首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
The rat lumbar spinal cord contains a sexually dimorphic motor nucleus, the spinal nucleus of the bulbocavernosus (SNB), whose motoneurons innnervate perineal muscles involved in copulatory reflexes. Dendritic development of SNB motoneurons is biphasic and androgen dependent. During the first 4 postnatal weeks, SNB dendrites grow exuberantly, and subsequently retract to mature lengths by 7 weeks of age. After early postnatal castration, SNB dendrites fail to grow, and testosterone replacement restores this growth. In other systems, testosterone and its metabolites, dihydrotestosterone and estrogen, are important for somatic and neural sexual differentiation. The purpose of the present study was to examine the effects of castration and dihydrotestosterone or estrogen replacement on the growth of SNB motoneuron somata and dendritic arbors. Male rat pups were castrated on postnatal (P) day 7 and treated daily with either dihydrotestosterone propionate (DHTP; 2 mg) or estradiol benzoate (EB; 100 μg) until P28 or P49. By using cholera toxin horseradish peroxidase (BHRP) histochemistry, the soma size, dendritic length, dendritic extent, and arbor area of BHRP-labeled SNB motoneurons were measured and analyzed. Both DHTP and EB treatment supported the initial exuberant growth of SNB dendrites through P28, but EB treatment was ineffective in maintaining mature, adult lengths at P49. The possible sites of hormone action and functional implications of these hormonal treatments are discussed. 1994 John Wiley & Sons, Inc.  相似文献   

2.
This study examined the effect of testosterone and two of its metabolites on the size of motoneurons in the sexually dimorphic spinal nucleus of the bulbocavernosus (SNB) in adult male rats. Treatment of castrates with either testosterone or dihydrotestosterone maintained SNB cell size, although testosterone was more effective in this regard. However, estradiol, either alone or in conjunction with dihydrotestosterone treatment, had no effect on the size of the somata or nuclei of SNB motoneurons. These results indicate that testosterone affects SNB cell size by interacting with androgen receptors and that aromatized metabolites of testosterone are not involved in this aspect of motoneuronal plasticity in adulthood. Because the penile reflexes mediated by the SNB neuromuscular system are also sensitive to androgen but not estrogen treatment, morphological changes in SNB cells may contribute to the androgenic modulation of these reflexes.  相似文献   

3.
Motoneuron loss is a significant medical problem, capable of causing severe movement disorders or even death. We have been investigating the effects of motoneuron loss on surviving motoneurons in a lumbar motor nucleus, the spinal nucleus of the bulbocavernosus (SNB). SNB motoneurons undergo marked dendritic and somal atrophy following the experimentally induced death of other nearby SNB motoneurons. However, treatment with testosterone at the time of lesioning attenuates this atrophy. Because testosterone can be metabolized into the estrogen estradiol (as well as other physiologically active steroid hormones), it was unknown whether the protective effect of testosterone was an androgen effect, an estrogen effect, or both. In the present experiment, we used a retrogradely transported neurotoxin to kill the majority of SNB motoneurons on one side of the spinal cord only in adult male rats. Some animals were also treated with either testosterone, the androgen dihydrotestosterone (which cannot be converted into estradiol), or the estrogen estradiol. As seen previously, partial motoneuron loss led to reductions in soma area and in dendritic length and extent in surviving motoneurons. Testosterone and dihydrotestosterone attenuated these reductions, but estradiol had no protective effect. These results indicate that the neuroprotective effect of testosterone on the morphology of SNB motoneurons following partial motoneuron depletion is an androgen effect rather than an estrogen effect.  相似文献   

4.
The rat lumbar spinal cord contains the steroid-sensitive spinal nucleus of the bulbocavernosus (SNB), whose motoneurons innervate perineal muscles involved in copulatory reflexes. In normal males, SNB motoneuron dendrites grow exuberantly through postnatal (P) day 28. This growth is steroid dependent: Dendrites fail to grow in males castrated at P7, but grow normally in castrates treated with testosterone or its metabolites, dihydrotestosterone combined with estrogen. Treatment with either metabolite alone supports dendritic growth, but not to the level of testosterone-treated or intact males. In this study, we tested the hypothesis that aromatization of androgens to estrogens was involved in the masculine development of SNB dendrites. Motoneuron morphology was assessed in normal males and males treated daily (P7-28) with fadrozole, a potent aromatase inhibitor (0.25 mg/kg, subcutaneously) or saline vehicle (n = 4-6/group). SNB motoneurons were retrogradely labeled with cholera toxin-horseradish peroxidase at P28 (when dendritic length is normally maximal) and reconstructed in three dimensions. Comparable labeling was seen across groups; it was equivalent in both the rostrocaudal and radial extents. However, dendritic lengths in fadrozole-treated males were significantly below those of intact or saline-treated males. Neither SNB somata size nor target muscle weight differed across groups. These results suggest that aromatization of androgens to estrogens is necessary for development of masculine SNB dendritic morphology.  相似文献   

5.
The lumbar spinal cord of rats contains the sexually dimorphic, steroid-sensitive spinal nucleus of the bulbocavernosus (SNB). Dendritic development of SNB motoneurons in male rats is biphasic, initially showing exuberant growth through 4 weeks of age followed by a retraction to mature lengths by 7 weeks of age. The initial growth is steroid dependent, attenuated by castration or aromatase inhibition, and supported by hormone replacement. Dendritic retraction is also steroid sensitive and can be prevented by testosterone treatment, but is unaffected by aromatase inhibition. Together, these results suggest a role for estrogens during the initial growth phase of SNB development. In this study, we tested whether ovarian hormones could support SNB somal and dendritic development. Motoneuron morphology was assessed in normal males and in females perinatally masculinized with dihydrotestosterone and then either ovariectomized or left intact. SNB motoneurons were retrogradely labeled with cholera toxin-HRP at 4 or 7 weeks of age and reconstructed in three dimensions. Initial growth of SNB dendrites was reduced after ovariectomy in masculinized females. However, no differences in dendritic length were seen at 7 weeks of age between intact and ovariectomized masculinized females, and lengths in both groups were significantly lower than those of normal males. Together with previous findings, these results suggest that estrogens are involved in the early growth of SNB dendrites, but not in their subsequent retraction.  相似文献   

6.
The lumbar spinal cord of rats contains the sexually dimorphic, steroid‐sensitive spinal nucleus of the bulbocavernosus (SNB). Dendritic development of SNB motoneurons in male rats is biphasic, initially showing exuberant growth through 4 weeks of age followed by a retraction to mature lengths by 7 weeks of age. The initial growth is steroid dependent, attenuated by castration or aromatase inhibition, and supported by hormone replacement. Dendritic retraction is also steroid sensitive and can be prevented by testosterone treatment, but is unaffected by aromatase inhibition. Together, these results suggest a role for estrogens during the initial growth phase of SNB development. In this study, we tested whether ovarian hormones could support SNB somal and dendritic development. Motoneuron morphology was assessed in normal males and in females perinatally masculinized with dihydrotestosterone and then either ovariectomized or left intact. SNB motoneurons were retrogradely labeled with cholera toxin‐HRP at 4 or 7 weeks of age and reconstructed in three dimensions. Initial growth of SNB dendrites was reduced after ovariectomy in masculinized females. However, no differences in dendritic length were seen at 7 weeks of age between intact and ovariectomized masculinized females, and lengths in both groups were significantly lower than those of normal males. Together with previous findings, these results suggest that estrogens are involved in the early growth of SNB dendrites, but not in their subsequent retraction. © 2001 John Wiley & Sons, Inc. J Neurobiol 48: 301–314, 2001  相似文献   

7.
The lumbar spinal cord of rats contains the sexually dimorphic, steroid‐sensitive spinal nucleus of the bulbocavernosus (SNB). Androgens are necessary for the development of the SNB neuromuscular system, and in adulthood, continue to influence the morphology and function of the motoneurons and their target musculature. However, estrogens are also involved in the development of the SNB system, and are capable of maintaining function in adulthood. In this experiment, we assessed the ability of testosterone metabolites, estrogens and nonaromatizable androgens, to maintain neuromuscular morphology in adulthood. Motoneuron and muscle morphology was assessed in adult normal males, sham‐castrated males, castrated males treated with testosterone, dihydrotestosterone, estradiol, or left untreated, and gonadally intact males treated with the 5α‐reductase inhibitor finasteride or the aromatase inhibitor fadrozole. After 6 weeks of treatment, SNB motoneurons were retrogradely labeled with cholera toxin‐HRP and reconstructed in three dimensions. Castration resulted in reductions in SNB target muscle size, soma size, and dendritic morphology. Testosterone treatment after castration maintained SNB soma size, dendritic morphology, and elevated target muscle size; dihydrotestosterone treatment also maintained SNB dendritic length, but was less effective than testosterone in maintaining both SNB soma size and target muscle weight. Treatment of intact males with finasteride or fadrozole did not alter the morphology of SNB motoneurons or their target muscles. In contrast, estradiol treatment was completely ineffective in preventing castration‐induced atrophy of the SNB neuromuscular system. Together, these results suggest that the maintenance of adult motoneuron or muscle morphology is strictly mediated by androgens. © 2009 Wiley Periodicals, Inc. Develop Neurobiol 70: 206–221, 2010.  相似文献   

8.
Rats possess a sexually dimorphic neuromuscular system that controls penile reflexes critical for copulation. This system includes two motor nuclei in the lumbar cord and their target musculature in the perineum. The spinal nucleus of the bulbocavernosus (SNB) and the dorsolateral nucleus (DLN) motoneuron populations and their target perineal muscles are much larger in males than in females. The sex difference in motoneuron number develops via androgen-regulated differential cell death during the perinatal period; androgen also regulates retention of the target muscles. The developmental pattern and steroid sensitivity of peripheral afferents to the SNB/DLN motor nuclei were previously unknown. In order to characterize the peripheral sensory component of the dimorphic SNB/DLN system, the neurons of the relevant dorsal root ganglia (DRGs) were quantified in terms of number, size, and androgen sensitivity at various perinatal ages. DRG neuron number is greatest prenatally, then decreases in both sexes after birth; the timing and pattern of neuron number development are similar to those seen in the SNB and DLN. Postnatally, males have more DRG neurons than females, as a result of greater neuron death in the DRGs of females. Females treated with testosterone propionate during the perinatal period exhibit masculine development of DRG neuron number. Thus, the normal development of DRG neuron number parallels that of the SNB/DLN motor nuclei and target muscles in pattern and timing, is sexually dimorphic, and is regulated by androgen. © 1993 John Wiley & Sons, Inc.  相似文献   

9.
The spinal nucleus of the bulbocavernosus (SNB) is a sexually dimorphic motor nucleus in the rat lumbar spinal cord. The sex difference arises through the androgenic sparing of the motoneurons and their target muscles from ontogenetic cell death. Indirect evidence suggests that androgen acts on the target muscles rather than directly on SNB motoneurons to spare them from death. The testicular feminization mutation (Tfm), a defect in the androgen receptor (AR), blocks androgenic sparing of SNB motoneurons and their targets. The pattern of AR immunocytochemistry was previously found to be different in adultTfmand wild-type rats: immunostaining was nuclear in most SNB cells of wild-type rats, but very few SNB cells display nuclear AR immunostaining in affectedTfmrats. Because theTfmmutation is carried on the X chromosome, random X inactivation during development makes female carriers ofTfm(+/Tfm) genetic mosaics for androgen sensitivity.Tfmcarriers, their wild-type sisters, and affectedTfmmales were treated with perinatal testosterone and immunocytochemistry was used to detect androgen receptor in the SNB when the rats reached adulthood. Mosaic females could be distinguished from their wild-type sisters by external morphology. In such perinatally androgenized mosaics, adult SNB cells were equally divided between wild-type andTfmgenotype, as indicated by AR immunocytochemistry. In contrast, the pattern of AR immunocytochemistry in target muscles of mosaics appeared similar to that of wild-type females. These results indicate that early androgen spared both androgen-sensitive and -insensitive motoneurons from cell death, confirming a site of androgen action other than the motoneurons themselves.  相似文献   

10.
The dorsolateral nucleus (DLN) and the spinal nucleus of the bulbocavernosus (SNB) of the rat lumbar spinal cord are sexually dimorphic groups of motoneurons that innervate striated perineal muscles involved in male copulatory behavior. Androgens control the development of these motoneurons and their target muscles, and continue to influence the system in adulthood. Given that several features of SNB motoneuron morphology have been shown to be androgen sensitive in adult male rats, we examined the effects of androgen manipulations on the morphology of motoneurons in the DLN in adult rats. Adult male rats were castrated and implanted with testosterone-filled or blank implants, or were subjected to a sham-castration procedure. Six weeks after treatment, motoneurons in the DLN were retrogradely labeled with cholera toxin-horseradish peroxidase (HRP) after injection into the ischiocavernosus (IC) muscle and their morphology assessed. Measures of the radial extent and coverage of the dendritic arbor of DLN motoneurons projecting to the IC (DLN-IC motoneurons) were similar across the groups, indicating comparable degrees of HRP transport. However, DLN-IC motoneurons in castrates with blank implants possessed both shorter dendritic lengths and smaller somas than those of castrates treated with testosterone. Castrates with testosterone implants had DLN-IC motoneurons that were significantly larger than those of sham castrates in dendritic length and soma area. These results suggest that motoneurons in the DLN, like those in the SNB, possess a significant degree of structural plasticity in adulthood which is influenced by androgens.  相似文献   

11.
Gonadal steroids exhibit neuroprotective and neurotherapeutic effects. The lumbar spinal cord of male rats contains a highly androgen-sensitive population of motoneurons, the spinal nucleus of the bulbocavernosus (SNB), whose morphology and function are dependent on testosterone in adulthood. Unilateral SNB motoneuron depletion induces dendritic atrophy in contralateral SNB motoneurons, but this atrophy is reversed in previously castrated males treated with testosterone. In the present experiment we test the hypothesis that the morphology of SNB motoneurons is protected from atrophy after contralateral motoneuron depletion by exogenous testosterone alone (i.e., with no delay between castration and testosterone replacement). We unilaterally depleted SNB motoneurons by intramuscular injection of cholera toxin conjugated saporin. Simultaneously, some saporin-injected rats were castrated and immediately given replacement testosterone. Four weeks later, contralateral SNB motoneurons were labeled with cholera toxin conjugated HRP, soma sizes were measured, and dendritic arbors were reconstructed. Contralateral SNB motoneuron depletion induced somal atrophy and dendritic retraction, but testosterone treatment prevented both of these effects. Thus, the presence of high-normal levels of testosterone prevents motoneuron atrophy induced by contralateral motoneuron depletion. These data support a therapeutic role for testosterone in preventing atrophy induced by motoneuron injury.  相似文献   

12.
The dorsolateral nucleus (DLN) and the spinal nucleus of the bulbocavernosus (SNB) of the rat lumbar spinal cord are sexually dimorphic groups of motoneurons that innervate striated perineal muscles involved in male copulatory behavior. Androgens control the development of these motoneurons and their target muscles, and continue to influence the system in adulthood. Given that several features of SNB motoneuron morphology have been shown to be androgen sensitive in adult male rats, we examined the effects of androgen manipulations on the morphology of motoneurons in the DLN in adult rats. Adult male rats were castrated and implanted with testosterone-filled or blank implants, or were subjected to a sham-castration procedure. Six weeks after treatment, motoneurons in the DLN were retrogradely labeled with cholera toxin-horseradish peroxidase (HRP) after injection into the ischiocavernosus (IC) muscle and their morphology assessed. Measures of the radial extent and coverage of the dendritic arbor of DLN motoneurons projecting to the IC (DLN-IC motoneurons) were similar across the groups, indicating comparable degrees of HRP transport. However, DLN-IC motoneurons in castrates with blank implants possessed both shorter dendritic lengths and smaller somas than those of castrates treated with testosterone. Castrates with testosterone implants had DLN-IC motoneurons that were significantly larger than those of sham castrates in dendritic length and soma area. These results suggest that motoneurons in the DLN, like those in the SNB, possess a significant degree of structural plasticity in adulthood which is influenced by androgens.  相似文献   

13.
Motoneurons in the spinal nucleus of the bulbocavernosus (SNB) innervate the perineal muscles, bulbocavernosus (BC), and levator ani (LA). Testosterone regulates the survival of SNB motoneurons and BC/LA muscles during perinatal life. Previous findings suggest that effects of testosterone on this system may be mediated by trophic factors-in particular, by a factor acting through the ciliary neurotrophic factor alpha-receptor (CNTFRalpha). To test the role of CNTFRalpha in the response of the developing SNB system to testosterone, CNTFRalpha +/+ and -/- mice were treated with testosterone propionate (TP) or oil during late embryonic development. BC/LA muscle size and SNB motoneuron number were evaluated on the day of birth. Large sex differences in BC and LA muscle size were present in newborn mice of both genotypes, but muscle volumes were reduced in CNTFRalpha -/- animals relative to same-sex, wild-type controls. Prenatal testosterone treatment completely eliminated the sex difference in BC/LA muscle size in wild-type animals, and eliminated the effect of the CNTFRalpha gene deletion on muscle size in males. However, the effect of TP treatment on BC and LA muscle sizes was blunted in CNTFRalpha -/- females. SNB motoneuron number was sexually dimorphic in oil-treated, wild-type mice. In contrast, there was no sex difference in SNB motoneuron number in oil-treated, CNTFRalpha knockout mice. Prenatal treatment with testosterone did not increase SNB motoneuron number in CNTFRalpha -/- mice, but also did not significantly increase SNB motoneuron number in newborn wild-type animals. These findings confirm the absence of a sex difference in SNB motoneuron number in CNTFRalpha -/- mice. Moreover, the CNTFRalpha gene deletion influences perineal muscle development and the response of the perineal muscles to testosterone. Prenatal TP treatment of CNTFRalpha -/- males overcomes the effects of the gene deletion on the BC and LA muscles without a concomitant effect on SNB motoneuron number.  相似文献   

14.
A sexual dimorphism in the number of motoneurons in the spinal nucleus of the bulbocavernosus (SNB) of rats is engendered by a sex difference in ontogenetic cell death. Testicular secretions, specifically androgenic steroids, reduce SNB motoneuron death in males. The fate of the target muscles generally mirrors that of the motoneurons, and androgens appear to exert their effects upon the target muscles, sparing the motoneurons as a secondary consequence. Treatment with ciliary neurotrophic factor can also spare SNB motoneurons in newborn females, raising the possibility that this factor normally mediates androgen's effect upon motoneuron survival. The ontogeny of calcitonin gene-related peptide immunoreactivity is delayed in SNB cells compared with other motoneurons and is further delayed in the SNB cells of females. In both sexes, calcitonin gene-related peptide is detected after the period of SNB motoneuron death is complete. A sex difference in motoneuron number is also seen in the human homologue of the SNB and, because ontogenetic death of motoneurons in humans overlaps the period of androgen secretion, may arise in a manner similar to that in the rat SNB.  相似文献   

15.
Motoneurons in the spinal nucleus of the bulbocavernosus (SNB) innervate the perineal muscles, bulbocavernosus (BC), and levator ani (LA). Testosterone regulates the survival of SNB motoneurons and BC/LA muscles during perinatal life. Previous findings suggest that effects of testosterone on this system may be mediated by trophic factors—in particular, by a factor acting through the ciliary neurotrophic factor α‐receptor (CNTFRα). To test the role of CNTFRα in the response of the developing SNB system to testosterone, CNTFRα +/+ and −/− mice were treated with testosterone propionate (TP) or oil during late embryonic development. BC/LA muscle size and SNB motoneuron number were evaluated on the day of birth. Large sex differences in BC and LA muscle size were present in newborn mice of both genotypes, but muscle volumes were reduced in CNTFRα −/− animals relative to same‐sex, wild‐type controls. Prenatal testosterone treatment completely eliminated the sex difference in BC/LA muscle size in wild‐type animals, and eliminated the effect of the CNTFRα gene deletion on muscle size in males. However, the effect of TP treatment on BC and LA muscle sizes was blunted in CNTFRα −/− females. SNB motoneuron number was sexually dimorphic in oil‐treated, wild‐type mice. In contrast, there was no sex difference in SNB motoneuron number in oil‐treated, CNTFRα knockout mice. Prenatal treatment with testosterone did not increase SNB motoneuron number in CNTFRα −/− mice, but also did not significantly increase SNB motoneuron number in newborn wild‐type animals. These findings confirm the absence of a sex difference in SNB motoneuron number in CNTFRα −/− mice. Moreover, the CNTFRα gene deletion influences perineal muscle development and the response of the perineal muscles to testosterone. Prenatal TP treatment of CNTFRα −/− males overcomes the effects of the gene deletion on the BC and LA muscles without a concomitant effect on SNB motoneuron number. © 1999 John Wiley & Sons, Inc. J Neurobiol 41: 317–325, 1999  相似文献   

16.
A sexual dimorphism in the number of motoneurons in the spinal nucleus of the bulbocavernosus (SNB) of rats is engendered by a sex difference in ontogenetic cell death. Testicular secretions, specifically androgenic steroids, reduce SNB motoneuron death in males. The fate of the target muscles generally mirrors that of the motoneurons, and androgens appear to exert their effects upon the target muscles, sparing the motoneurons as a secondary consequence. Treatment with ciliary neurotrophic factor can also spare SNB motoneurons in newborn females, raising the possibility that this factor normally mediates androgen's effect upon motoneuron survival. The ontogeny of calcitonin gene-related peptide immunoreactivity is delayed in SNB cells compared with other motoneurons and is further delayed in the SNB cells of females. In both sexes, calcitonin gene-related peptide is detected after the period of SNB motoneuron death is complete. A sex difference in motoneuron number is also seen in the human homologue of the SNB and, because ontogenetic death of motoneurons in humans overlaps the period of androgen secretion, may arise in a manner similar to that in the rat SNB. © 1992 John Wiley & Sons, Inc.  相似文献   

17.
The striated bulbocavernosus (BC) muscles of the rodent perineum are innervated by motoneurons in the spinal nucleus of the bulbocavernosus (SNB). In adulthood, the BC muscles are present in males only. However, newborn female rats have BC muscles, and SNB cells have made both anatomical and functional contact with them. Nevertheless, both motoneurons and muscles will degenerate unless androgens are administered perinatally. Such androgen treatment appears to be acting primarily on the BC muscles themselves, since the muscles are spared by androgen even after the loss of supraspinal neural afferents or even the entire lumbosacral spinal cord. Furthermore, androgen can spare SNB motoneurons that are themselves androgen insensitive. Perinatal steroid treatments can also alter the final spinal location of SNB cells as determined by retrograde tracing studies. Androgen continues to modify the morphology of the SNB system in adulthood, altering the size of both motoneurons and targets, which may be important for the reproductive function of BC muscles. Finally, the sexually dimorphic character of motoneuronal groups innervating perineal muscles seems to be common in mammals, since the homologue of the SNB, Onuf's nucleus, has more cells in males than in females in both dogs and humans.  相似文献   

18.
The lumbar spinal cord of rats contains the sexually dimorphic, steroid-sensitive spinal nucleus of the bulbocavernosus (SNB). In males, the growth of SNB dendrites is steroid-dependent: dendrites fail to grow after castration, but grow in castrates treated with androgens or estrogens. Blocking estradiol synthesis or estrogen receptors in gonadally intact males attenuates SNB dendritic growth, suggesting that estrogens are required and must be able to act at their receptors to support normal masculine dendritic growth. However, SNB motoneurons do not accumulate estrogens, suggesting that estrogens act indirectly to support SNB dendritic growth. In this experiment, we examined whether local estrogen action in the neuromuscular periphery was involved in the postnatal development of SNB motoneurons. Motoneuron morphology was assessed in gonadally intact and castrated males. Gonadally intact males were left untreated or given either blank or tamoxifen implants sutured to the target musculature, or tamoxifen interscapular implants. Castrated males were left untreated or were given estradiol by muscle or interscapular implants or systemic injection during the period of SNB dendritic growth. At postnatal day 28, when SNB dendritic length is normally maximal, SNB motoneurons were retrogradely labeled with cholera toxin-HRP and reconstructed in three dimensions. While interscapular tamoxifen implants were ineffective, blocking estrogen receptors at the target musculature resulted in attenuation of SNB dendritic growth. In contrast, while interscapular implants of estradiol were ineffective, local treatment with estradiol at the target musculature in castrated males resulted in masculinization of dendritic growth. Thus, estrogens may act by an indirect action in the neuromuscular periphery to support SNB dendritic growth.  相似文献   

19.
Motoneuron death in the spinal nucleus of the bulbocavernosus (SNB) and the dorsolateral nucleus (DLN) of the lumbar spinal cord is androgen regulated. As a result, many more SNB and DLN motoneurons die in perinatal female rats than in males, whereas treatment of newborn females with androgen results in a permanent sparing of the motoneurons and their target muscles. We previously observed that a neurotrophic molecule, ciliary neurotrophic factor (CNTF), also arrests the death of SNB motoneurons and their target musculature, at least in the short term. The present study compares the short- and long-term consequences of perinatal CNTF treatment on motoneuron number in the SNB, the DLN, and the retrodorsolateral nucleus (RDLN), a motor pool in the lower lumbar cord that does not exhibit hormone-regulated cell death. Female pups were treated with CNTF or vehicle alone from embryonic day 22 through postnatal day 6 (P6). Motoneuron number in each nucleus was then determined immediately after treatment on P7, or 10 weeks later (P77). CNTF treatment significantly elevated motoneuron number in the SNB and DLN on P7; the volume of SNB target muscles on P7 was also greater in the CNTF-treated group. These effects were transient, however, as motoneuron number and ratings of muscle size were not different in CNTF- and vehicle-treated females on P77. Perinatal CNTF treatment did not alter cell number in the RDLN at either age. The finding that effects of CNTF on SNB and DLN motoneuron number are short lived contrasts with the permanent effects of early androgen treatment, and has implications for molecular models of the actions of androgen and neurotrophic factors on the developing spinal cord. © 1996 John Wiley & Sons, Inc.  相似文献   

20.
The spinal cord of rats contains the sexually dimorphic motoneurons of the spinal nucleus of the bulbocavernosus (SNB). In males, SNB dendrites fail to grow after castration, but androgen or estrogen treatment supports dendritic growth in castrated males. Estrogenic support of SNB dendrite growth is mediated by estrogen receptors (ER) in the target muscle. ERα expression in cells lacking a basal lamina (referred to as “extra‐muscle fiber cells”) of the SNB target musculature coincides with the period of estrogen‐dependent SNB dendrite growth. In the SNB target muscle, extra‐muscle fiber ERα expression declines with age and is typically absent after postnatal (P) day 21 (P21). Given that estradiol downregulates ERα in skeletal muscle, we tested the hypothesis that depleting gonadal hormones would prevent the postnatal decline in ERα expression in the SNB target musculature. We castrated male rats at P7 and assessed ERα immunolabeling at P21; ERα expression was significantly greater in castrated males compared with normal animals. Because ERα expression in SNB target muscles mediates estrogen‐dependent SNB dendrogenesis, we further hypothesized that the castration‐induced increase in muscle ERα would heighten the estrogen sensitivity of SNB dendrites. Male rats were castrated at P7 and treated with estradiol from P21 to P28; estradiol treatment in castrates resulted in dendritic hypertrophy in SNB motoneurons compared with normal males. We conclude that early castration results in an increase in ERα expression in the SNB target muscle, and this upregulation of ERα supports estrogen sensitivity of SNB dendrites, allowing for hypermasculinization of SNB dendritic arbors. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 73: 921–935, 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号