共查询到20条相似文献,搜索用时 15 毫秒
1.
Solution structures of DNA duplexes containing oxanine (Oxa, O) opposite a cytosine (O:C duplex) and opposite a thymine (O:T duplex) have been solved by the combined use of (1)H NMR and restrained molecular dynamics calculation. One mismatch pair was introduced into the center of the 11-mer duplex of [d(GTGACO(6)CACTG)/d(CAGTGX(17)GTCAC), X = C or T]. (1)H NMR chemical shifts and nuclear Overhauser enhancement (NOE) intensities indicate that both the duplexes adopt an overall right-handed B-type conformation. Exchangeable resonances of C(17) 4-amino proton of the O:C duplex and of T(17) imino proton of O:T duplex showed unusual chemical shifts, and disappeared with temperature increasing up to 30 °C, although the melting temperatures were >50 °C. The O:C mismatch takes a wobble geometry with positive shear parameter where the Oxa ring shifted toward the major groove and the paired C(17) toward the minor groove, while, in the O:T mismatch pair with the negative shear, the Oxa ring slightly shifted toward the minor groove and the paired T(17) toward the major groove. The Oxa mismatch pairs can be wobbled largely because of no hydrogen bond to the O1 position of the Oxa base, and may occupy positions in the strands that optimize the stacking with adjacent bases. 相似文献
2.
Clinically ineffective transplatin [trans-diamminedichloridoplatinum(II)] is used in the studies of the structure-pharmacological activity relationship of platinum compounds. In addition, a number of transplatin analogs exhibit promising toxic effects in several tumor cell lines including those resistant to conventional antitumor cisplatin. Moreover, transplatin-modified oligonucleotides have been shown to be effective modulators of gene expression. Owing to these facts and because DNA is also considered the major pharmacological target of platinum complexes, interactions between transplatin and DNA are of great interest. We examined, using biophysical and biochemical methods, the stability of 1,3-GNG intrastrand cross-links (CLs) formed by transplatin in short synthetic oligodeoxyribonucleotide duplexes and natural double-helical DNA. We have found that transplatin forms in double-helical DNA 1,3-GNG intrastrand CLs, but their stability depends on the sequence context. In some sequences the 1,3-GNG intrastrand CLs formed by transplatin in double-helical DNA readily rearrange into interstrand CLs. On the other hand, in a number of other sequences these intrastrand CLs are relatively stable. We show that the stability of 1,3-GNG intrastrand CLs of transplatin correlates with the extent of conformational distortion and thermodynamic destabilization induced in double-helical DNA by this adduct. 相似文献
3.
The DNA repair enzyme human uracil DNA glycosylase (UNG) scans short stretches of genomic DNA and captures rare uracil bases as they transiently emerge from the DNA duplex via spontaneous base pair breathing motions. The process of DNA scanning requires that the enzyme transiently loosen its grip on DNA to allow stochastic movement along the DNA contour, while engaging extrahelical bases requires motions on a more rapid timescale. Here, we use NMR dynamic measurements to show that free UNG has no intrinsic dynamic properties in the millisecond to microsecond and subnanosecond time regimes, and that the act of binding to nontarget DNA reshapes the dynamic landscape to allow productive millisecond motions for scanning and damage recognition. These results suggest that DNA structure and the spontaneous dynamics of base pairs may drive the evolution of a protein sequence that is tuned to respond to this dynamic regime. 相似文献
4.
5.
Seung Pil Pack Akihiro Doi Tsutomu Kodaki 《Biochemical and biophysical research communications》2010,391(1):118-122
Oxanine (Oxa), generated from guanine (Gua) by NO- or HNO2-induced nitrosative oxidation, has been thought to cause mutagenic problems in cellular systems. In this study, the response of Oxa to different enzymatic functions was explored to understand how similarly it can participate in biomolecular reactions compared to the natural base, Gua. The phosphorylation efficiency of the T4 polynucleotide kinase was highest when Oxa was located on the 5′-end of single stranded DNAs compared to when other nucleobases were in this position. The order of phosphorylation efficiency was as follows; Oxa > Gua > adenine (Ade) ∼ thymine (Thy) > cytosine (Cyt). Base-pairing of Oxa and Cyt (Oxa:Cyt) between the ligation fragment and template was found to influence the ligation performance of the T4 DNA ligase to a lesser degree compared to Gua:Cyt. In addition, EcoRI and BglII showed higher cleavage activities on DNA substrates containing Oxa:Cyt than those containing Gua:Cyt, while BamHI, HindIII and EcoRV showed lower cleavage activity; however, this decrease in activity was relatively small. 相似文献
6.
A theoretical framework for prediction of the dynamic evolution of chemical species in DNA amplification reactions, for any specified sequence and operating conditions, is reported. Using the polymerase chain reaction (PCR) as an example, we developed a sequence- and temperature-dependent kinetic model for DNA amplification using first-principles biophysical modeling of DNA hybridization and polymerization. We compare this kinetic model with prior PCR models and discuss the features of our model that are essential for quantitative prediction of DNA amplification efficiency for arbitrary sequences and operating conditions. Using this model, the kinetics of PCR is analyzed. The ability of the model to distinguish between the dynamic evolution of distinct DNA sequences in DNA amplification reactions is demonstrated. The kinetic model is solved for a typical PCR temperature protocol to motivate the need for optimization of the dynamic operating conditions of DNA amplification reactions. It is shown that amplification efficiency is affected by dynamic processes that are not accurately represented in the simplified models of DNA amplification that form the basis of conventional temperature cycling protocols. Based on this analysis, a modified temperature protocol that improves PCR efficiency is suggested. Use of this sequence-dependent kinetic model in a control theoretic framework to determine the optimal dynamic operating conditions of DNA amplification reactions, for any specified amplification objective, is discussed. 相似文献
7.
A theoretical framework for prediction of the dynamic evolution of chemical species in DNA amplification reactions, for any specified sequence and operating conditions, is reported. Using the polymerase chain reaction (PCR) as an example, we developed a sequence- and temperature-dependent kinetic model for DNA amplification using first-principles biophysical modeling of DNA hybridization and polymerization. We compare this kinetic model with prior PCR models and discuss the features of our model that are essential for quantitative prediction of DNA amplification efficiency for arbitrary sequences and operating conditions. Using this model, the kinetics of PCR is analyzed. The ability of the model to distinguish between the dynamic evolution of distinct DNA sequences in DNA amplification reactions is demonstrated. The kinetic model is solved for a typical PCR temperature protocol to motivate the need for optimization of the dynamic operating conditions of DNA amplification reactions. It is shown that amplification efficiency is affected by dynamic processes that are not accurately represented in the simplified models of DNA amplification that form the basis of conventional temperature cycling protocols. Based on this analysis, a modified temperature protocol that improves PCR efficiency is suggested. Use of this sequence-dependent kinetic model in a control theoretic framework to determine the optimal dynamic operating conditions of DNA amplification reactions, for any specified amplification objective, is discussed. 相似文献
8.
Cevc G 《Biophysical chemistry》1995,55(1-2):43-53
Molecular recognition plays a key role in life. Macromolecular interactions at and with interfaces are of paramount importance in this respect. It is therefore crucial to understand and quantify the forces near the surfaces of biological interest in sufficient detail. Specific binding of large molecules, such as antibodies, is affected by the proximity of polar surfaces, for example. On the one hand, the presence of the net surface charges may raise or lower the local macromolecular concentration depending on the relative sign of the charges involved. On the other hand, the ligands attached to strongly polar surfaces always attract and bind their corresponding antibodies less efficiently than the corresponding dissolved molecules. The reason for this is the non-Coulombic repulsion between the ligand-presenting polar surface and the approaching macromolecule. This force is promoted by the surface hydrophilicity and the width of the interfacial region. A simple, direct hydration force is seldom, if ever, seen in such systems. (This is owing to the very short range (Lambda (h ) reverse similar 0.1 nm ) of pure hydration force.) The non-specific adsorption of proteins to the lipid bilayer is also little affected by the overall repulsion between the macromolecule and the bilayer surface; such an adsorption is governed more by the number of defects and/or by the availability of the hydrophobic binding sites in the interfacial region. Artificial lipid membranes typically offer numerous such binding sites to the surrounding macromolecules. Multiple non-specific protein adsorption, which results in partial macromolecular denaturation or complement activation, is therefore one of the main reasons for the rapid elimination of lipid vesicles from the blood stream in vivo. To promote the circulation time of an intravenously injected lipid suspension it is therefore necessary to modify the surfaces of their constituent lipid bilayers. Increasing the surface net charge density and/or increasing the bilayer surface hydrophilicity is of little use in this respect. In order to affect the non-specific bilayer-protein interactions significantly, an optimal number of water-soluble, short and sufficiently mobile polymers must be attached to the lipid head-groups. These polymers then increase the repulsive barrier of the membrane surface dramatically, due to the generation of a thick and mobile as well as strongly hydrated interface. Owing to this, the affinity for proteins of the resulting surface is lowered and the surface-induced protein denaturation or complement insertion is hampered. Polymer-coated liposomes, consequently, are not attractive for the phagocytic cells. Such liposomes, consequently, remain in the blood circulation much longer than simple lipid vesicles; the former, consequently, may spontaneously accumulate in tumors. 相似文献
9.
Maria Papadovasilaki Dominik Oberthür Renate Gessmann Iosifina Sarrou Christian Betzel Effie Scoulica Kyriacos Petratos 《Biochemistry and Biophysics Reports》2015
The gene coding for the aminoglycoside adenylyltransferase (aadA6) from a clinical isolate of Pseudomonas aeruginosa was cloned and expressed in Escherichia coli strain BL21(DE3)pLysS. The overexpressed enzyme (AadA6, 281 amino-acid residues) and a carboxy-terminal truncated variant molecule ([1-264]AadA6) were purified to near homogeneity and characterized. Light scattering experiments conducted under low ionic strength supported equilibrium between monomeric and homodimeric arrangements of the enzyme subunits. Circular Dichroism spectropolarimetry indicated a close structural relation to adenylate kinases. Both forms modified covalently the aminoglycosides streptomycin and spectinomycin. The enzyme required at least 5 mM MgCl2 for normal Michaelis–Menten kinetics. Streptomycin exhibited a strong substrate inhibition effect at 1 mM MgCl2. The truncated 17 residues at the C-terminus have little influence on protein folding, whereas they have a positive effect on the enzymic activity and stabilize dimers at high protein concentrations (>100 μM). Homology modelling and docking based on known crystal structures yielded models of the central ternary complex of monomeric AadA6 with ATP and streptomycin or spectinomycin. 相似文献
10.
Oxanine (Oxa, O), a modified nucleobase, has a novel O-acylisourea structure. Oxa-incorporated oligodeoxynucleotides (ODNs) are reactive DNA oligomers that permit conjugation with various nucleophilic molecules in an activation-free manner. In this study, we developed a new procedure for enzymatic preparation of reactive-end DNA oligomers, using terminal deoxynucleotidyl transferase (TdT), in which a reactive Oxa base is incorporated into the 3′-end of ODNs. One limitation of TdT, an enzyme widely used for end labeling of DNA oligomers, is that it is difficult to control the number of incorporated labels, because it shows template-independent extension with random nucleotides. Notably, TdT showed a rate and efficiency of incorporation of the modified nucleobase, Oxa, different from that of natural bases. We investigated the conditions of TdT-mediated DNA incorporation of Oxa and achieved incorporation of Oxa at the 3′-end of ODNs by optimizing reaction parameters such as temperature and enzyme, cofactor, and substrate concentrations. We also confirmed the reactive functionality of Oxa after incorporation into ODNs by amide bonding conjugation with a polyamine (spermine) under physiological conditions, without need for an additional activation step. 相似文献
11.
David A Rusling 《Nucleic acids research》2021,49(13):7256
The sequence-specific recognition of duplex DNA by unmodified parallel triplex-forming oligonucleotides is restricted to low pH conditions due to a necessity for cytosine protonation in the third strand. This has severely restricted their use as gene-targeting agents, as well as for the detection and/or functionalisation of synthetic or genomic DNA. Here I report that the nucleobase 6-amino-5-nitropyridin-2-one (Z) finally overcomes this constraint by acting as an uncharged mimic of protonated cytosine. Synthetic TFOs containing the nucleobase enabled stable and selective triplex formation at oligopurine-oligopyrimidine sequences containing multiple isolated or contiguous GC base pairs at neutral pH and above. Moreover, I demonstrate a universal strategy for the enzymatic assembly of Z-containing TFOs using its commercially available deoxyribonucleotide triphosphate. These findings seek to improve not only the recognition properties of TFOs but also the cost and/or expertise associated with their chemical syntheses. 相似文献
12.
Nakano T Terato H Asagoshi K Masaoka A Mukuta M Ohyama Y Suzuki T Makino K Ide H 《The Journal of biological chemistry》2003,278(27):25264-25272
Chronic inflammation is a risk factor for many human cancers, and nitric oxide (NO) produced in inflamed tissues has been proposed to cause DNA damage via nitrosation or oxidation of base moieties. Thus, NO-induced DNA damage could be relevant to carcinogenesis associated with chronic inflammation. In this report, we report a novel genotoxic mechanism of NO that involves DNA-protein cross-links (DPCs) induced by oxanine (Oxa), a major NO-induced guanine lesion. When a duplex DNA containing Oxa at the site-specific position was incubated with DNA-binding proteins such as histone, high mobility group (HMG) protein, and DNA glycosylases, DPCs were formed between Oxa and protein. The rate of DPC formation with DNA glycosylases was approximately two orders of magnitude higher than that with histone and HMG protein. Analysis of the reactivity of individual amino acids to Oxa suggested that DPC formation occurred between Oxa and side chains of lysine or arginine in the protein. A HeLa cell extract also gave rise to two major DPCs when incubated with DNA-containing Oxa. These results reveal a dual aspect of Oxa as causal damage of DPC formation and as a suicide substrate of DNA repair enzymes, both of which could pose a threat to the genetic and structural integrity of DNA, hence potentially leading to carcinogenesis. 相似文献
13.
Pack SP Kamisetty NK Nonogawa M Devarayapalli KC Ohtani K Yamada K Yoshida Y Kodaki T Makino K 《Nucleic acids research》2007,35(17):e110
Oxanine having an O-acylisourea structure was explored to see if its reactivity with amino group is useful in DNA microarray fabrication. By the chemical synthesis, a nucleotide unit of oxanine (Oxa-N) was incorporated into the 5′-end of probe DNA with or without the -(CH2)n- spacers (n = 3 and 12) and found to immobilize the probe DNA covalently onto the NH2-functionalized glass slide by one-pot reaction, producing the high efficiency of the target hybridization. The methylene spacer, particularly the longer one, generated higher efficiency of the target recognition although there was little effect on the amount of the immobilized DNA oligomers. The post-spotting treatment was also carried out under the mild conditions (at 25 or 42°C) and the efficiencies of the immobilization and the target recognition were evaluated similarly, and analogous trends were obtained. It has also been determined under the mild conditions that the humidity and time of the post-spotting treatment, pH of the spotting solution and the synergistic effects with UV-irradiation largely contribute to the desired immobilization and resulting target recognition. Immobilization of DNA oligomer by use of Oxa-N on the NH2-functionalized surface without any activation step would be employed as one of the advanced methods for generating DNA-conjugated solid surface. 相似文献
14.
Due to their involvement in processes such as DNA replication, repair, and recombination, bacterial single-stranded DNA binding (SSB) proteins are essential for the survival of the bacterial cell. Whereas most bacterial SSB proteins form homotetramers in solution, dimeric SSB proteins were recently discovered in the Thermus/Deinococcus group. In this work we characterize the biophysical properties of the SSB protein from Thermus aquaticus (TaqSSB), which is structurally quite similar to the tetrameric SSB protein from Escherichia coli (EcoSSB). The binding of TaqSSB and EcoSSB to single-stranded nucleic acids was found to be very similar in affinity and kinetics. Mediated by its highly conserved C-terminal region, TaqSSB interacts with the χ-subunit of E. coli DNA polymerase III with an affinity that is similar to that of EcoSSB. Using analytical ultracentrifugation, we show that TaqSSB mutants are able to form tetramers in solution via arginine-mediated hydrogen-bond interactions that we identified in the crystal packing of wild-type TaqSSB. In EcoSSB, we identified a homologous arginine residue involved in the formation of higher aggregates and metastable highly cooperative single-stranded DNA binding under low salt conditions. 相似文献
15.
Here we report microwave-induced specific cleavage, ligation, dephosphorylation, and phosphorylation of nucleic acids catalyzed by restriction endonucleases, T4 DNA ligase, T4 polynucleotide kinase, and calf intestinal alkaline phosphatase. The microwave-mediated method has dramatically reduced the reaction time to 20 to 50 s. In control experiments, the same reactions failed to give the desired reaction products when carried out in the same time periods but without microwave irradiation. Because the microwave method is rapid, it could be a useful alternative to the time-consuming conventional procedure for enzymatic modification of DNA. 相似文献
16.
Rodney E. Harrington 《Molecular microbiology》1992,6(18):2549-2555
Most biological events are regulated at the molecular level by site-specific associations between specialized proteins and DNA. These associations may bring distal regions of the genome into functional contact or may lead to the formation of large multisubunit complexes capable of regulating highly site-specific transactional events. It is now believed that sequence-specific protein-DNA recognition and the ability of certain proteins to compete for multiple binding sites is regulated at several levels by the local structure and conformation of the binding partners. These encompass the microstructure of DNA, including its curvature, bending and flexing as well as conformational lability in the DNA-binding domains of the proteins. Possible mechanisms for binding specificity are discussed in the context of specific nucleoprotein systems with particular emphasis given to the roles of DNA conformations in these interactions. 相似文献
17.
18.
19.
Clamp loaders are heteropentameric ATPase assemblies that load sliding clamps onto DNA and are critical for processive DNA replication. The DNA targets for clamp loading are double-stranded/single-stranded junctions with recessed 3' ends (primer-template junctions). Here, we briefly review the crystal structures of clamp loader complexes and the insights they have provided into the mechanism of the clamp loading process. 相似文献
20.
Several techniques for investigating the multiplicity and stability of open isothermal enzymatic reactors are discussed and some of the pitfalls in previous thinking pointed out. The example which is used to illustrate these methods exhibits several interesting features. Among these is the existence of a stable oscillatory state which surrounds a unique steady state which is asymptotically stable to certain finite disturbances. 相似文献