear as protostomes, allied withannelids and molluscs rather than with deuterostomes. Thesefindings present a very different view of metazoan evolution,and clearly show that small and simple animals do not necessarilyrepresent ancestral or primitive taxa.  相似文献   

2.
Several molecular data sets suggest that acoelomorph flatworms are not members of the phylum Platyhelminthes but form a separate branch of the Metazoa that diverged from all other bilaterian animals before the separation of protostomes and deuterostomes. Here we examine the Hox gene complement of the acoel flatworms. In two distantly related acoel taxa, we identify only three distinct classes of Hox gene: an anterior gene, a posterior gene, and a central class gene most similar to genes of Hox classes 4 and 5 in other Bilateria. Phylogenetic analysis of these genes, together with the acoel caudal homologue, supports the basal position of the acoels. The similar gene sets found in two distantly related acoels suggest that this reduced gene complement may be ancestral in the acoels and that the acoels may have diverged from other bilaterians before elaboration of the 8- to 10-gene Hox cluster that characterizes most bilaterians.  相似文献   

3.
Based on embryological and morphological evidence, Lophophorata was long considered to be the sister or paraphyletic stem group of Deuterostomia. By contrast, molecular data have consistently indicated that the three lophophorate lineages, Ectoprocta, Brachiopoda and Phoronida, are more closely related to trochozoans (annelids, molluscs and related groups) than to deuterostomes. For this reason, the lophophorate groups and Trochozoa were united to Lophotrochozoa. However, the relationships of the lophophorate lineages within Lophotrochozoa are still largely unresolved. Maximum-likelihood and Bayesian analyses were performed based on a dataset comprising 11,445 amino acid positions derived from 79 ribosomal proteins of 39 metazoan taxa including new sequences obtained from a brachiopod and a phoronid. These analyses show that the three lophophorate lineages are affiliated with trochozoan rather than deuterostome phyla. All hypotheses claiming that they are more closely related to Deuterostomia than to Protostomia can be rejected by topology testing. Monophyly of lophophorates was not recovered but that of Bryozoa including Ectoprocta and Entoprocta and monophyly of Brachiozoa including Brachiopoda and Phoronida were strongly supported. Alternative hypotheses that are refuted include (i) Brachiozoa as the sister group of Mollusca, (ii) ectoprocts as sister to all other Lophotrochozoa including Platyzoa, and (iii) ectoprocts as sister or to all other protostomes except chaetognaths.  相似文献   

4.
Phylogenetic analyses based on gene sequences suggest that acoel flatworms are not members of the phylum Platyhelminthes, but instead are the most basal branch of triploblastic bilaterians. Nonetheless, this result has been called into question. An alternative test is to use qualitative molecular markers that should, in principle, exclude the possibility of convergent (homoplastic) evolution in unrelated groups. microRNAs (miRNAs), noncoding regulatory RNA molecules that are under intense stabilizing selection, are a newly discovered set of phylogenetic markers that can resolve such taxonomic disputes. The acoel Childia sp. has recently been shown to possess a subset of the conserved core of miRNAs found across deuterostomes and protostomes, whereas a polyclad flatworm-in addition to this core subset-possesses miRNAs restricted to just protostomes. Here, we examine another acoel, Symsagittifera roscoffensis, and three other platyhelminths. Our results show that the distribution of miRNAs in S. roscoffensis parallels that of Childia. In addition, two of 13 new miRNAs cloned from a triclad flatworm are also found in other lophotrochozoan protostomes, but not in ecdysozoans, deuterostomes, or in basal metazoans including acoels. The limited set of miRNAs found in acoels, intermediate between the even more reduced set in cnidarians and the larger and expanding set in the rest of bilaterians, is compelling evidence for the basal position of acoel flatworms and the polyphyly of Platyhelminthes.  相似文献   

5.
6.
Molecular phylogenetic analyses of aligned 18S rDNA gene sequences from articulate and inarticulate brachiopods representing all major extant lineages, an enhanced set of phoronids and several unrelated protostome taxa, confirm previous indications that in such data, brachiopod and phoronids form a well-supported clade that (on previous evidence) is unambiguously affiliated with protostomes rather than deuterostomes. Within the brachiopod-phoronid clade, an association between phoronids and inarticulate brachiopods is moderately well supported, whilst a close relationship between phoronids and craniid inarticulates is weakly indicated. Brachiopod-phoronid monophyly is reconciled with the most recent Linnaean classification of brachiopods by abolition of the phylum Phoronida and rediagnosis of the phylum Brachiopoda to include tubiculous, shell-less forms. Recognition that brachiopods and phoronids are close genealogical allies of protostome phyla such as molluscs and annelids, but are much more distantly related to deuterostome phyla such as echinoderms and chordates, implies either (or both) that the morphology and ontogeny of blastopore, mesoderm and coelom formation have been widely misreported or misinterpreted, or that these characters have been subject to extensive homoplasy. This inference, if true, undermines virtually all morphology-based reconstructions of phylogeny made during the past century or more.  相似文献   

7.
The chordates are usually characterized as bilaterians showing deuterostomy, i.e. the mouth developing as a new opening between the archenteron and the ectoderm, serial gill pores/slits, and the complex of chorda and neural tube. Both numerous molecular studies and studies of morphology and embryology demonstrate that the neural tube must be considered homologous to the ventral nerve cord(s) of the protostomes, but the origin of the ‘new’ mouth of the deuterostomes has remained enigmatic. However, deuterostomy is known to occur in several protostomian groups, such as the chaetognaths and representatives of annelids, molluscs, arthropods and priapulans. This raises the question whether the deuterostomian mouth is in fact homologous with that of the protostomes, viz. the anterior opening of the ancestral blastopore divided through lateral blastopore fusion, i.e. amphistomy. A few studies of gene expression show identical expression patterns around mouth and anus in protostomes and deuterostomes. Closer studies of the embryology of ascidians and vertebrates show that the mouth/stomodaeum differentiates from the anterior edge of the neural plate. Together this indicates that the chordate mouth has moved to the anterior edge of the blastopore, so that the anterior loop of the ancestral circumblastoporal nerve cord, which is narrow in the protostomes, has become indistinguishable. In the vertebrates, the mouth has moved further around the anterior pole to the ‘ventral’ side. The conclusion must be that the chordate mouth (and that of the deuterostomes in general) is homologous to the protostomian mouth and that the latest common ancestor of protostomes and deuterostomes developed through amphistomy, as suggested by the trochaea theory.  相似文献   

8.
Although the small-subunit ribosomal RNA (SSU rRNA) gene is widely used in the molecular systematics, few large-subunit (LSU) rRNA gene sequences are known from protostome animals, and the value of the LSU gene for invertebrate systematics has not been explored. The goal of this study is to test whether combined LSU and SSU rRNA gene sequences support the division of protostomes into Ecdysozoa (molting forms) and Lophotrochozoa, as was proposed by Aguinaldo et al. (1997) (Nature 387:489) based on SSU rRNA sequences alone. Nearly complete LSU gene sequences were obtained, and combined LSU + SSU sequences were assembled, for 15 distantly related protostome taxa plus five deuterostome outgroups. When the aligned LSU + SSU sequences were analyzed by tree-building methods (minimum evolution analysis of LogDet-transformed distances, maximum likelihood, and maximum parsimony) and by spectral analysis of LogDet distances, both Ecdysozoa and Lophotrochozoa were indeed strongly supported (e.g., bootstrap values >90%), with higher support than from the SSU sequences alone. Furthermore, with the LogDet-based methods, the LSU + SSU sequences resolved some accepted subgroups within Ecdysozoa and Lophotrochozoa (e.g., the polychaete sequence grouped with the echiuran, and the annelid sequences grouped with the mollusc and lophophorates)-subgroups that SSU-based studies do not reveal. Also, the mollusc sequence grouped with the sequences from lophophorates (brachiopod and phoronid). Like SSU sequences, our LSU + SSU sequences contradict older hypotheses that grouped annelids with arthropods as Articulata, that said flatworms and nematodes were basal bilateralians, and considered lophophorates, nemerteans, and chaetognaths to be deuterostomes. The position of chaetognaths within protostomes remains uncertain: our chaetognath sequence associated with that of an onychophoran, but this was unstable and probably artifactual. Finally, the benefits of combining LSU with SSU sequences for phylogenetic analyses are discussed: LSU adds signal, it can be used at lower taxonomic levels, and its core region is easy to align across distant taxa-but its base frequencies tend to be nonstationary across such taxa. We conclude that molecular systematists should use combined LSU + SSU rRNA genes rather than SSU alone.  相似文献   

9.
10.
11.
Chaetognaths are transparent marine animals that are ubiquitous and abundant members of oceanic zooplanktonic communities. Their phylogenetic position within the Metazoa, however, has remained obscure since their discovery. Morphology and embryology have traditionally allied chaetognaths with deuterostomes, but molecular evidence suggests otherwise. Two recent multigene expressed sequence tag (EST) molecular phylogenomic studies suggest that chaetognaths are either sister to the Lophotrochozoa (Matus et al. 2006) or to all protostomes (Marlétaz et al. 2006). We have isolated eight Hox genes, one Parahox gene, and Mox, a related homeodomain gene, from the pelagic chaetognath, Flaccisagitta enflata. Although chaetognath central class Hox genes lack the Lox5 or "spiralian" parapeptide, a diagnostic amino-acid motif that has been utilized previously to assign lophotrochozoan affinity, they do possess a central class Hox gene that has a partial "Ubd-A peptide" found in both ecdysozoan and lophotrochozoan Ubx/Abd-A/Lox2/Lox4 genes. Additionally, we report the presence of two distinct chaetognath posterior Hox genes that possess both ecdysozoan and lophotrochozoan signature amino-acid motifs. The phylogenetic position of chaetognaths, as well as the evolution of the Hox cluster, is discussed in light of these data.  相似文献   

12.
Brachiopod phylogeny is still a controversial subject. Analyses using nuclear 18SrRNA and mitochondrial 12SrDNA sequences place them within the protostomes but some recent interpretations of morphological data support a relationship with deuterostomes. In order to investigate brachiopod affinities within the metazoa further, we compared the gene arrangement on the brachiopod mitochondrial genome with several metazoan taxa. The complete (15 451 bp) mitochondrial DNA (mtDNA) sequence of the articulate brachiopod Terebratulina retusa was determined from two overlapping long polymerase chain reaction products. All the genes are encoded on the same strand and gene order comparisons showed that.only one major rearrangement is required to interconvert the T. retusa and Katharina tunicata (Mollusca: Polvplacophora) mitochondrial genomes. The partial mtDNA sequence of the prosobranch mollusc Littorina saxatilis shows complete congruence with the T. rehtusa gene arrangement with regard to the ribosomal and protein coding genes. This high similarity in gene arrangement is the first to be reported within the protostomes. Sequence analyses of mitochondrial protein coding genes also support a close relationship of the brachiopod with molluscs and annelids, thus supporting the clade Lophotrochozoa. Though being highly informative, sequence analyses of the mitochondrial protein coding genes failed to resolve the branching order within the lophotrochozoa.  相似文献   

13.
Recent hypotheses on metazoan phylogeny have recognized three main clades of bilaterian animals: Deuterostomia, Ecdysozoa and Lophotrochozoa. The acoelomate and 'pseudocoelomate' metazoans, including the Platyhelminthes, long considered basal bilaterians, have been referred to positions within these clades by many authors. However, a recent study based on ribosomal DNA placed the flatworm group Acoela as the sister group of all other extant bilaterian lineages. Unexpectedly, the nemertodermatid flatworms, usually considered the sister group of the Acoela together forming the Acoelomorpha, were grouped separately from the Acoela with the rest of the Platyhelminthes (the Rhabditophora) within the Lophotrochozoa. To re-evaluate and clarify the phylogenetic position of the Nemertodermatida, new sequence data from 18S ribosomal DNA and mitochondrial genes of nemertodermatid and other bilaterian species were analysed with parsimony and maximum likelihood methods. The analyses strongly support a basal position within the Bilateria for the Nemertodermatida as a sister group to all other bilaterian taxa except the Acoela. Despite the basal position of both Nemertodermatida and Acoela, the clade Acoelomorpha was not retrieved. These results imply that the last common ancestor of bilaterian metazoans was a small, benthic, direct developer without segments, coelomic cavities, nephrida or a true brain. The name Nephrozoa is proposed for the ancestor of all bilaterians excluding the Nemertodermatida and the Acoela, and its descendants.  相似文献   

14.
Maximum likelihood and Bayesian inference analyses of seven concatenated fragments of nuclear-encoded housekeeping genes indicate that Lophotrochozoa is monophyletic, i.e., the lophophorate groups Bryozoa, Brachiopoda and Phoronida are more closely related to molluscs and annelids than to Deuterostomia or Ecdysozoa. Lophophorates themselves, however, form a polyphyletic assemblage. The hypotheses that they are monophyletic and more closely allied to Deuterostomia than to Protostomia can be ruled out with both the approximately unbiased test and the expected likelihood weights test. The existence of Phoronozoa, a putative clade including Brachiopoda and Phoronida, has also been rejected. According to our analyses, phoronids instead share a more recent common ancestor with bryozoans than with brachiopods. Platyhelminthes is the sister group of Lophotrochozoa. Together these two constitute Spiralia. Although Chaetognatha appears as the sister group of Priapulida within Ecdysozoa in our analyses, alternative hypothesis concerning chaetognath relationships could not be rejected.  相似文献   

15.
Almost a decade ago, a new phylogeny of bilaterian animals was inferred from small-subunit ribosomal RNA (rRNA) that claimed the monophyly of two major groups of protostome animals: Ecdysozoa (e.g., arthropods, nematodes, onychophorans, and tardigrades) and Lophotrochozoa (e.g., annelids, molluscs, platyhelminths, brachiopods, and rotifers). However, it received little additional support. In fact, several multigene analyses strongly argued against this new phylogeny. These latter studies were based on a large amount of sequence data and therefore showed an apparently strong statistical support. Yet, they covered only a few taxa (those for which complete genomes were available), making systematic artifacts of tree reconstruction more probable. Here we expand this sparse taxonomic sampling and analyze a large data set (146 genes, 35,371 positions) from a diverse sample of animals (35 species). Our study demonstrates that the incongruences observed between rRNA and multigene analyses were indeed due to long-branch attraction artifacts, illustrating the enormous impact of systematic biases on phylogenomic studies. A refined analysis of our data set excluding the most biased genes provides strong support in favor of the new animal phylogeny and in addition suggests that urochordates are more closely related to vertebrates than are cephalochordates. These findings have important implications for the interpretation of morphological and genomic data.  相似文献   

16.
The long held view that annelids and arthropods are closely related (Articulata) has been challenged recently by phylogenetic analyses using molecular data. The outcome of these studies is a clade of moulting animals (Ecdysozoa) comprising arthropods and some taxa of the nemathelminth worms. Monophyly of the Ecdysozoa has not yet been shown convincingly on morphological evidence, but is strongly supported by molecular data. The implication of the Ecdysozoa hypothesis is that the type of segmentation found in annelids and arthropods must be either convergent or an ancestral feature of protostomes or even bilaterians. The present review discusses aspects of segmentation in annelids and arthropods at the genetic, cellular, morphogenetic and morphological levels. Based on numerous similarities not shared with other bilaterian taxa it is suggested that segmentation of annelids and arthropods is homologous and apomorphic for a monophyletic Articulata. However, the challenge provided by the molecular analyses should stimulate research programmes gaining more data such as on additional genes, cleavage patterns, molecular developmental biology, and the comparison of nervous systems at the level of single neurons.  相似文献   

17.
18.
Back in time: a new systematic proposal for the Bilateria   总被引:4,自引:0,他引:4  
Conventional wisdom suggests that bilateral organisms arose from ancestors that were radially, rather than bilaterally, symmetrical and, therefore, had a single body axis and no mesoderm. The two main hypotheses on how this transformation took place consider either a simple organism akin to the planula larva of extant cnidarians or the acoel Platyhelminthes (planuloid-acoeloid theory), or a rather complex organism bearing several or most features of advanced coelomate bilaterians (archicoelomate theory). We report phylogenetic analyses of bilaterian metazoans using quantitative (ribosomal, nuclear and expressed sequence tag sequences) and qualitative (HOX cluster genes and microRNA sets) markers. The phylogenetic trees obtained corroborate the position of acoel and nemertodermatid flatworms as the earliest branching extant members of the Bilateria. Moreover, some acoelomate and pseudocoelomate clades appear as early branching lophotrochozoans and deuterostomes. These results strengthen the view that stem bilaterians were small, acoelomate/pseudocoelomate, benthic organisms derived from planuloid-like organisms. Because morphological and recent gene expression data suggest that cnidarians are actually bilateral, the origin of the last common bilaterian ancestor has to be put back in time earlier than the cnidarian-bilaterian split in the form of a planuloid animal. A new systematic scheme for the Bilateria that includes the Cnidaria is suggested and its main implications discussed.  相似文献   

19.
Phylogenomic analyses have revealed several important metazoan clades, such as the Ecdysozoa and the Lophotrochozoa. However, the phylogenetic positions of a few taxa, such as ctenophores, chaetognaths, acoelomorphs, and Xenoturbella, remain contentious. Thus, the findings of qualitative markers or "rare genomic changes" seem ideal to independently test previous phylogenetic hypotheses. We here describe a rare genomic change, the presence of the gene UDP-GlcNAc 2-epimerase/N-acetylmannosamine kinase (GNE). We show that GNE is encoded in the genomes of deuterostomes, acoelomorphs and Xenoturbella, whereas it is absent in protostomes and nonbilaterians. Moreover, the GNE has a complex evolutionary origin involving unique lateral gene transfer events and/or extensive hidden paralogy for each protein domain. However, rather than using GNE as a phylogenetic character, we argue that rare genomic changes such as the one presented here should be used with caution.  相似文献   

20.
Molecular evidence suggests that Acoelomorpha, a proposed phylum composed of acoel and Nemertodermatida flatworms, are the most basal bilaterian animals. Hox and ParaHox gene complements characterised so far in acoels consist of a small set of genes, comprising representatives of anterior, central and posterior genes, altogether Hox and ParaHox, but no PG3-Xlox representatives have been reported. It has been proposed that this might be the ancestral Hox repertoire in basal bilaterians. However, no studies of the other members of the group, the Nemertodermatida, have been done. In order to get a more complete picture of the basal bilaterian Hox and ParaHox complement, we have analysed the Hox/ParaHox complement of the nemertodermatid Nemertoderma westbladi. We have found representatives of two central and one posterior Hox genes, as well as an Xlox and a Caudal ParaHox gene. From our data we conclude that a PG3-Xlox gene was present in the ancestor of bilaterians. These findings support the speculation that basal bilaterians already had the beginnings of the extended central Hox set, driving back gene duplications in the central part of the Hox cluster deeper in phylogeny than previously suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号