首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The pathways of metabolic processing of exogenously administered GM1 ganglioside in rat liver was investigated at the subcellular level. The GM1 used was 3H-labelled at the level of long-chain base ([Sph(sphingosine)-3H]GM1) or of terminal galactose ([Gal-3H]GM1). The following radioactive compounds, derived from exogenous GM1, were isolated and chemically characterized: gangliosides GM2, GM3, GD1a and GD1b (nomenclature of Svennerholm [(1964) J. Lipid Res. 5, 145-155] and IUPAC-IUB Recommendations [(1977) Lipids 12, 455-468]); lactosylceramide, glucosylceramide and ceramide; sphingomyelin. GM2, GM3, lactosylceramide, glucosylceramide and ceramide, relatively more abundant shortly after GM1 administration, were mainly present in the lysosomal fraction and reflected the occurrence of a degradation process. 3H2O was also produced in relevant amounts, indicating complete degradation of GM1, although no free long-chain bases could be detected. GD1a and GD1b, relatively more abundant later on after administration, were preponderant in the Golgi-apparatus fraction and originated from a biosynthetic process. More GD1a was produced starting from [Sph-3H]GM1 than from [Gal-3H]GM1, and radioactive GD1b was present only after [Sph-3H]GM1 injection. This indicates the use of two biosynthetic routes, one starting from a by-product of GM1 degradation, the other implicating direct sialylation of GM1. Both routes were used to produce GD1a, but only the first one for producing GD1b. Sphingomyelin was the major product of GM1 processing, especially at the longer times after injection, and arose from a by-product of GM1 degradation, most likely ceramide.  相似文献   

2.
The qualitative and quantitative pattern of endogenous gangliosides and the routes of metabolic processing of exogenous GM1,3H labeled in the sphingosine moiety (Sph-3H GM1) were studied in cerebellar granule cells during differentiation in vitro. During the first 7–8 days in culture the ganglioside content markedly increased, and the qualitative pattern showed, in percentage terms, a drastic decrease of GD3 and a marked increase of GD2, O-Ac-GT1b, O-Ac-GQ1b and GQ1b. After pulse with (Sph-3H) GM1, at all the investigated days in culture, different radiolabelled lipids were formed indicating that taken up exogenous GM1 was degraded and that its catabolic fragments, and partly GM1 itself, were used for biosynthetic purposes; moreover radioactive water was measured in the culture medium during chase indicating that labelled sphingosine underwent also degradation. The uptake of exogenous GM1 and the extent of its metabolic processing per cell unit increased during differentiation: a) GM2 was the major metabolic product and was relatively more abundant at 2 than 7 days in culture; b) the percentage of metabolites of biosynthetic origin over total metabolites increased during differentiation, especially at the short pulse times; c) among the metabolites of anabolic origin sphingomyelin equalled gangliosides at 2 days, whereas it was largely overcome by gangliosides at 7 days in culture; d) at 4 and 7 days in culture a radioactive substance, not yet identified, was present, whereas no trace of it was found at 2 days. In conclusion, cerebellar granule cells in culture feature a different pattern of endogenous gangliosides and display different ability to metabolically process exogenous GM1 ganglioside in the undifferentiated and fully differentiated stage.Abbreviations used: this article follows the ganglioside nomenclature of Svennerholm [J. Lipid Res., 5, 145–155, (1964)] and the IUPAC-IUP recommendations for lipid nomenclature [Lipids, 12, 455–468, (1977)] NeuAc N-Acetylneuraminic acid; sph, sphingosine - O-Ac O-acetylated - TLC thin layer chromatography  相似文献   

3.
Uncoupling of ganglioside biosynthesis by Brefeldin A   总被引:13,自引:0,他引:13  
We have studied the effect of Brefeldin A (BFA), an antiviral antibiotic, on glycosphingolipid metabolism in primary cultured cerebellar cells. Cells were labeled metabolically with [14C]galactose, or pulse-labeled with precursors of glycosphingolipid biosynthesis; i.e., [14]serine, [3H]palmitic acid or [3H]sphingosine. In all cases BFA (1 microgram/ml) strongly inhibited (75-95%) ganglioside biosynthesis beyond the stage of GM3 and GD3, that is the formation of GM1, GD1a, GT1b and GQ1b. Simultaneously an accumulation of GlcCer, LacCer, GM3 and GD3 was observed (up to 2000%). These effects could be reversed fully by removal of the BFA from the culture medium. These results indicate that the LacCer-, GM3- and GD3-synthases of murine cerebellar cells are localized together on the proximal site of the Golgi apparatus, probably in the cis-Golgi compartment. It is probable that sphingomyelin synthase and some of the other glycosyltransferases involved in ganglioside biosynthesis are localized in distinct compartments beyond the cis Golgi.  相似文献   

4.
Subcellular distribution and biosynthesis of rat liver gangliosides   总被引:6,自引:0,他引:6  
Gangliosides have generally been assumed to be localized primarily in the plasma membrane. Analysis of gangliosides from isolated subcellular membrane fractions of rat liver indicated that 76% of the total ganglioside sialic acid was present in the plasma membrane. Mitochondria and endoplasmic reticulum fractions, while containing only low levels of gangliosides on a protein basis, each contained approx. 10% of total ganglioside sialic acid. Gangliosides also were present in the Golgi apparatus and nuclear membrane fractions, and soluble gangliosides were in the supernatant. Individual gangliosides were non-homogeneously distributed and each membrane fraction was characterized by a unique ganglioside composition. Plasma membrane contained only 14 and 28% of the total GD1a and GD3, respectively, but 80-90% of the GM1, GD1b, GT1b and GQ1b. Endoplasmic reticulum, when corrected for plasma membrane contamination, contained only trace amounts of GM1, GD1b, GT1b and GQ1b, but 11 and 5% of the total GD1a and GD3, respectively. The ganglioside composition of highly purified endoplasmic reticulum was similar. Ganglioside biosynthetic enzymes were concentrated in the Golgi apparatus. However, low levels of these enzymes were present in the highly purified endoplasmic reticulum fractions. Pulse-chase experiments with [3H]galactose revealed that total gangliosides were labeled first in the Golgi apparatus, mitochondria and supernatant within 10 min. Labeled gangliosides were next observed at 30 min in the endoplasmic reticulum, plasma membrane and nuclear membrane fractions. Analysis of the individual gangliosides also revealed that GM3, GM1, GD1a and GD1b were labeled first in the Golgi apparatus at 10 min. These studies indicate that gangliosides synthesized in the Golgi apparatus may be transported not only to the plasma membrane, but to the endoplasmic reticulum and to other internal endomembranes as well.  相似文献   

5.
The metabolism of exogenous gangliosides in the CNS has been investigated using cerebellar granule cells in culture as a model. For this purpose, GM2 and GM1, both isotopically radiolabeled at the level of the terminal sugar residue or of the long chain base moiety, were administered to differentiated cells for a 15-h pulse, and their metabolic fate was followed in a time course protocol. At each time investigated (1, 2, and 4 days after the pulse), several compounds, besides the ones administered, were detected: (a) GM2 (only after GM1 was given), GM3, lactosylceramide, glucosylceramide, and ceramide, all products of ganglioside stepwise catabolism; (b) GM1 (only after GM2 was given), GD1a, GD1b, O-Ac-GT1b, and GT1b, that is, gangliosides more complex than the one administered; and (c) sphingomyelin. The compounds derived from ganglioside catabolism and sphingomyelin were detected only after administration of long chain base-labeled precursors, whereas the others were found regardless of the labeling position of the precursor. In addition, radioactivity was incorporated in the delipidized residue when sugar-labeled gangliosides were given to cells. Besides qualitative differences, quantitative ones were found after administration of the different precursors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Abstract: Previous studies from this laboratory have shown that synthesis of GT3, the precursor of c series gangliosides, occurs in proximal Golgi compartments, as has been shown for the synthesis of GM3 and GD3, the precursors of a and b series gangliosides, respectively. In this work we studied whether the synthesis of GM3, GD3, and GT3 occurs in the same or in different compartments of the proximal Golgi. For this, we examined in retina cells (a) the effect of monensin, a sodium ionophore that affects mostly the trans Golgi and the trans Golgi network function, on the metabolic labeling of glycolipids from [3H]Gal by cultured cells from 7- and 10-day chick embryos and (b) the labeling in vitro of endogenous glycolipids of Golgi membrane preparations from 7-day embryos incubated with UDP-[3H]Gal. In (a), 1 µM monensin produced a twofold accumulation of radioactive glucosylceramide and a decrease to ~50 and 20% of total ganglioside labeling in 7- and 10-day cells, respectively. At both ages, monensin produced a threefold accumulation of radioactive GM3 and an inhibition of >90% of GT3, GM1, GD1a, and GT1b synthesis. GD3 synthesis was inhibited ~30 and 70%, respectively, in 7- and 10-day cells. In (b), >80% of the [3H]Gal was incorporated into endogenous glucosylceramide to form radioactive lactosylceramide. About 90% of [3H]Gal-labeled lactosylceramide was converted into GM3, and most of this in turn into GD3 when unlabeled CMP-NeuAc was also present in the incubation system. Under the same conditions, however, <5% of labeled GD3 was converted into GT3. Golgi membranes incubated with CMP-[3H]NeuAc incorporated ~20% of [3H]NeuAc into endogenous GT3, and this percentage was not affected by 1 µM monensin. These results indicate that synthesis of GT3 is carried out in a compartment of the proximal Golgi different from those for lactosylceramide, GM3, and GD3 synthesis. Results from the experiments with monensin point to the cis/medial Golgi as the main compartment for coupled synthesis of lactosylceramide, GM3, and GD3 and to the trans Golgi as the main compartment for synthesis of GT3.  相似文献   

7.
The presence of ganglioside GD1b, in lactone form GD1b-L, was ascertained in rat brain. The possible formation of GD1b-L from GD1b in brain was explored by the intracisternal injection of GD1b, 3H-labelled at the level of the terminal galactose. This was followed by recognition of the radioactive gangliosides formed at different times (1, 3, and 7 days) after injection. Whereas at 0 time after injection the only radioactive ganglioside was GD1b, after 1, 3, and 7 days other radioactive gangliosides were also found, thus indicating GD1b penetration into the brain tissue, followed by metabolic processing. Besides GD1b, the following radioactive gangliosides were recognized: GM1 and GM2, derived from GD1b degradation; GT1b, formed by the direct sialylation of GD1b; and GD1b-L, produced by metabolic lactonization. The radioactivity carried by GD1b-L was maximal 3 days after injection; its time course was different from that of the other gangliosides, suggesting that the process of lactonization is separate from that of both degradation and glycosylation. Under the same experimental conditions, some radioactive gangliosides also appeared in the liver, although in much smaller amounts than in brain. Radioactive GD1b-L could not be detected in liver, thus indicating that metabolic lactonization is a tissue- or organ-specific process.  相似文献   

8.
The demonstration of a precursor-product relationship in the course of GM1 and GD1a biosynthesis is described in the present paper. We injected rats with GM2 gangliosides [GalNAc beta 1----4(NeuAc alpha 2----3)Gal beta 1----4Glc beta 1----1'Cer] of brain origin, which were isotopically radiolabeled on the GalNAc ([GalNAc-3H]GM2) or sphingosine ([Sph-3H]GM2) residue. We then compared the time-courses of GM1 and GD1a biosynthesis in the liver after the administration of each radiolabeled GM2 derivative. After the administration of [GalNAc-3H]GM2, GM1, and GD1a were both present as doublets, that could be easily resolved on TLC. The lower spot of each doublet was identified as a species having the typical rat brain ceramide moiety and represented gangliosides formed through direct glycosylation of the injected GM2. The upper spot of each doublet was identified as a species having the typical rat liver ceramide moiety and represented gangliosides formed through recycling of the [3H]GalNAc residue, released during ganglioside catabolism. After the administration of [Sph-3H]GM2, only ganglioside with the rat brain ceramide moiety were found, that represented the sum of ganglioside formed through direct glycosylation and those formed through recycling of some sphingosine-containing fragments. In each case, the time-course of GM1 and GD1a biosynthesis exhibited a precursor-product relationship. The curve obtained from the direct glycosylation showed a timing delay with respect to those obtained from recycling of GM2 fragments. These results are consistent with the hypothesis that the sequential addition of activated sugars to a sphingolipid precursor is a dissociative process, catalyzed by physically independent enzymatic activities.  相似文献   

9.
Ganglioside GM1, 3H-labelled at the level of terminal galactose or of sphingosine, was intravenously injected into Swiss albino mice and some steps in its metabolic fate in the liver were investigated. After administration of [3H]sphingosine-labelled GM1 all major liver gangliosides [GM3, GM2, GM1, GD1a-(NeuAc,NeuGl)] became radioactive, the radioactivity residing in all cases on the sphingosine moiety. The specific radioactivity was highest in GM1, which carried about 53% of the radioactivity incorporated into gangliosides, followed by GM2, with 34.5% of incorporated radioactivity, GM3 and GD1a-(NeuAc,NeuGl), both with about 5% of incorporated radioactivity. After administration of [3H]galactose-labelled GM1 the only radioactive gangliosides present in the liver were GM1 and GD1a-(NeuAc,NeuGl), the former carrying about 95% of the total ganglioside-incorporated radioactivity, the latter about 3%. Both gangliosides were radioactive exclusively in the terminal galactose residue. According to these results exogenously administered GM1, after being taken up by the liver, is mainly degraded to GM2 and GM3, a part being, however, sialylated to GD1a-(NeuAc,NeuGl). All this suggests that exogenous GM1 may be involved in the metabolic routes of endogenous liver gangliosides.  相似文献   

10.
In order to assess metabolic recycling of sialic acid, GM1 ganglioside [nomenclature of Svennerholm (1964) J. Lipid. Res. 5, 145-155; IUPAC-IUB Recommendations (1977) Lipids 12, 455-468], 14C-radiolabelled at the acetyl group of sialic acid, was intravenously injected into Wistar rats, and the presence of radioactive sialic acid in liver sialoglycolipids (gangliosides) and sialoglycoproteins was ascertained. A time-course study (20 min-72 h) showed that the radioactivity present in the liver distributed in the following fractions, with reciprocal proportion varying with time: the protein (glycoprotein) fraction, the ganglioside fraction and the diffusible fraction, which contained low-Mr compounds, including sialic acid. Ganglioside-linked radioactivity gradually decreased with time; protein-linked radioactivity appeared soon after injection (20 min), reached a maximum around 20 h, then slowly diminished; diffusible radioactivity provided a sharp peak at 4 h, then rapidly decreased till disappearing after 40 h. The behaviour of bound radioactivity in the individual liver gangliosides was as follows: (a) rapid diminution with time in GM1, although with a lower rate at the longer times after injection; (b) early appearance (20 min) with a peak at 1 h, followed by continuous diminution, in GM2; (c) early appearance (20 min), peak at 1 h, diminution till 4 h, followed by a plateau, in GM3; (d) appearance at 60 min, maximum around 40 h and slow diminution thereafter, in GD1a, GD1b and GT1b. A detailed study, accomplished at 40 h after injection, demonstrated that almost all radioactivity present in the protein fraction was released by mild acid treatment and recovered in purified sialic acid; most of radioactive glycoprotein-bound sialic acid was releasable by sialidase action. In addition, the radioactivity present in the different gangliosides was exclusively carried by sialic acid and present in both sialidase-resistant and sialidase-labile residues. Only in the case of GD1a was the specific radioactivity of sialidase-resistant sialic acid superior to that of sialidase-releasable sialic acid. The results obtained lead to the following conclusions: (a) radioactive GM3 and GM2 were produced by degradation of GM1 taken up; GM3 originated partly by a process of neosynthesis; (b) radioactive GM1 consisted in part of residual exogenous GM1 and in part of a neosynthetized product; (c) radioactive GD1a originated in part by direct sialylation of GM1 taken up and in part by a neosynthetic process; (d) radioactive GD1b and GT1b resulted only from neosynthesis.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
During rat liver regeneration, the ganglioside content and distribution undergo significant changes after partial hepatectomy; total liver gangliosides increase remarkably till the 4th day after surgery, thereafter progressively decreasing to reach the values of sham-operated controls at the 12th day. The qualitative pattern is characterized by the 95% relative increase of GD1a at the 4th day and the 40% relative decrease of GD1b. In order to investigate the processes of ganglioside penetration into cells, degradation and biosynthesis, radiolabelled GM1 ([Sph-3H] GM1) was administered. One day after hepatectomy the liver uptake and metabolism of exogenous ganglioside were significantly reduced. Three days post-surgery these parameters were restored to control values; however an increased radioactivity incorporation was found in GD1a, thus suggesting an enhancement of its biosynthesis around the 4th day. The data reported here suggest that in the first two days after partial hepatectomy, the ganglioside degradation is reduced with a consequent increase of ganglioside content; later on the catabolic routes normalize and some biosynthetic processes leading to GD1a are enhanced. GD1a seems to be a marker of a peculiar transition phase of liver regeneration.  相似文献   

12.
The sialidase activities with GM3 ganglioside and sialyllactitol were demonstrated in the conditioned medium of human fibroblasts. pH versus activity profiles of conditioned medium with GM3 as substrate suggested the presence of two sialidases with optimal activities at pH 4.5 and pH 6.5. The GM3 sialidase activity at pH 6.5 was suppressed in the medium of contact-inhibited cells. This sialidase may function in the metabolism of cell surface GM3 since there was a selective loss of labeled sialic acid from GM3 at different times of incubation after pulse-labeling with a radioactive sialic acid precursor ([3H]N-acetyl-mannosamine) and a radioactive ceramide precursor ([14C]serine). In addition, a sialidase inhibitor, 2-deoxy-2, 3-dehydro-N-acetyl-neuraminic acid (NeuAc-2-en) resulted in a reversible growth inhibitory effect and the suppression of the sialidase activity in the medium. We have speculated that GM3 hydrolysis on the cell surface by the sialidase may be coordinated with the cell cycle and may be at its maximum during early in the G1 phase.  相似文献   

13.
A significant difference in the glycosphingolipid composition of JTC-12 P3 cells established from monkey kidney tissue was observed when cells cultured in a protein- and lipid-free synthetic medium containing glucose (DM-160) as a sole carbohydrate source were transferred and cultured in the same medium containing galactose and pyruvic acid (DM-170) in place of glucose. In particular, the amounts of gangliosides GM3, GM2, and GD3 in the cells cultured in DM-170 were 5.3-, 17.8-, and more than 8-fold those in the cells cultured in DM-160, respectively, indicating that anabolism of gangliosides is greatly enhanced in cells cultured in the presence of galactose and pyruvic acid, as compared with cells cultured in the presence of glucose. In fact, after cultivation of cells in the medium with N-acetyl-D-[14C]mannosamine for 96 h, the radioactivity incorporated into the gangliosides of the cells in DM-170 was 10-fold that of the cells in DM-160. Among the gangliosides of the cells in DM-170, highly sialylated molecules such as GD3, GD1a, GD1b, and GT1b were preferentially labeled, indicating that the sialyltransferases responsible for the synthesis of gangliosides are significantly more activated in cells cultured in DM-170 than in DM-160. These observations reveal that the glycosphingolipid composition of the plasma membrane can be modified epigenetically under well-defined conditions and provide important clues for clarifying the roles of glycosphingolipids associated with particular cell functions.  相似文献   

14.
Modulation of Ganglioside Biosynthesis in Primary Cultured Neurons   总被引:11,自引:4,他引:7  
Murine cerebellar cells were pulse labeled with [14C]galactose, and the incorporation of radioactivity into gangliosides and neutral glycosphingolipids was examined under different experimental conditions. In the presence of drugs affecting intracellular membrane flow, as well as at 15 degrees C, labeled GlcCer was found to accumulate in the cells, whereas the labeling of higher glycosphingolipids and gangliosides was reduced. Monensin and modulators of the cytoskeleton effectively blocked biosynthesis of the complex gangliosides GM1, GD1a, GD1b, GT1b, and GQ1b, whereas incorporation of radioactivity into neutral glycosphingolipids, such as glucosylceramide and lactosylceramide, as well as GM3, GM2, and GD3 was either increased or unaltered. As monensin has been reported to interfere with the flow of molecules from the cis to the trans stacks of the Golgi apparatus, this result highlights at least one subcompartmentalization of ganglioside biosynthesis within the Golgi system. Inhibitors of energy metabolism affected, predominantly, the biosynthesis of the b-series gangliosides, whereas a reduced temperature (15 degrees C) more effectively blocked incorporation of radiolabel into the a-series gangliosides, a result suggesting the importance of GM3, as the principal branching point, for the regulation of ganglioside biosynthesis.  相似文献   

15.
We have studied the incorporation of [(14)C]serine and of [(3)H]sphingosine into sphingomyelin in the presence or absence of brefeldin A (BFA) in three different cell types. Administration of BFA (1 microgram/ml) to fibroblasts for 24 h increased the incorporation of label into sphingomyelin 1.5-3 fold compared with untreated controls. In contrast, BFA strongly decreased sphingomyelin biosynthesis (4-5 fold) in cerebellar neurons as well as in neuroblastoma cells. The effect of BFA on glycosphingolipid formation, however, was similar in all three cell types studied: an increased labeling of the precursor glycolipids GlcCer, LacCer, GM3 and GD3 was paralleled by a decreased formation of complex gangliosides, GM1, GD1a, GT1b and GQ1b. Our data therefore suggest that in neuronal cells sphingomyelin synthesis, like the formation of complex gangliosides, is localized primarily distal to the BFA block, in a post-Golgi compartment, most probably the trans-Golgi network, whereas in fibroblasts sphingomyelin biosynthesis is mainly localized prior to the BFA block, in the Golgi apparatus, as has been shown for LacCer, GlcCer, GM3 and GD3 synthases.  相似文献   

16.
Cerebellar granule cells differentiated in culture were incubated with ganglioside [3H-Sph]GD1a in order to have it inserted into the plasma membrane, internalized by endocytosis, and metabolized. The metabolites formed included GM1, product of GD1a desialosylation. No GM1 or other metabolites were present in the incubation medium, whereas with the lysosomal apparatus blocked by chloroquine, or GD1a endocytosis prevented at 4 degrees C, the only metabolite formed was GM1. These results suggest that GD1a desialosylation did not occur either extracellularly or intracellularly but likely, at the membrane level. Similar results were obtained with [3H-Gal]GD1b, whereas no degradation of [3H-NeuAc]GM1 took place in the presence of chloroquine or at 4 degrees C. In conclusion, cerebellar granule cells express in vivo a sialidase, presumably located on the cell surface, that affects GD1a and GD1b but not GM1.  相似文献   

17.
Summary The developmental accretion of up to nine individual gangliosides in foetal brains, peri- and postnatal cortices, postnatal cerebelli and olfactory lobes and in the liver and the spleen were investigated in mice and compared with that of glycoprotein-bound sialic acid and the activity of the acetylcholinesterase.In foetal brain and in postnatal liver and spleen more sialic acid was found bound to glycoproteins than to gangliosides. In postnatal brain structures, however, ganglioside-NeuAc predominated and increased between the 7th and 21st d about 2-fold in the olfactory lobes and cerebellum and more than 3-fold in the cortex.During foetal development the relative quantities (mol %) as well as the absolute concentrations (compared with the fresh weight) of GM1, GM2 and GM3 in the brain decreased, whereas those of GD1a, GD1b and GQ increased.This pattern change continued perinatally in the cortex up to the end of the first week. Thereafter the pattern changed little, but the concentration of all gangliosides present increased much more rapidly, especially between the 10th and 13th d.The postnatal cerebellum and olfactory lobes contained higher concentrations of GM1 and GM3 than the cortex, both gangliosides decreasing in favour of their di-, tri- and tetrasialo-homologues during the third postnatal week.In all brains structures the accretion of GD1a and GT1 was proportional to the increase in the activity of the acetylcholinesterase.Unlike the brain structures, the ganglioside pattern in the liver and spleen, characterised by a predominance of monosialogangliosides and of GD3, did not change noticeably during the first three weeks after birth.The coincidence of the changes in ganglioside accretion observed in the different brain structures with successive periods of morphological differentiation further support the suggestion that gangliosides may play an important role in control of the growth and differentiation of developing nerve cells.Abbreviations GM3 II3NeuAc-GgOse2Cer - GM2 II3NeuAc-GgOse3Cer - GM1 II3NeuAcGgOse4Cer - GD1a IV3NeuAc-, II3 NeuAc-GgOse4Cer - GD3 II3 NeuAc2-GgOse2Cer - GD2 II3 NeuAc2-GgOse3 Cer - GD1b II3 NeuAc2-GgOse4 Cer - GT1 IV3 NeuAc-, II3 NeuAc2-GgOse4 Cer - GQ IV3 NeuAc-, II3 NeuAc3-GgOse4 Cer - NeuAc N-acetylneuraminic acid (sialic acid) - AChE Acetylcholinesterase  相似文献   

18.
Expression of gangliosides in the liver was examined in primary cultures of hepatocytes from adult rats and liver tissues from rats of different ages. Hepatocytes were isolated from 7-week-old rat liver and cultured in L-15 medium containing insulin, dexamethasone and 10% fetal bovine serum. Hepatocytes proliferated only on the first day, and then ceased proliferation. The content of GD3 and GD1a increased during the period of active proliferation and reached a nearly constant level, whereas GM1, GD1b, GT1b, and GQ1b gradually increased throughout culture. Addition of EGF to the culture medium caused significant increases in the content of GD3, and to a lesser degree of GM3, but exhibited little effect on the expression of other ganglioside species. The specific induction of GD3 and GM3 expression by EGF was reproduced under serum-free conditions, despite the lack of hepatocyte proliferation. Expression of gangliosides in cultured hepatocytes was also modulated by cell density; higher cell density brought about increased content of GM1, GD1a, GD1b, GT1b, and GQ1b with concomitant reduction of GM3 in cells. The composition of gangliosides in liver tissues demonstrated a unique developmental pattern. GD3 and GD1a were strongly expressed in E-16 embryonic tissue and rapidly decreased with increasing age. GD1b, GT1b, and GQ1b were found only in postnatal liver tissues. These findings suggest that the expression of gangliosides in rat hepatocytes and liver tissues are regulated by growth- and development-dependent factors.  相似文献   

19.
We examined the formation of sphingolipid mediators in platelets, which abundantly store, and release extracellularly, sphingosine 1-phosphate (Sph-1-P). Challenging [(3)H]Sph-labeled platelet suspensions with thrombin or 12-O-tetradecanoylphorbol 13-acetate (TPA) resulted in a decrease in Sph-1-P formation and an increase in sphingosine (Sph), ceramide (Cer), and sphingomyelin formation. Sph conversion into Cer, and Cer conversion into sphingomyelin were not affected upon activation, suggesting that Sph-1-P dephosphorylation may initiate the formation of sphingolipid signaling molecules. In fact, Sph-1-P phosphatase (but not lyase) activity was detected in platelets, but this activity was not enhanced by thrombin or TPA. When quantified with [(3)H]acetic anhydride acetylation, followed by HPLC separation, the amounts of Sph-1-P and Sph decreased and increased, respectively, upon stimulation with thrombin or TPA, and these changes were attenuated by staurosporine. Under these TPA treatment conditions, over half of the [(3)H]Sph-1-P (formed in platelets incubated with [(3)H]Sph) was detected extracellularly, possibly due to its release from platelets, which was completely inhibited by staurosporine pretreatment. Furthermore, when TPA-induced Sph-1-P release was blocked by staurosporine after the stimulation, the extracellular [(3)H]Sph-1-P radioactivity decreased, suggesting that the Sph-1-P released may undergo dephosphorylation extracellularly. To support this, [(32)P]Sph-1-P, when added extracellularly to platelet suspensions, was rapidly degraded, possibly due to the ecto-phosphatase activity. Our results suggest the presence in anucleate platelets of a transmembrane cycling pathway starting with Sph-1-P dephosphorylation and leading to the formation of other sphingolipid mediators.  相似文献   

20.
1. Female non-pregnant rats were intramuscularly injected with pentazocine for 3 months. Liver showed a statistically significant (P less than 0.05) increase in its ganglioside content after the pentazocine treatment; in addition, no changes were found in the kidney ganglioside content. 2. We have also found changes in the ganglioside pattern of these rats after the pentazocine injection. The GM1 and GD1b liver content was decreased (P less than 0.05) in parallel with an increase (P less than 0.05) in GD3 and GT1b content; kidney showed a decrease (P less than 0.05) in GM1, GD1a and GD1b content and an increase (P less than 0.05) in GM4, GD2, GT1b and GQ content. 3. Female pregnant rats were also injected with pentazocine from the first to the nineteenth day of the gestation period. The total ganglioside content of liver and kidneys from mothers and their newborns did not show statistically significant differences after the treatment. 4. Mothers showed a decrease (P less than 0.05) in the GM1 content of liver and an increase (P less than 0.05) in the GT1b content of liver and GM1, GD3 and GD1a content of kidney. Only the GM3 content from kidney was increased (P less than 0.001). 5. Newborns showed minor changes in their ganglioside pattern. GT1b content from liver and GD2 and GQ content from kidneys were decreased (P less than 0.05).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号