首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electrophoretic variation ascribable to three protein-coding loci, coding for glutamine synthetase (GS), uridine monophosphate kinase (UMPK), and transferrin (Tf), was observed in three species of fish of the genus Xiphophorus. Electrophoretic patterns in interspecific F1 hybrid heterozygotes suggested monomeric subunit structures of UMPK and Tf and a multimeric structure of undetermined subunit number of GS. Linkage analyses in backcross hybrids indicated a recombination map of GS-0%-Tf-10.8%-UMPK. This group (designated Xiphophorus linkage group VI) was shown to assort independently from the 14 enzyme loci assigned to linkage groups I-V and from 19 other informative markers within the limits of the data.  相似文献   

2.
We report construction of second-generation integrated genetic linkage and radiation hybrid (RH) maps in the domestic cat (Felis catus) that exhibit a high level of marker concordance and provide near-full genome coverage. A total of 864 markers, including 585 coding loci (type I markers) and 279 polymorphic microsatellite loci (type II markers), are now mapped in the cat genome. We generated the genetic linkage map utilizing a multigeneration interspecies backcross pedigree between the domestic cat and the Asian leopard cat (Prionailurus bengalensis). Eighty-one type I markers were integrated with 247 type II markers from a first-generation map to generate a map of 328 loci (320 autosomal and 8 X-linked) distributed in 47 linkage groups, with an average intermarker spacing of 8 cM. Genome coverage spans approximately 2,650 cM, allowing an estimate for the genetic length of the sex-averaged map as 3,300 cM. The 834-locus second-generation domestic cat RH map was generated from the incorporation of 579 type I and 255 type II loci. Type I markers were added using targeted selection to cover either genomic regions underrepresented in the first-generation map or to refine breakpoints in human/feline synteny. The integrated linkage and RH maps reveal approximately 110 conserved segments ordered between the human and feline genomes, and provide extensive anchored reference marker homologues that connect to the more gene dense human and mouse sequence maps, suitable for positional cloning applications.  相似文献   

3.
The effect of interspecies hybridization on gene regulation was examined using real-time polymerase chain reaction (RT-PCR) to measure the expression of five base-excision repair genes in brain, eye, gill, liver, and tailfin tissues from Xiphophorus parental species and F(1) hybrids. Relative mRNA levels of uracil N-glycosylase (Ung), Apurinic/apyrimidinic endonuclease (Ape1), polymerase-beta (Polb), flap endonuclease (Fen1), and DNA ligase (Lig1) were measured in three parental Xiphophorus species (X. maculatus Jp 163 B, X. helleri Sarabia, and X. andersi andC) and in two interspecies F(1) hybrids, the Sp-helleri hybrid (X. maculatus Jp 163 BxX. helleri Sarabia) and the Sp-andersi hybrid (X. maculatus Jp 163 BxX. andersi) to identify genes that undergo changes in expression levels upon interspecies hybridization. Significant differences in gene expression were observed between parental animals and their respective F(1) hybrids in both interspecies crosses. Generally, marked increases in DNA repair gene mRNA levels were observed across all tissues in F(1) hybrid animals from the Sp-helleri cross compared to either X. maculatus or X. helleri parents. In contrast, the Sp-andersi F(1) hybrid animals generally exhibited decreased base-excision repair gene expression, although this trend was more specific to individual tissues than observed for Sp-helleri hybrids.  相似文献   

4.
The recent development of genome mapping resources for the domestic cat provides a unique opportunity to study comparative medicine in this companion animal which can inform and benefit both veterinary and human biomedical concerns. We describe here the integration and order comparison of the feline radiation hybrid (RH) map with the feline interspecies backcross (ISB) genetic linkage map, constructed by a backcross of F1 hybrids between domestic cat (Felis catus) and the Asian leopard cat (Prionailurus bengalensis). Of 253 microsatellite loci mapped in the ISB, 176 equivalently spaced markers were ordered among a framework of 424 Type I coding markers in the RH map. The integration of the RH and ISB maps resolves the orientation of multiple linkage groups and singleton loci from the ISB genetic map. This integrated map provides the foundation for gene mapping assessments in the domestic cat and in related species of the Felidae family. Received: 10 July 2000 / Accepted: 01 February 2001  相似文献   

5.
Molecular linkage maps of the Populus genome.   总被引:7,自引:0,他引:7  
We report molecular genetic linkage maps for an interspecific hybrid population of Populus, a model system in forest-tree biology. The hybrids were produced by crosses between P. deltoides (mother) and P. euramericana (father), which is a natural hybrid of P. deltoides (grandmother) and P. nigra (grandfather). Linkage analysis from 93 of the 450 backcross progeny grown in the field for 15 years was performed using random amplified polymorphic DNAs (RAPDs), amplified fragment length polymorphisms (AFLPs), and inter-simple sequence repeats (ISSRs). Of a total of 839 polymorphic markers identified, 560 (67%) were testcross markers heterozygous in one parent but null in the other (segregating 1:1), 206 (25%) were intercross dominant markers heterozygous in both parents (segregating 3:1), and the remaining 73 (9%) were 19 non-parental RAPD markers (segregating 1:1) and 54 codominant AFLP markers (segregating 1:1:1:1). A mixed set of the testcross markers, non-parental RAPD markers, and codominant AFLP markers was used to construct two linkage maps, one based on the P. deltoides (D) genome and the other based on P. euramericana (E). The two maps showed nearly complete coverage of the genome, spanning 3801 and 3452 cM, respectively. The availability of non-parental RAPD and codominant AFLP markers as orthologous genes allowed for a direct comparison of the rate of meiotic recombination between the two different parental species. Generally, the rate of meiotic recombination was greater for males than females in our interspecific poplar hybrids. The confounded effect of sexes and species causes the mean recombination distance of orthologous markers to be 11% longer for the father (P. euramericana; interspecific hybrid) than for the mother (P. deltoides; pure species). The linkage maps constructed and the interspecific poplar hybrid population in which clonal replicates for individual genotypes are available present a comprehensive foundation for future genomic studies and quantitative trait locus (QTL) identification.  相似文献   

6.
梁永书  彭勇  叶少平  李平  孙林静  马忠友  李艳萍 《遗传》2007,29(9):1110-1120
以部分基因组和全基因组测序水稻籼稻(O sativa L. indica)品种“培矮64S”(Pei’ai 64S♀)和粳稻(O sativa L. japonica)品种“日本晴”(Nipponbare♂)为构图亲本, 选取F2代180个株系为作图群体, 构建含138个微卫星位点的水稻遗传连锁图谱, 覆盖基因组2 046.2 cM, 平均图距17.1 cM, 即F2 图谱; 采用单粒传法获得F2:6 代330个株系, 用相同的多态性标记分析F6群体, 构建含92个标记连锁图谱, 覆盖基因组2 563.5 cM, 平均图距27.86 cM, 即F6图谱; F2、F6图谱在连锁群数、定位标记数、标记的位置顺序、遗传图距、平均图距等方面发生了较大变化, 并对产生这些差异的原因进行了初步分析。  相似文献   

7.
Centromere mapping is a powerful tool for improving linkage maps, investigating crossover events, and understanding chiasma interference during meiosis. Ninety microsatellite markers selected across all linkage groups (LGs) from a previous Chlamys farreri genetic map were studied in three artificially induced meiogynogenetic families for centromere mapping by half-tetrad analysis. Inheritance analyses showed that all 90 microsatellite loci conformed to Mendelian inheritance in the control crosses, while 4.4 % of the microsatellite loci showed segregation departures from an expected 1:1 ratio of two homozygote classes in meiogynogenetic progeny. The second division segregation frequency (y) of the microsatellites ranged from 0.033 to 0.778 with a mean of 0.332, confirming the occurrence of partial chiasma interference in this species. Heterogeneity of y is observed in one of 42 cases in which markers were typed in more than one family, suggesting variation in gene–centromere recombination among families. Centromere location was mostly in accordance with the C. farreri karyotype, but differences in marker order between linkage and centromere maps occurred. Overall, this study makes the genetic linkage map a more complete and informative tool for genomic studies and it will also facilitate future research of the structure and function of the scallop centromeres.  相似文献   

8.
Heterogeneity in Rates of Recombination across the Mouse Genome   总被引:12,自引:2,他引:10       下载免费PDF全文
If loci are randomly distributed on a physical map, the density of markers on a genetic map will be inversely proportional to recombination rate. First proposed by MARY LYON, we have used this idea to estimate recombination rates from the Drosophila melanogaster linkage map. These results were compared with results of two other studies that estimated regional recombination rates in D. melanogaster using both physical and genetic maps. The three methods were largely concordant in identifying large-scale genomic patterns of recombination. The marker density method was then applied to the Mus musculus microsatellite linkage map. The distribution of microsatellites provided evidence for heterogeneity in recombination rates. Centromeric regions for several mouse chromosomes had significantly greater numbers of markers than expected, suggesting that recombination rates were lower in these regions. In contrast, most telomeric regions contained significantly fewer markers than expected. This indicates that recombination rates are elevated at the telomeres of many mouse chromosomes and is consistent with a comparison of the genetic and cytogenetic maps in these regions. The density of markers on a genetic map may provide a generally useful way to estimate regional recombination rates in species for which genetic, but not physical, maps are available.  相似文献   

9.
Nasonia vitripennis is a small parasitic hymenopteran with a 50-year history of genetic work including linkage mapping with mutant and molecular markers. For the first time we are now able to anchor linkage groups to specific chromosomes. Two linkage maps based on a hybrid cross (N. vitripennis x N. longicornis) were constructed using STS, RAPD and microsatellite markers, where 17 of the linked STS markers were developed from single microdissected banded chromosomes. Based on these microdissections we anchored all linkage groups to the five chromosomes of N. vitripennis. We also verified the chromosomal specificity of the microdissection through in situ hybridization and linkage analyses. This information and technique will allow us in the future to locate genes or QTL detected in different mapping populations efficiently and fast on homologous chromosomes or even chromosomal regions. To test this approach we asked whether QTL responsible for the wing size in two different hybrid crosses (N. vitripennis x N. longicornis and N. vitripennis x N.giraulti) map to the same location. One QTL with a major effect was found to map to the centromere region of chromosome 3 in both crosses. This could indicate that indeed the same gene/s is involved in the reduction of wing in N. vitripennis and N. longicornis.  相似文献   

10.
Traits that differentiate cross-fertile plant species can be dissected by genetic linkage analysis in interspecific hybrids. Such studies have been greatly facilitated in Eucalyptus tree species by the recent development of Diversity Arrays Technology (DArT) markers. DArT is an affordable, high-throughput marker technology for the construction of high-density genetic linkage maps. Eucalyptus grandis and Eucalyptus urophylla are commonly used to produce fast-growing, disease tolerant hybrids for clonal eucalypt plantations in tropical and subtropical regions. We analysed 7,680 DArT markers in an F2 pseudo-backcross mapping pedigree based on an F1 hybrid clone of E. grandis and E. urophylla. A total of 2,440 markers (31.7%) were polymorphic and could be placed in linkage maps of the F1 hybrid and two pure-species backcross parents. An integrated genetic linkage map was constructed for the pedigree resulting in 11 linkage groups (n = 11) with 2,290 high-confidence (LOD ≥ 3.0) markers and a total map length of 1,107.6 cM. DNA sequence analysis of the mapped DArT marker fragments revealed that 43% were located in protein coding regions and 90% could be placed in the recently completed draft genome assembly of E. grandis. Together with the anchored genomic sequence information, this linkage map will allow detailed genetic dissection of quantitative traits and hybrid fitness characters segregating in the F2 progeny and will facilitate the development of markers for molecular breeding in Eucalyptus.  相似文献   

11.
The laboratory rat, Rattus novegicus, is a major model system for physiological and pathophysiological studies, and since 1966 more than 422,000 publications describe biological studies on the rat (NCBI/Medline). The rat is becoming an increasingly important genetic model for the study of specific diseases, as well as retaining its role as a major preclinical model system for pharmaceutical development. The initial genetic linkage map of the rat contained 432 genetic markers (Jacob et al. 1995) out of 1171 developed due to the relatively low polymorphism rate of the mapping cross used (SHR × BN) when compared to the interspecific crosses in the mouse. While the rat genome project continues to localize additional markers on the linkage map, and as of 11/97 more than 3,200 loci have been mapped. Current map construction is using two different crosses (SHRSP × BN and FHH × ACI) rather than the initial mapping cross. Consequently there is a need to provide integration among the different maps. We set out to develop an integrated map, as well as increase the number of markers on the rat genetic map. The crosses available for this analysis included the original mapping cross SHR × BN reciprocal F2 intercross (448 markers), a GH × BN intercross (205 markers), a SS/Mcw × BN intercross (235 markers), and a FHH/Eur × ACI/Hsd intercross (276 markers), which is also one of the new mapping crosses. Forty-six animals from each cross were genotyped with markers polymorphic for that cross. The maps appear to cover the vast majority of the rat genome. The availability of these additional markers should facilitate more complete whole genome scans in a greater number of strains and provide additional markers in specific genomic regions of interest. Received: 3 December 1997 / Accepted: 20 February 1998  相似文献   

12.
The genus Xiphophorus is an important vertebrate model for investigating the etiology and genetics of both spontaneous and induced cancers. Xiphophorus are comprised of 23 species most of which can be crossed to produce fertile interspecies hybrid progeny. The Xiphophorus gene map is well developed and allows genetic associations to be studied among cohorts of progeny derived from backcrossing interspecies hybrid animals to one of the parental strains. In interspecies cross-progeny from select Xiphophorus backcrosses, ionizing radiation, ultraviolet light (UVB), and exposure to methylnitrosourea (MNU) have all been shown to induce tumors. Induced tumor types represented in various models include melanoma, fibrosarcoma, schwannoma, retinoblastoma, etc. The well-established backcross hybrid genetics make Xiphophorus fish an excellent system to study the contribution of DNA repair capability to induced tumorigenesis. DNA repair pathways represent multigenic traits that must be tightly regulated to insure genome fidelity. Herein we review initial DNA repair studies that assess repair capacities among different Xiphophorus species and interspecies hybrids. Assessment of both base excision repair (BER) and nucleotide excision repair (NER) have yielded consistent results indicating reduced DNA repair function in hybrid fish tissues. These data provide molecular support for potential reduced fitness in hybrid fish under conditions of environmental stress and may present a plausible explanation for absence of interspecies hybridization in sympatric environments. In addition, they support the role of direct DNA damage and its repair in the initiation of tumors in Xiphophorus hybrids.  相似文献   

13.
Four individual linkage maps were constructed from two crosses for the species complex Picea mariana (Mill.) B.S.P. × Picea rubens Sarg in order to integrate their information into a composite map and to compare with other Pinaceae. For all individual linkage maps, 12 major linkage groups were recovered with 306 markers per map on average. Before building the composite linkage map, the common male parent between the two crosses made it possible to construct a reference linkage map to validate the relative position of homologous markers. The final composite map had a length of 2,319 cM (Haldane) and contained a total of 1,124 positioned markers, including 1,014 AFLPs, 3 RAPDs, 53 SSRs, and 54 ESTPs, assembled into 12 major linkage groups. Marker density of the composite map was statistically homogenous and was much higher (one marker every 2.1 cM) than that of the individual linkage maps (one marker every 5.7 to 7.1 cM). Synteny was well conserved between individual, reference, and composite linkage maps and 94% of homologous markers were colinear between the reference and composite maps. The combined information from the two crosses increased by about 24% the number of anchor markers compared to the information from any single cross. With a total number of 107 anchor markers (SSRs and ESTPs), the composite linkage map is a useful starting point for large-scale genome comparisons at the intergeneric level in the Pinaceae. Comparisons of this map with those in Pinus and Pseudotsuga allowed the identification of one breakdown in synteny where one linkage group homoeologous to both Picea and Pinus corresponded to two linkage groups in Pseudotsuga. Implications for the evolution of the Pinaceae genome are discussed. Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

14.
A linkage map of cacao based on codominant markers has been constructed by integrating 201 new simple sequence repeats (SSR) developed in this study with a number of isoenzymes, restriction fragment length polymorphisms (RFLP), microsatellite markers and resistance and defence gene analogs (Rgenes-RFLP) previously mapped in cacao. A genomic library enriched for (GA)n and (CA)n was constructed, and 201 new microsatellite loci were mapped on 135 individuals from the same mapping population used to establish the first reference maps. This progeny resulted from a cross between two heterozygous cacao clones: an Upper-Amazon Forastero (UPA 402) and a Trinitario (UF 676). The new map contains 465 markers (268 SSRs, 176 RFLPs, five isoenzymes and 16 Rgenes-RFLP) arranged in ten linkage groups corresponding to the haploid chromosome number of cacao. Its length is 782.8 cM, with an average interval distance between markers of 1.7 cM. The new microsatellite markers were distributed throughout all linkage groups of the map, but their distribution was not random. The length of the map established with only SSRs was 769.6 cM, representing 94.8% of the total map. The current level of genome coverage is approximately one microsatellite every 3 cM. This new reference map provides a set of useful markers that is transferable across different mapping populations and will allow the identification and comparison of the most important regions involved in the variation of the traits of interest and the development of marker-assisted selection strategies.Communicated by H. Nybom  相似文献   

15.
We have isolated more than 12,000 clones containing microsatellite sequences, mainly consisting of (CA)n dinucleotide repeats, using genomic DNA from the BN strain of laboratory rat. Data trimming yielded 9636 non-redundant microsatellite sequences, and we designed oligonucleotide primer pairs to amplify 8189 of these. PCR amplification of genomic DNA from five different rat strains yielded clean amplification products for 7040 of these simple-sequence-length-polymorphism (SSLP) markers; 3019 markers had been mapped previously by radiation hybrid (RH) mapping methods (Nat Genet 22, 27–36, 1998). Here we report the characterization of these newly developed microsatellite markers as well as the release of previously unpublished microsatellite marker information. In addition, we have constructed a genome-wide linkage map of 515 markers, 204 of which are derived from our new collection, by genotyping 48 F2 progeny of (OLETFxBN)F2 crosses. This map spans 1830.9 cM, with an average spacing of 3.56 cM. Together with our ongoing project of preparing a whole-genome radiation hybrid map for the rat, this dense linkage map should provide a valuable resource for genetic studies in this model species. Received: 8 July 1999 / Accepted: 3 December 1999  相似文献   

16.
Kang BY  Major JE  Rajora OP 《Génome》2011,54(2):128-143
Genetic maps provide an important genomic resource of basic and applied significance. Spruce (Picea) has a very large genome size (between 0.85 × 1010 and 2.4 × 1010 bp; 8.5-24.0 pg/1C, a mean of 17.7 pg/1C ). We have constructed a near-saturated genetic linkage map for an interspecific backcross (BC1) hybrid of black spruce (BS; Picea mariana (Mill.) B.S.P.) and red spruce (RS; Picea rubens Sarg.), using selectively amplified microsatellite polymorphic loci (SAMPL) markers. A total of 2284 SAMPL markers were resolved using 31 SAMPL-MseI selective nucleotide primer combinations. Of these, 1216 SAMPL markers showing Mendelian segregation were mapped, whereas 1068 (46.8%) SAMPL fragments showed segregation distortion at α = 0.05. Maternal, paternal, and consensus maps consistently coalesced into 12 linkage groups, corresponding to the haploid chromosome number (1n = 1x = 12) of 12 in the genus Picea. The maternal BS map consisted of 814 markers distributed over 12 linkage groups, covering 1670 cM, with a mean map distance of 2.1 cM between adjacent markers. The paternal BS × RS map consisted of 773 markers distributed over 12 linkage groups, covering 1563 cM, with a mean map distance of 2.0 cM between adjacent markers. The consensus interspecific hybrid BC1 map consisted of 1216 markers distributed over 12 linkage groups, covering 1865 cM (98% genome coverage), with a mean map distance of 1.5 cM between adjacent markers. The genetic map reported here provides an important genomic resource in Picea, Pinaceae, and conifers.  相似文献   

17.
Construction of genetic linkage maps is an important first step for a variety of genomic applications, such as selective breeding in aquaculture, comparative studies of chromosomal evolution and identification of loci that have played key roles in the evolution of a species. Here we present a sex-specific linkage map for coho salmon. The map was constructed using 148 AFLP markers, 133 microsatellite loci and the phenotypic locus SEX . Twenty-four linkage groups spanning 287.4 cM were mapped in males, and 33 linkage groups spanning 429.7 cM were mapped in females. Several male linkage groups corresponded to two female linkage groups. The combination of linkage groups across both sexes appeared to characterize regions of 26 chromosomes. Two homeologous chromosomes were identified based on information from duplicated loci. Homologies between the coho and rainbow trout maps were examined. Eighty-six loci were found to form common linkage relationships between the two maps; these relationships provided evidence for whole-arm fissions, fusions and conservation of chromosomal regions in the evolution of these two species.  相似文献   

18.
Genetic maps of Vitis (2n = 38) have been constructed from an interspecific hybrid population of 58 seedlings of the cross 'Horizon' ('Seyval' x 'Schuyler') x Illinois 547-1 (V. cinerea B9 x V. rupestris B38). The maps were initially constructed based on 277 RAPD (random amplified polymorphic DNA) markers using a double-pseudotestcross strategy. Subsequently, 25 microsatellites, 4 CAPS (cleaved amplified polymorphic sequence), and 12 AFLP (amplified fragment length polymorphism) markers were added to the maps. Another 120 markers, mostly those segregating 3:1, were also assigned but not positioned on the linkage groups in the two maps. The 'Horizon' map consisted of 153 markers covering 1199 cM, with an average map distance of 7.6 cM between markers. The Illinois 547-1 map had 179 markers covering 1470 cM, with an average map distance of 8.1 cM. There were 20 linkage groups in each map, one more than the basic number of chromosomes in grapes. Ten linkage groups in each map were identified as homologous using 16 microsatellite and 2 CAPS markers polymorphic in both parents. A single locus controlling sex in grapes mapped close to a microsatellite marker. These maps provide enough coverage of the genome for QTL (quantitative trait loci) analysis and as a starting point for positional gene cloning in grapes.  相似文献   

19.
A linkage map determined from segregation analysis of 338 meiotic events in an interspecific mouse cross was utilized to help investigate genomic organization of a linkage group conserved between human chromosome 1p and mouse chromosome 3. Using pulsed-field gel electrophoresis, the genes encoding the lymphocyte adhesion molecule human CD2/murine Ly-37, the alpha 1-subunit of Na, K-ATPase, the beta-subunit of thyrotropin, the beta-subunit of nerve growth factor, and muscle adenylate deaminase were similarly positioned on long-range restriction maps in both species. These studies indicate that the development of detailed genetic maps using interspecific Mus crosses facilitates rapid analysis of murine genomic organization and may enable physical mapping of syntenic regions within the human genome. Moreover, the data suggest profound conservation of genomic organization during mammalian evolution.  相似文献   

20.
Linkage maps are valuable tools in genetic and genomic studies. For sweet cherry, linkage maps have been constructed using mainly microsatellite markers (SSRs) and, recently, using single nucleotide polymorphism markers (SNPs) from a cherry 6K SNP array. Genotyping-by-sequencing (GBS), a new methodology based on high-throughput sequencing, holds great promise for identification of high number of SNPs and construction of high density linkage maps. In this study, GBS was used to identify SNPs from an intra-specific sweet cherry cross. A total of 8,476 high quality SNPs were selected for mapping. The physical position for each SNP was determined using the peach genome, Peach v1.0, as reference, and a homogeneous distribution of markers along the eight peach scaffolds was obtained. On average, 65.6% of the SNPs were present in genic regions and 49.8% were located in exonic regions. In addition to the SNPs, a group of SSRs was also used for construction of linkage maps. Parental and consensus high density maps were constructed by genotyping 166 siblings from a ‘Rainier’ x ‘Rivedel’ (Ra x Ri) cross. Using Ra x Ri population, 462, 489 and 985 markers were mapped into eight linkage groups in ‘Rainier’, ‘Rivedel’ and the Ra x Ri map, respectively, with 80% of mapped SNPs located in genic regions. Obtained maps spanned 549.5, 582.6 and 731.3 cM for ‘Rainier’, ‘Rivedel’ and consensus maps, respectively, with an average distance of 1.2 cM between adjacent markers for both ‘Rainier’ and ‘Rivedel’ maps and of 0.7 cM for Ra x Ri map. High synteny and co-linearity was observed between obtained maps and with Peach v1.0. These new high density linkage maps provide valuable information on the sweet cherry genome, and serve as the basis for identification of QTLs and genes relevant for the breeding of the species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号