首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Transient transfection of recombinant genes into cells is a commonly used approach for analyzing cell-cycle- and/or apoptotic-related activities of cell-cycle control proteins. In this approach, information regarding the functional consequence of expressing a recombinant protein transiently is garnered by comparing against results obtained from cells which are transfected with either a control expression plasmid and/or with mutant expression plasmids. In general however, little attention is paid to whether the transfection procedure itself influences these experiments. Using the calcium phosphate transfection method, we show that the introduction of DNA into cells induces signaling of the cell-cycle control machinery. In Hela cells, a transient increase in G0/G1 cells is observed 8 h after transfection. Furthermore, the introduction of DNA into several cell lines induces apoptosis. Transfection-mediated apoptosis can be elicited through a p53-independent mechanism, suggesting the possible extrapolation to many tumor cell lines. Last, we show that due to a likely cell-cycle-specific entry of marker genes into the nucleus, a highly biased cell-cycle distribution is observed in successfully transfected cells at early times following transfection. The importance of these issues in the interpretation as well as the design of transient transfection-based cell-cycle experiments is discussed.  相似文献   

3.
4.
Background: MYCN oncogene amplification occurs in 20-25% of neuroblastoma and is associated with a poor prognosis. We previously reported that MYCN amplified (MNA) p53 wild-type neuroblastoma cell lines failed to G1 arrest in response to irradiation, but this could not be attributed to MYCN alone. Hypothesis: Genes co-amplified with MYCN and/or the predominant cell type, neuronal (N) or substrate adherent (S) phenotypes determine the downstream response to DNA damage in neuroblastoma cell lines. Methods: The MYCN amplicons of five MNA and two non-MNA cell line were mapped using 50K Single Nucleotide Polymorphism (SNP) arrays. One MNA (NBL-W) and one non-MNA neuroblastoma cell line (SKNSH) were sub-cloned into N and S-type cells and the p53 pathway investigated after irradiation induced DNA damage. To determine the role of p53 it was knocked down using siRNA. Results: No genes with a potential role in cell cycle regulation were consistently co-amplified in the MNA cell lines studied. High MYCN expressing NBLW-N cells failed to G1 arrest following irradiation and showed impaired induction of p21 and MDM2, whereas low MYCN expressing NBLW-S cells underwent a G1 arrest with induction of p21 and MDM2. Conversely N type cells underwent higher levels of apoptosis than S type cells. Following p53 knockdown in SHSY5Y N-type cells there was a decrease in apoptosis. Conclusions: The downstream response to DNA damage in p53 wild-type neuroblastoma cell lines is p53 dependent, and determined both by the morphological sub-type and MYCN expression.  相似文献   

5.
A transfection assay with a lymphoblastoid cell line infected with Epstein-Barr virus was used to compare the abilities of type 1 and type 2 EBNA2 to sustain cell proliferation. The reduced proliferation in cells expressing type 2 EBNA2 correlated with loss of expression of some cell genes that are known to be targets of type 1 EBNA2. Microarray analysis of EBNA2 target genes identified a small number of genes that are more strongly induced by type 1 than by type 2 EBNA2, and one of these genes (CXCR7) was shown to be required for proliferation of lymphoblastoid cell lines. The Epstein-Barr virus LMP1 gene was also more strongly induced by type 1 EBNA2 than by type 2, but this effect was transient. Type 1 and type 2 EBNA2 were equally effective at arresting cell proliferation of Burkitt's lymphoma cell lines lacking Epstein-Barr virus and were also shown to cause apoptosis in these cells. The results indicate that differential gene regulation by Epstein-Barr virus type 1 and type 2 EBNA2 may be the basis for the much weaker B-cell transformation activity of type 2 Epstein-Barr virus strains compared to type 1 strains.  相似文献   

6.
7.
8.
9.
10.
11.
Malignant neuroblastoma is an extracranial solid tumor that usually occurs in children. Autophagy, which is a survival mechanism in many solid tumors including malignant neuroblastoma, deters the efficacy of conventional chemotherapeutic agents. To mimic starvation, we used 200 nM rapamycin that induced autophagy in human malignant neuroblastoma SK-N-BE2 and IMR-32 cells in cell culture and animal models. Combination of microtubule associated protein light chain 3 short hairpin RNA (LC3 shRNA) plasmid transfection and genistein (GST) treatment was tested for inhibiting rapamycin-induced autophagy and promoting apoptosis. The best synergistic efficacy caused the highest decrease in cell viability due to combination of 50 nM LC3 shRNA plasmid transfection and 25 µM GST treatment in rapamycin-treated SK-N-BE2 cells while combination of 100 nM LC3 shRNA plasmid transfection and 25 µM GST treatment in rapamycin-treated IMR-32 cells. Quantitation of acidic vesicular organelles confirmed that combination of LC3 shRNA plasmid transfection and GST treatment prevented rapamycin-induced autophagy due to down regulation of autophagy promoting marker molecules (LC3 II, Beclin 1, TLR-4, and Myd88) and upregulation of autophagy inhibiting marker molecules (p62 and mTOR) in both cell lines. Apoptosis assays showed that combination therapy most effectively activated mitochondrial pathway of apoptosis in human malignant neuroblastoma in cell culture and animal models. Collectively, our current combination of LC3 shRNA plasmid transfection and GST treatment could serve as a promising therapeutic strategy for inhibiting autophagy and increasing apoptosis in human malignant neuroblastoma in cell culture and animal models.  相似文献   

12.
Neuroblastoma is a childhood tumor with a poor survival in advanced stage disease despite intensive chemotherapeutic regimes. The new histone deacetylase (HDAC) inhibitor BL1521 has shown promising results in neuroblastoma. Inhibition of HDAC resulted in a decrease in proliferation and metabolic activity, induction of apoptosis and differentiation of neuroblastoma cells. In order to elucidate the mechanism mediating the effects of BL1521 on neuroblastoma cells, we investigated the gene expression profile of an MYCN single copy (SKNAS) and an MYCN amplified (IMR32) neuroblastoma cell line after treatment with BL1521 using the Affymetrix oligonucleotide array U133A. An altered expression of 255 genes was observed in both neuroblastoma cell lines. The majority of these genes were involved in gene expression, cellular metabolism, and cell signaling. We observed changes in the expression of vital genes belonging to the cell cycle (cyclin D1 and CDK4) and apoptosis (BNIP3, BID, and BCL2) pathway in response to BL1521. The expression of 37 genes was altered by both BL1521 and Trichostatin A, which could indicate a common gene set regulated by different HDAC inhibitors. BL1521 treatment changed the expression of a number of MYCN-associated genes. Several genes in the Wnt and the Delta/Notch pathways were changed in response to BL1521 treatment, suggesting that BL1521 is able to induce the differentiation of neuroblastoma cells into a more mature phenotype.  相似文献   

13.
Neuroblastoma is the most common solid tumor of infancy, accounting for 15% of all cancer cell deaths in children. Expression of the anti-apoptotic protein survivin in these tumors correlates with poor prognostic features and resistance to therapy. The mammalian target of rapamycin (mTOR) protein is being explored as a potential therapeutic target in patients with this disease. The objective of this study was to test the hypothesis that rapamycin regulates survivin expression and function in neuroblastoma cells. To explore this hypothesis, we treated two different neuroblastoma lines (NB7, NB8) and a well-characterized control lung cancer cell line, A549, with varying doses of rapamycin (0.1-10μM) for serial time points (2-48 hours). RNA and protein expression levels were then evaluated by quantitative RT-PCR and western blotting, respectively. Cell proliferation and apoptosis were assayed by WST-1 and Annexin V. The results showed a rapamycin-dependent increase in survivin mRNA and protein levels in the neuroblastoma cell lines in a dose- and time-dependent fashion, while a decrease in these levels was observed in control cells. Rapamycin inhibited cell proliferation in both A549 and neuroblastoma cells however neuroblastoma cells had less apoptosis than A549 cells (9% vs. 20%). In summary, our results indicate that rapamycin induces expression of the anti-apoptotic protein survivin in neuroblastoma cells which may protect these cells from programmed cell death. Induction of survivin by rapamycin could therefore be a potential mechanism of neuroblastoma tumor cell resistance and rapamycin may not be an effective therapeutic agent for these tumors.  相似文献   

14.
Clusterin/apolipoprotein J in human aging and cancer   总被引:25,自引:0,他引:25  
Clusterin/Apolipoprotein J (ApoJ) is a heterodimeric highly conserved secreted glycoprotein being expressed in a wide variety of tissues and found in all human fluids. Despite being cloned since 1989, no genuine function has been attributed to ApoJ so far. The protein has been reportedly implicated in several diverse physiological processes such as sperm maturation, lipid transportation, complement inhibition, tissue remodeling, membrane recycling, cell-cell and cell-substratum interactions, stabilization of stressed proteins in a folding-competent state and promotion or inhibition of apoptosis. ApoJ gene is differentially regulated by cytokines, growth factors and stress-inducing agents, while another defining prominent and intriguing ApoJ feature is its upregulation in many severe physiological disturbances states and in several neurodegenerative conditions mostly related to advanced aging. Moreover, ApoJ accumulates during the viable growth arrested cellular state of senescence, that is thought to contribute to aging and to tumorigenesis suppression; paradoxically ApoJ is also upregulated in several cases of in vivo cancer progression and tumor formation. This review focuses on the reported data related to ApoJ cell-type and signal specific regulation, function and site of action in normal and cancer cells. We discuss the role of ApoJ during cellular senescence and tumorigenesis, especially under the light of the recently demonstrated various ApoJ intracellular protein forms and their interaction with molecules involved in signal transduction and DNA repair, raising the possibility that its overexpression during cellular senescence might cause a predisposition to cancer.  相似文献   

15.
The LGI1 gene has been implicated in the malignant progression of glioblastoma and it has also been genetically linked to a form of partial epilepsy (ADLTE). In this study, we investigated the relevance of LGI1 expression for neuroblastoma cells. The analysis of two cell lines (SH-SY5Y and SK-N-BE) revealed unpredictably low levels of LGI1 and stable cell transfection with LGI1 cDNA yielded moderate increases of LGI1 expression. Neuroblastoma cell clones exhibited impaired cell growth and survival ability in relation to LGI1 levels. The process of growth inhibition could be discerned under experimental conditions of low cell density, since conditions of elevated cell density, which enhance the requirement for survival stimuli, resulted in massive cellular death. At high cell density, spontaneous apoptosis of LGI1 cells was clearly shown by the release of cytochrome c and apoptosis inducing factor (AIF) from mitochondria and by phosphatydil serine exposure and nuclear fragmentation. Activation of apoptotic effectors caspase-3/7 also occurred, however, the broad caspase inhibitor Z-VAD-FMK substantially failed to block cell death. Thus the possibility that LGI1-triggered apoptosis may involve initiator caspases linked to activation of death receptors, appears unlikely. The decreased ratio of Bcl-2 to Bax suggests that apoptosis is initiated by the intrinsic mitochondrial pathway through the release of caspase-dependent and -independent apoptogenic molecules. This study provides the first evidence that LGI1 controls neuronal cell survival, suggesting its role in the development of the nervous system in relation to the pathogenesis of neuroblastoma and ADLTE.  相似文献   

16.
The parameters affecting electroporation of four human hematopoietic cell lines were investigated. The optimal conditions for electroporation are described for both transient and stable expression of foreign genes. A correlation exists between the levels of transient gene expression and stable transfection frequency. In addition, linear DNA yields higher stable transfection frequencies than supercoiled DNA. The cumulative results indicate that electroporation is a simple and useful method for obtaining transient and stable expression of foreign genes in human hematopoietic cells.  相似文献   

17.
18.
Over-consumption of ethanol (EtOH) represents a major health problem. This study was to test the cytotoxicity of EtOH in cardiac stem cells or myoblasts, and the potential protective effect of apolipoprotein-J (ApoJ), a stress-responding, chaperone-like protein in high-density lipoprotein, on EtOH-injured cardiac myoblasts. In culture, EtOH-exposed canine fetal myoblasts underwent apoptosis in a concentration- and time-dependent manner. Expression ApoJ by cDNA transfection markedly reduced EtOH-induced apoptosis in the cells. ApoJ expression also restored partially the mitochondrial membrane potential and prevented the release of cytochrome-c from mitochondria into cytoplasma. Thus, ApoJ serves as a cytoprotective protein that protects cardiac stem cells against EtOH cytotoxicity.  相似文献   

19.
The functional role of clusterin in apoptosis was examined using flow cytometry. Clusterin cDNA was transfected into the mouse neuroblastoma cell line, B103, in order to determine if clusterin overexpression inhibits apoptosis. The increased clusterin expression level in the B103 cells tended to suppress the apoptotic index. This suggests an association of clusterin gene expression with apoptosis inhibition. These results support the conclusion that clusterin expression in B103 cells has an anti-apoptotic influence.  相似文献   

20.
The CD95 (APO-1/Fas) system can mediate apoptosis in immune cells as well as in tumour cells, where it may contribute to tumour immune-escape. On the other hand, its induction by anticancer drugs may lead to tumour reduction. Interferongamma (IFNgamma) increases the sensitivity of tumour cell lines to anti-CD95 antibody-mediated apoptosis. We describe induction of apoptosis by IFNgamma through the expression of CD95 and its ligand (CD95L) in human neuroblastoma cell lines. Neuroblastoma cells showed low constitutive expression of CD95 and CD95L. Subsequent to IFNgamma-modulated increase in CD95 and CD95L mRNA as well as protein levels, apoptosis was observed. Our results demonstrated that cytokine-mediated apoptosis was mediated through the activation of the CD95/CD95L autocrine circuit since: (i) cell death occurred following CD95/CD95L expression and correlated with CD95 and CD95L expression levels, (ii) failed to occur in a clone which weakly upregulated CD95 and lacked CD95L induction after IFNgamma stimulation, (iii) was at least partially inhibited by using blocking F(ab')2 anti-CD95 antibody fragments and the recombinant Fas-Fc protein, that prevented the interaction between CD95 and CD95L. The intracellular molecular mechanisms elicited by IFNgamma are clearly highly complex, with several signalling pathways being activated, including the CD95 system. These findings suggest that IFNgamma may have a significant potential in the therapy of neuroblastoma in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号