首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 552 毫秒
1.
A soil Ca/Mg quotient greater than unity is generally considered necessary for normal plant growth but some serpentine plants are adapted to much lower Ca/Mg quotients, resulting from a major cation imbalance in their substrata. In order to investigate the growth and tolerance responses of serpentine and non-serpentine species to varied Ca/Mg quotients, controlled nutrient solution experiments were performed using an a newly reported Iranian endemic serpentine plant, Cleome heratensis Bunge et Bien. Ex Boiss. and a related non-serpentine species Cleome foliolosa DC. and a Eurasian Ni-hyperaccumulating species Alyssum murale Waldst. and Kit. Seedlings were grown in modified Hoagland’s solutions with varying Ca and Mg concentrations (0.2–2.5 and 0.5–10 mM, respectively) in a fully factorial randomised block design. The yields of the two serpentine plants increased significantly as Mg concentrations in the nutrient solution were increased from 0.5 to 4 mM but decreased in the 10 mM Mg treatment. For C. foliolosa yields decreased significantly from 0.5 to 10 mM Mg, indicating the sensitivity of this non-serpentine plant, and the relative tolerance of the serpentine plants to extremely high levels of Mg. Shoot and root Mg and Ca concentrations in C. heratensis and A. murale were higher than those in C. foliolosa in the low and moderate Mg treatments, supporting the view that many serpentine plants have a relatively high requirement for Mg. Maximum Mg concentrations were found in the roots of C. heratensis. Yields of C. heratensis and A. murale did not change significantly as Ca levels in nutrient solution increased from 0.2 to 2.5 mM Ca, However the yield of C. foliolosa increased significantly from 0.2 to 1.5 mM Ca, indicating sensitivity in this non-serpentine plant and tolerance of the two serpentine plants to low levels of Ca correlated with tissue Ca concentrations, probably because of a greater ability for Ca uptake at low-Ca availability. Calcium deficiency in the low-Ca treatments could be a reason for reduced yield in the non-serpentine plants.  相似文献   

2.
We selected two geographically close serpentine and non-serpentine populations of a Ni-hyperaccumulating plant (Alyssum inflatum) to investigate the influence of two common factors of serpentine soils: high Ni concentrations and low Ca/Mg quotients. Soils and plants were sampled from serpentine and non-serpentine substrates, and concentrations of Ca, Mg and Ni were measured. A hydroponic culture was used to compare growth and elemental composition responses of serpentine and non-serpentine plants to different Ca/Mg quotients and Ni concentrations in the nutrient solution. The Ca/Mg quotient for non-serpentine soils was 15 times higher than for serpentine soils, but there was no difference in the Ca/Mg quotient of plants from the two populations. In hydroponic culture, plants from both populations were able to survive at high Ca/Mg quotients. This result suggests that serpentine plants of A. inflatum do not necessarily need a substrate with a low Ca/Mg quotient for survival. Decreases in the Ca/Mg quotient in hydroponics decreased growth. The magnitude of this decrease was significantly greater in non-serpentine plants, suggesting a greater resistance of serpentine plants to low Ca/Mg quotients. Total Ni concentration in serpentine soils was 13 times higher than in non-serpentine soils, but ammonium nitrate-extractable concentrations of Ni in both soil types were similar. Ni concentrations in non-serpentine plants from their natural habitat were significantly lower than in serpentine plants, but there was no significant difference in Ni accumulation by plants of the two populations in hydroponic culture. However, increased concentrations of Ni in the hydroponic medium caused similar decreases in growth of both populations, indicating that Ni tolerance of the two populations was similar.  相似文献   

3.
Copper-induced metallothionein (MT) synthesis in Saccharomyces cerevisiae was investigated in order to associate this exclusively with Cu2+ in vivo, when cultured in nutrient medium containing other heavy metal ions. Expression of the CUP1 promoter/lacZ fusion gene was inhibited by all heavy metal ions tested, especially Cd2+ and Mn2+. By adding Cd2+ and Mn2+ at 10 M concentration, the -galactosidase activity decreased by about 80% and 50% of the maximum induction observed with 1 mM CuSO4, respectively. Furthermore, cell growth was markedly inhibited by combinations of 1 mM-Cu2+ and 1 M-Cd2+. Therefore, the yeast S. cerevisiae could not rely on MT synthesis as one of the copper-resistance mechanisms, when grown in a Cd2+ environment. In contrast, the presence of Mn2+ in the nutrient medium showed alleviation rather than growth inhibition by high concentrations of Cu2+. The recovery from growth inhibition by Mn2+ was due to decreased Cu2+ accumulation. Inhibitory concentrations of Co2+, Ni2+ and Zn2+ on expression of the CUP1p/lacZ fusion gene were at least one order of magnitude higher than that of Cd2+ and Mn2+. These results are discussed in relation to Cu2+ transport and Cu-induced MT synthesis in the copper-resistance mechanism of the yeast S. cerevisiae.  相似文献   

4.
Serpentine soils are hostile to plant life. They are dry, contain high concentrations of nickel and have an unfavorable calcium/magnesium ratio. The dioecious plant Silene dioica (L.) Clairv. (Caryophyllaceae) is the most common herb on serpentine soils in the Swedish mountains. It also commonly grows on non-serpentine soils in the subalpine and coastal area. I have compared the germination frequency, plant establishment and growth of serpentine and subalpine non-serpentine populations in serpentine soil under greenhouse conditions. Further more I have studied the specific effect of nickel on root and shoot growth of serpentine and non-serpentine plants from the subalpine and coastal area in solutions with different concentrations of nickel. Plants from serpentine and non-serpentine populations grew well and in a similar fashion in serpentine soil. Moreover, S. dioica plants, irrespective of original habitat, tolerated enhanced concentrations of nickel when grown in solutions. An analysis of metal content in serpentine plants from natural populations shows that S. dioica has a higher nickel concentration in the roots than in the shoots. The growth studies show that S. dioica is constitutively adapted to serpentine, and that all populations have the genetic and ecological tolerance to grow on serpentine.  相似文献   

5.
This study investigated the cellular and subcellular compartmentation of Ni in the Eurasian serpentine species Alyssum murale, Alyssum bracteatum and Cleome heratensis and a non-serpentine population of A. murale (as a control) grown in hydroponic culture. Plant growth responses and Ni uptake clearly revealed the higher Ni tolerance of serpentine plants than the non-serpentine plants. Serpentine A. murale and A. bracteatum grew better at elevated (0.01 mM) Ni in the nutrient solution, supporting the view that the Ni hyperaccumulators have a higher requirement for Ni than normal plants. Low shoot Ni content of C. heratensis in response to the high Ni treatments indicated that this species employs an avoidance strategy for Ni tolerance. Energy-dispersive X-ray microanalysis showed that Ni was highly concentrated in the cell walls and cell lumen, most likely the vacuoles, of leaf epidermis of A. murale and A. bracteatum rather than in the mesophyll cells. EDX spectra from leaves of the non-serpentine A. murale suggested that Ni accumulated in both epidermal and mesophyll cells but not in the epidermal cell walls. Growth reduction and Ni toxicity in plants of the non-serpentine A. murale could be due to accumulation of Ni in the lumen of leaf mesophyll cells. Our data suggest that cellular and subcellular compartmentation are both possible mechanisms for Ni tolerance employed by the serpentine A. murale and A. bracteatum.  相似文献   

6.
Relatively little is known about the responses of plants to micronutrients when these nutrients are maintained at the very low levels found in soils of low fertility. We have determined the requirement of barley (Hordeum vulgare L. cv Herta) for ionic Mn2+ in plant culture solutions using the chelating agent HEDTA as a buffer for micronutrient metal ions. The chemical activity of Mn2+ was varied approximately 10,000-fold from log(Mn2+)=–10.8 to –6.8 (pMn 10.8 to pMn 6.8), while holding constant the activities of the other micronutrient cations. Growth, appearance, and composition of Herta barley indicated that log(Mn2+) of approximately –8.3 would permit optimal dry matter production and normal plant development. The specific accumulation rate of Mn by 15 to 23 day old seedlings was a linear function of the Mn2+ activity in solution. At log(Mn2+) of about –9.8 or below, barley seedlings were unable to accumulate significant amounts of Mn, and at some harvests, suffered a net loss of Mn to solution. Seedlings younger than 11 days old were ineffective accumulators of several cations, including Mn, Fe, Zn, Cu, Mg, and Ca. Differences in Mn availability did not influence uptake of other cations, except that Cu uptake by roots increased with increasing Mn uptake.Abbreviations MES 2-(N-morpholino)-ethanesulphonic acid - HEDTA N-(2-hydroxyethyl)ethylene-dinitrilotriacetic acid - DTPA diethylenetrinitrilopentaacetic acid  相似文献   

7.
Summary The effects of divalent metals, metal chelators (EDTA, EGTA) and sodium dodecyl sulfate were investigated on the phosphatase activity of isolated bovine brain calcineurin assayed in the absence (called intrinsic) and presence of calmodulin. Intrinsic phosphatase was increased by Mn2+, was unaffected by Mg2+, Ca2–, and Ba+, and was markedly inhibited by Ni2–, Fe2+, Zn2+ and Cu2–. When assayed in the presence of calmodulin, many divalent metals (Ni2–, Zn2+, Pb2+, Cd2+), besides Mn2+, increased modestly the phosphatase activity at low concentrations (10–100 M) and inhibited it markedly at high concentrations. Ca2–-calmodulin stimulated phosphatase activity was antagonized by Ni2+, Zn2+, Fe2+, Cu2+, Pb2+, at low concentrations (50 M), and by Ba2+, Cd2+ at slightly higher concentrations (> 100 M); Mn2+ and Co2– (50 M to 1 mM) in fact augmented it. EDTA and EGTA in a concentration and time dependent fashion inhibited the intrinsic phosphatase activity, particularly that of trypsinized calcineurin. SDS in low concentrations (0.005%) augmented the phosphatase activity and inhibited it at high concentrations. Mn2+ (± calmodulin) and Ca2+ only with calmodulin present increased the phosphatase activity assayed with low concentrations of SDS. The EDTA dependent inhibition of intrinsic phosphatase was almost abolished in assays containing SDS. Prior exposure of calcineurin to Mn2+ led to a high activity conformation state of calcineurin that was long-lived or pseudo-irreversible. Such Mn2+-activated state of calcineurin exhibited no discerbible change in the affinity towards myelin basic protein or its inhibition by trifluoperazine. At alkaline pH, Mg2+ supported the intrinsic phosphatase activity, although to a lesser degree than Mn2+. The latter cation, compared to Mg2+ and Ni2+, was also a more powerful stimulator of the calcineurin phosphatase assayed with histone (III-S) and myosin light chain as substrates.  相似文献   

8.
Summary Transbilayer diffusion of Mn2+ ions occurred in liposomes formed from dipalmitoyl-phosphatidylcholine or egg-yolk phosphatidylcholine and egg-yolk phosphatidate (molar ratio 21) containing DNA and DNase I within their aqueous compartments. Cation diffusion was demonstrated by the hydrolytic activity of DNase I, activated by the Mn2+ ions that diffused into the vesicles, and this was confirmed by light scattering. Phosphatidate, a cone-shaped lipid which has been synthesized under simulated prebiotic conditions, was necessary for cation diffusion across the liposome membranes. Such liposomes represent a simple precellular system that interchanges cations with the surroundings and provides a microenvironment for enzymatic reactions, as evidenced by the hydrolysis of DNA by DNase I inside these closed lipid compartments.  相似文献   

9.

Aims

In serpentinitic areas non-endemic plants suffer from the serpentine syndrome, due to high Ni and Mg concentrations, low nutrients and Ca/Mg ratio. We evaluated the environment-soil-vegetation relationships in a xeric inner-alpine area (NW Italy), where the inhibited pedogenesis should enhance parent material influences on vegetation.

Methods

Site conditions, topsoil properties, plant associations and species on and off serpentinite were statistically associated (51 sites).

Results

Serpentine soils had higher Mg and Ni concentrations, but did not differ from non-serpentine ones in nutrient contents. The 15 vegetation clusters often showed substrate specificity. Two components of the Canonical Analysis of Principal Coordinates, respectively related to Mg and to Ni and heat load, identified serpentine vegetation. Random Forests showed that several species were positively correlated with Ni and/or Ca/Mg or Mg, some were negatively associated with high Ni, Mg excess affected only few species. Considering only serpentine sites, nutrients and microclimate were most important.

Conclusions

Ni excess most often precludes the presence of plant species on serpentinite, while an exclusion due to Mg is rarer. Endemic species are mostly adapted to both factors. Nutrient scarcity was not specific of serpentine soils in the considered environment. Considering only serpentine sites, nutrient and microclimatic gradients drove vegetation variability.  相似文献   

10.
Summary Manganese accumulation was studied by room-temperature electron spin resonance (ESR) spectroscopy inSaccharomyces cerevisiae grown in the presence of increasing amounts of MnSO4. Mn2+ retention was nearly linear in intact cells for fractions related to both low-molecular-mass and macromolecular complexes (free and bound Mn2+, respectively). A deviation from linearity was observed in cell extracts between the control value and 0.1 mM Mn2+, indicating more efficient accumulation at low Mn2+ concentrations. The difference in slopes between the two straight lines describing Mn2+ retention at concentrations lower and higher than 0.1 mM, respectively, was quite large for the free Mn2+ fraction. Furthermore it was unaffected by subsequent dialyses of the extracts, showing stable retention in the form of low-molecular-mass complexes. In contrast, the slope of the line describing retention of bound Mn2+ at concentrations higher than 0.1 mM became less steep after subsequent dialyses of the cell extracts. This result indicates that the macromolecule-bound Mn2+ was essentially associated with particulate structures. In contrast to Cu2+, Mn2+ had no effect on the major enzyme activities involved in oxygen metabolism except for a slight increase of cyanide-resistant Mn-superoxide dismutase activity, due to dialyzable Mn2+ complexes.  相似文献   

11.
Serpentine soils of Andaman Islands, India characteristically contain high levels of nickel, cobalt and chromium and are colonized by indigenous nickel-hyperaccumulating plants. Attempts have been made to isolate and characterize nickel-resistant microorganisms from these hitherto unexplored naturally nickel-percolated soils. The majority of the nickel-resistant organisms showed a minimum inhibitory concentration (MIC) of Ni2+ ranging from 300 to 400 mg/l and about 3.4% of the total 89 isolates representing bacterial strains were able to grow at 400 mg/l Ni2+. The potent Ni2+-resistant strains AND305 and AND603 were tentatively identified as Pseudomonas spp. and strain AND408 as Bacillus sp. following detailed analysis of morphological and physio-biochemical characteristics. Growth kinetics of these Ni2+-resistant bacteria showed a prolonged lag phase in Ni2+-containing media, which extended with increasing nickel concentration. In addition to Ni2+, these isolates were also resistant to Co2+, Cd2+, Cr6+, Fe3+, Cu2+, Mg2+, Mn2+(50–200 mg/l) and Hg2+ (0.5–2.0 mg/l) and the multiple metal-resistance of the isolates were also associated with the resistance to antibiotics ampicillin, cycloserine and penicillin G.  相似文献   

12.
Response of Rhizobium leguminosarum to nickel stress   总被引:2,自引:0,他引:2  
Rhizobium leguminosarum strain P-5 biovar viciae was sensitive to Ni2+ (MIC, 75 M) and showed concentration-dependent Ni2+ uptake in a wide concentration range (50–500 M). Ni2+ uptake up to a certain threshold limit also increased thiol content (66 nmol mg–1 protein), proline content (10.85 nmol mg–1 protein) and urease specific activity (500 nmol min–1 mg–1 protein) maximum corresponding to 100 M Ni2+ as the external concentration or 151 nmol Ni2+ mg–1 protein as the intracellular buildup. Proline synthesis was stimulated most even at much lower Ni2+ concentration (25 M). Higher intracellular Ni2+ load neither favoured thiol nor proline biosynthesis nor urease activity. Ni2+ requirement of urease was ascertained by using EDTA-grown cells and the addition of bicarbonate (NaHCO3, 100 mM) to the crude extract. The induction of thiol or proline by Ni2+, therefore, reflects the possible strategies adopted by bacterial cells to overcome the environmental stress.  相似文献   

13.
Nutrient concentration in wheat and soil under allelopathy treatments   总被引:2,自引:0,他引:2  
Allelopathy is related to soil nutrient availability and allelochemicals can change the soil and therefore the plant nutrient status. Wheat is one of the most important crops for the production of human food in the world. Alhagi maurorum and Cardaria draba are the most important weeds in wheat fields. We performed experiments to assess the allelopathic effect of A. maurorum and C. draba shoots on mineral nutrient concentrations in pot-grown wheat plants and soil. The presence of dry powder of A. maurorum and C. draba shoots reduced concentrations of macronutrients (NO3 ?, K+, Ca2+ and P) and micronutrients (Fe2+ and Cu2+) in roots and shoots of wheat plants, whereas it did not affect concentrations of Mg2+, Mn2+ and Zn2+. Allelopathic effect of A. maurorum was significantly greater than that of C. draba. There was a significantly positive correlation between wheat growth and ion concentration. There was a significantly negative correlation between the soil nutrient concentration and plant nutrient concentration across the treatments. These results suggest that allelopathy increases the nutrient availability in the soil because of the decrease in absorption by plants.  相似文献   

14.
In the freshwater ChlorophyceaeHaematococcus pluvialis, precursors of ethylene biosynthesis cycle are the same as those of higher plants: L-methionine S-adenosylmethionine 1-aminocyclopropane-1-carboxylic acid ethylene. However, the enzymatic complex of the last step of ethylene synthesis-ACCoxidase-differs from that of higher plants. It is stimulated by Co2+ (at least 10-5 M), Mn2+ (at least 10-6 M) and Ag2+ (at least 10-4 M), inhibited by Cu2+ (at least 10-5 M) and not affected by Zn2+, Fe2+ or Mg2+. ACCoxidase is also inhibited by salicylhydroxamic acid and by dark. Ethylene production is more important in young, mobile, green cells in active growth phase than in old, encysted and red cells in stationary growth phase. No peaks in ethylene production or respiration were observed during batch culture, as opposed to the situation with climacteric fruits.  相似文献   

15.
In 10-d-old soybean seedlings, the growth of roots and shoots was significantly inhibited at 50 and 100 M and more Cd2+, respectively, and by 50 M or more Ni2+. Although total protein content of roots exposed to 200 M Cd2+ or Ni2+ was similarly decreased compared to the control, the activity of nitrate reductase was much more inhibited by Cd2+. Ni2+-treatment (200 M) induced an accumulation of all free amino acids in roots associated with a decrease in alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities reflecting the accumulation of both alanine and aspartic acid, respectively. Cd2+-treatment (200 M) decreased the amount of all free amino acids. In addition, cysteine which is the main amino acid consisting the phytochelatin complexes constituted about 17.5 % of total free amino acids. The activities of both ALT and AST in Cd2+-treated roots were higher than in Ni2+-treated roots suggesting higher conversion of alanine and aspartate to pyruvate and oxaloacetate. Primary leaves excised from either Cd2+ or Ni2+-treated seedlings showed similar pattern of enzyme activities as roots.  相似文献   

16.
Summary Rape, cucumber, wheat, oats and tomato were grown for one to two weeks in nutrient solutions with heavy metals added. Of the metal ions tested (Cr3+, Cu2+, Co2+, CrO4 2-, Ni2+, Cd2+, Pb2+, Mn2+, Zn2+ and Ag+), manganese, nickel and lead exhibited the greatest mobility in cucumber plants, which resulted in the highest shoot/root concentration ratio. Silver was not translocated to the shoots of cucumber plants in measurable amounts.When the plants were grown with 1.0, 10 and 100 M cadmium or nickel in the solution, the shoot and root concentration increased 5–10 times if the metal ion concentration of the solution was increased 10 times.The plants showed great differences in cadmium and nickel uptake. In the shoot, the cadmium concentration increased in the order: oats = wheat < cucumber = rape < tomato, and in the root in the order: oats = wheat < cucumber = rape < tomato. The great uptake of cadmium and nickel by tomato is notable and agrees with other reports.The nickel, and especially the cadmium, concentration in roots and shoots increases with the age of the plant.The results are discussed and related to other investigations. The need for research on the uptake mechanisms of non-essential heavy metals is emphasized. re]19750415  相似文献   

17.
Oxaloacetate (OAA) decarboxylase (E.C. 4.1.1.3) was isolated fromCorynebacterium glutamicum. In five steps the enzyme was purified 300-fold to apparent homogeneity. The molecular mass estimated by gel filtration was 118 ± 6 kDa. SDS-PAGE showed a single subunit of 31.7 KDa, indicating an 4 subunit structure for the native enzyme. The enzyme catalyzed the decarboxylation of OAA to pyruvate and CO2, but no other -ketoacids were used as substrate. The cation Mn2+ was required for full activity, but could be substituted by Mg2+, Co2+, Ni2+ and Ca2+. Monovalent ions like Na+, K+ or NH 4 + were not required for activity. The enzyme was inhibited by Cu2+, Zn2+, ADP, coenzyme A and succinate. Avidin did not inhibit the enzyme activity, indicating that biotin is not involved in decarboxylation of OAA. Analysis of the kinetic properties revealed a K m for OAA of 2.1 mM and a K m of 1.2 mM for Mn2+. The V max was 158 µmol of OAA converted per min per mg of protein, which corresponds to an apparent k cat of 311 s–1.Abbreviations OAA oxaloacetate - LDH lactate dehydrogenase  相似文献   

18.
Shoot cultures of Alyssum markgrafii O.E. Shulz, endemic nickel hyperaccumulating species of central Balkan, were established and maintained on Murashige and Skoog medium supplemented with 0.2 mg dm–3 benzyladenine (BA). Nickel in form of NiCl2 . 6 H2O was supplemented at 22 different concentrations ranging from 0.0001 to 15 mM but none of them was lethal to cultures. High Ni2+ concentrations (10 mM or more) arrested shoot growth which, upon transfer to Ni-free medium, commenced via axillary bud proliferation. Shoots that developed from axillary buds through the subculture manifested increased tolerance to Ni2+ expressed as shoot elongation. Shoot multiplication and dry biomass production decreased with increase of Ni2+ in medium. Only the accumulation of Ni2+ in tissues increased with Ni2+ content of the medium. Apart from shoot cultures, high Ni2+ accumulation was registered in undifferentiated callus cultured on medium with 0.5 mg dm–3 BA and 0.5 mg dm–3 naphthylacetic acid. Highest content of accumulated Ni was 2.37 g g–1 (d.m.) in shoots and 2.65 g g–1 (d.m.) in callus, both measured on medium with 15 mM Ni2+.  相似文献   

19.
A new chelate-buffering technique was used to investigate the effect of pH (6.00, 6.85 and 7.70) on manganese (Mn) absorption from nutrient solution by three genotypes of barley plants differeing in Mn efficiency. The nutrient composition was adjusted such that the calculated activities of Mn2+, Zn2+, Cu2+ and Ni2+ were similar in each pH, thus eliminating any effect of the pH treatment on Mn2+ supply. Increasing pH from 6.00 to 7.70 increased the rate of Mn absorption and decreased the external Mn requirement for optimal growth rate. With increasing pH, Mn concentrations in roots rose markedly, and were higher than those in shoots at pH 7.70. Genotypic differences in Mn concentration of roots appeared only at higher pH. We suggest that higher Mn concentration in roots of inefficient plants may be related to Mn immobilisation in roots, and this may be a factor in the mechanism of Mn efficiency.  相似文献   

20.
Serpentine soils have naturally elevated concentrations of certain heavy metals, including nickel. This study addressed the role of plant origin (serpentine vs. non-serpentine) and symbiosis with arbuscular mycorrhizal fungi (AMF) in plant Ni tolerance. A semi-hydroponic experiment involving three levels of Ni and serpentine and non-serpentine AMF isolates and populations of a model plant species (Knautia arvensis) revealed considerable negative effects of elevated Ni availability on both plant and fungal performance. Plant growth response to Ni was independent of edaphic origin; however, higher Ni tolerance of serpentine plants was indicated by a smaller decline in the concentrations of photosynthetic pigments and restricted root-to-shoot Ni translocation. Serpentine plants also retained relatively more Mg in their roots, resulting in a higher shoot Ca/Mg ratio. AMF inoculation, especially with the non-serpentine isolate, further aggravated Ni toxicity to host plants. Therefore, AMF do not appear to be involved in Ni tolerance of serpentine K. arvensis plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号