首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe a quantitative method for detecting RNA alternative splicing variants that combines in situ hybridization of fluorescently labeled peptide nucleic acid (PNA) probes with confocal microscopy Förster resonance energy transfer (FRET). The use of PNA probes complementary to sequences flanking a given splice junction allows to specifically quantify, within the cell, the RNA isoform generating such splice junction by FRET measure. As a proof of concept we analyzed two alternative splicing events originating from lymphocyte antigen 6 (LY6) complex, locus G5B (LY6G5B) pre-mRNA. These are characterized by the removal of the first intron (Fully Spliced Isoform, FSI) or by retention of such intron (Intron-Retained Isoform, IRI). The use of PNA probe pairs labeled with donor (Cy3) and acceptor (Cy5) fluorophores, suitable to FRET, flanking FSI and IRI specific splice junctions specifically detected both mRNA isoforms in HeLa cells. We have observed that the method works efficiently with probes 5–11 nt apart. The data supports that this FRET-based PNA fluorescence in situ hybridization (FP–FISH) method offers a conceptually new approach for characterizing at the subcellular level not only splice variant isoform structure, location and dynamics but also potentially a wide variety of close range RNA–RNA interactions.  相似文献   

2.
3.
Short single-copy probes have been widely used in plant molecular biology. However, they have rarely been effective in plant research usingin situ hybridization techniques, possibly due to limitations imposed by the cell wall. We recently developed two fluorescencein situ hybridization protocols for the single-copy sequence detection in soybean. By enzymatically removing the cell wall, single-copy sequences as short as 1 kb were detected by probes using standard fluorescencein situ hybridization or PCR-primedin situ hybridization (PCR-PRINS). Such technology is useful for genome analysis, in plant molecular, cellular, and biotechnological research.  相似文献   

4.
We report herein the detection of intracellular bacteria in phagocyte-smears obtained from septicemia-suspected blood samples by in situ hybridization. This was obtained by using nick-translated biotin-11-dUTP-labeled DNA probes and streptavidin-alkaline phosphatase conjugates for visualization of the hybridized signals. The probes were made from random genomic DNA clones of bacteria which are frequently the causative agents of bacteremia, such as Staphylococcus spp., Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Klebsiella spp. and Enterobacter spp. When our in situ hybridization method was compared with conventional culture protocols for the ability to detect bacteria from the blood of patients suspected of having septicemia, 30 positive results were obtained in 50 specimens by in situ hybridization methods. In contrast, only 7 positive results were obtained by blood cultures. Thus, even if bacteria cannot be detected by conventional blood cultures and histology, our in situ hybridization method allows for direct observation of bacterial foci in circulating phagocytes and identification of the bacteria. Our investigations suggest that in septicemia, circulating polymorphonuclear neutrophils carry some surviving bacteria as well as metabolized bacterial DNA and RNA for a considerable period of time. Thus, our in situ hybridization method using the phagocyte-smears have diagnostic value for detecting most bacteria which cause septicemia.  相似文献   

5.
6.
The antisense therapeutic strategy makes the assumption that sequence-specific hybridization of an oligonucleotide to its target can take place in living cells. The present work provides a new method for the detection of intracellular RNA molecules using in situ hybridization on living cells. The first step consisted in designing nonperturbant conditions for cell permeabilization using streptolysin O. In a second step, intracellular hybridization specificity was evaluated by incorporating various types of fluorescently labeled nucleic acid probes (plasmids, oligonucleotides). Due to its high expression level, the 28S ribosomal RNA was retained as a model. Results showed that: (1) no significant cell death was observed after permeabilization; (2) on living cells, 28S RNA specific probes provided bright nucleoli and low cytoplasmic signal; (3) control probes did not lead to significant fluorescent staining; and (4) comparison of signals obtained on living and fixed cells showed a colocalization of observed fluorescence. These results indicate the feasibility of specific hybridization of labeled nucleic acid probes under living conditions, after a simple and efficient permeabilization step. This new detection method is of interest for investigating the dynamics of distribution of various gene products in living cells, under normal or pathological conditions.Abbreviations PI propidium iodide - SLO streptolysin O  相似文献   

7.
The potential of a solution-based hybridization assay using peptide nucleic acid (PNA) molecular beacon (MB) probes to quantify 16S rRNA of specific populations in RNA extracts of environmental samples was evaluated by designing PNA MB probes for the genera Dechloromonas and Dechlorosoma. In a kinetic study with 16S rRNA from pure cultures, the hybridization of PNA MB to target 16S rRNA exhibited a higher final hybridization signal and a lower apparent rate constant than the hybridizations to nontarget 16S rRNAs. A concentration of 10 mM NaCl in the hybridization buffer was found to be optimal for maximizing the difference between final hybridization signals from target and nontarget 16S rRNAs. Hybridization temperatures and formamide concentrations in hybridization buffers were optimized to minimize signals from hybridizations of PNA MB to nontarget 16S rRNAs. The detection limit of the PNA MB hybridization assay was determined to be 1.6 nM of 16S rRNA. To establish proof for the application of PNA MB hybridization assays in complex systems, target 16S rRNA from Dechlorosoma suillum was spiked at different levels to RNA isolated from an environmental (bioreactor) sample, and the PNA MB assay enabled effective quantification of the D. suillum RNA in this complex mixture. For another environmental sample, the quantitative results from the PNA MB hybridization assay were compared with those from clone libraries.  相似文献   

8.
9.
We describe the development of a non-electrophoresis PCR-based assay for allele discrimination at a disease resistance locus. The assay is based on the emission of light by fluorescence resonance energy transfer (FRET) upon annealing of two hybridization probes. The analysis of melting curve profiles of the probes and templates allowed the detection of single nucleotide polymorphisms. The assay was applied to the detection of alleles at the cor locus in lettuce (Lactuca sativa) that confers recessive resistance to corky root disease. Probes and primers for the assay were designed after the characterization of a single nucleotide polymorphism between alleles of PCR products amplified using a linked marker. That polymorphism was validated in a collection of lettuce varieties representing different genetic backgrounds. The FRET hybridization probes approach provided fast and accurate genotyping of breeding material directly in a one-tube reaction. The absence of electrophoresis makes this approach suitable for applications that require automation and high-throughput genotyping analyses such as marker-assisted selection programs.  相似文献   

10.
We describe here a new method for highly efficient detection of microRNAs by northern blot analysis using LNA (locked nucleic acid)-modified oligonucleotides. In order to exploit the improved hybridization properties of LNA with their target RNA molecules, we designed several LNA-modified oligonucleotide probes for detection of different microRNAs in animals and plants. By modifying DNA oligonucleotides with LNAs using a design, in which every third nucleotide position was substituted by LNA, we could use the probes in northern blot analysis employing standard end-labelling techniques and hybridization conditions. The sensitivity in detecting mature microRNAs by northern blots was increased by at least 10-fold compared to DNA probes, while simultaneously being highly specific, as demonstrated by the use of different single and double mismatched LNA probes. Besides being highly efficient as northern probes, the same LNA-modified oligonucleotide probes would also be useful for miRNA in situ hybridization and miRNA expression profiling by LNA oligonucleotide microarrays.  相似文献   

11.
We established a sensitive non-radioactive in situ hybridization (ISH) method for the detection of chicken IgG γ-chain mRNA in paraffin sections. RNA probes were transcribed in vitro fromcloned chicken IgG CH1 nucleotide sequences with SP6/T7 RNA polymerases in the presence of DIG-UTP. These probes were used for hybridization and were immunodetected using anti-DIG antibodies conjugated to horseradish peroxidase. The immunoreactive products were visualized with DAB-H2O2. IgG γ-chain mRNA-expressing cells were localized in both the spleen and oviductal tissues. This method demonstrated an excellent sensitivity since the ISH signal was clear and the background was negligible. We found that in the spleen IgG γ-chain mRNA-expressing cells were present mainly in the red pulp, whereas in the oviduct they appeared mainly in the mucosal stroma and not in the mucosal epithelium. Published: May 14, 2001.  相似文献   

12.
Thiazole Orange (TO)-conjugated Peptide Nucleic Acid (PNA) probes have been reported as a valuable strategy for DNA analysis; however, no investigations targeting RNA molecules and no comparisons between different derivatization approaches have been reported so far. In this work, two TO-conjugated PNAs for genogroup II noroviruses (NoV GII) detection were designed and synthesized. Both the probes target the most conserved stretch of nucleotides identified in the open reading frame 1-2 (ORF1-ORF2) junction region and differ for the dye conjugation strategy: one PNA is end-labelled with the TO molecule tethered by a linker; the other probe bears the TO molecule directly linked to the PNA backbone, replacing a conventional nucleobase. The spectroscopic properties of the two PNA probes were studied and their applicability to NoVs detection, using an isothermal assay, was investigated. Both probes showed good specificity and high fluorescence enhancement upon hybridization, especially targeting RNA molecules. Moreover, the two probes were successfully employed for NoVs detection from stool specimens in an isothermal-based amplification assay targeting RNA 'amplicons'. The probes showed to be specific even in the presence of high concentrations of non-target RNA.  相似文献   

13.
Previous fluorescence melting curve analysis (FMCA) used intercalating dyes, and this method has restricted application. Therefore, FMCA methods such as probe-based FMCA and molecular beacons were studied. However, the usual dual-labeled probes do not possess adequate fluorescence quenching ability and sufficient specificity, and molecular beacons with the necessary stem structures are hard to design. Therefore, we have developed a peptide nucleic acid (PNA)-based FMCA method. PNA oligonucleotide can have a much higher melting temperature (Tm) value than DNA. Therefore, short PNA probes can have adequate Tm values for FMCA, and short probes can have higher specificity and accuracy in FMCA. Moreover, dual-labeled PNA probes have self-quenching ability via single-strand base stacking, which makes PNA more favorable. In addition, this method can facilitate simultaneous identification of multiple DNA templates. In conventional real-time polymerase chain reaction (PCR), one fluorescence channel can identify only one DNA template. However, this method uses two fluorescence channels to detect three types of DNA. Experiments were performed with one to three different DNA sequences mixed in a single tube. This method can be used to identify multiple DNA sequences in a single tube with high specificity and high clarity.  相似文献   

14.
The putatively toxic dinoflagellate Pfiesteria piscicida (Steidinger et Burkholder) has been reported to have an unusual life cycle for a free‐living marine dinoflagellate. As many as 24 life cycle stages were originally described for this species. During a recent phylogenetic study in which we used clonal cultures of P. piscicida, we were unable to confirm many reported life cycle stages. To resolve this discrepancy, we undertook a rigorous examination of the life cycle of P. piscicida using nuclear staining techniques combined with traditional light microscopy, high‐resolution video microscopy, EM, and in situ hybridization with a suite of fluorescently labeled peptide nucleic acid (PNA) probes. The results showed that P. piscicida had a typical haplontic dinoflagellate life cycle. Asexual division occurred within a division cyst and not by binary fission of motile cells. Sexual reproduction of this homothallic species occurred via the fusion of isogamous gametes. Examination of tanks where P. piscicida was actively feeding on fish showed that amoebae were present; however, they were contaminants introduced with the fish. Whole cell probing using in situ hybridization techniques confirmed that these amoebae were hybridization negative for a P. piscicida‐specific PNA probe. Direct observations of clonal P. piscicida cultures revealed no unusual life cycle stages. Furthermore, the results of this study provided no evidence for transformations to amoebae. We therefore conclude that P. piscicida has a life cycle typical of free‐living marine dinoflagellates and lacks any amoeboid or other specious stages.  相似文献   

15.
Small RNAs, such as microRNAs (miRNAs), regulate gene expression and play important roles in many plant processes. Although our knowledge of their biogenesis and mode of action has significantly progressed, we still have comparatively little information about their biological functions. In particular, knowledge about their spatio‐temporal expression patterns rely on either indirect detection by use of reporter constructs or labor‐intensive direct detection by in situ hybridization on sectioned material. None of the current approaches allows a systematic investigation of small RNA expression patterns. Here, we present a sensitive method for in situ detection of miRNAs and siRNAs in intact plant tissues that utilizes both double‐labeled probes and a specific cross‐linker. We determined the expression patterns of several small RNAs in diverse plant tissues.  相似文献   

16.
Individual chromosomes can be identified by means of in situ hybridization with DNA probes for chromosome-specific repetitive sequences. The efficiency and sensitivity of the method are strictly dependent on the characteristics of the probes and the experimental conditions. Using three probes with different copy numbers, we demonstrated that the target chromosomes can be visualized in interphase when the homologous sequences are repeated at least 50 times.Possible applications of interphase analysis to clinical cytogenetics and mutagenicity testing are discussed.  相似文献   

17.
16S rRNA-targeted oligonucleotide probes for eubacteria (EUB338), ammonium-oxidizing bacteria (Nsm156) and nitrite-oxidizing bacteria (Nb1000) were used for the rapid detection of nitrifying bacteria in the activated sludge of a pilot nitrifying reactor by whole-cell, fluorescent in situ hybridization (FISH). Emission scanning and synchronous scanning fluorescence spectrometry were used to measure the hybridization. The binding of the probes at a temperature significantly lower than the melting temperature of the hybrids was conventionally considered as non-specific. Total binding of the probes at a temperature significantly higher than the melting temperature of the hybrids was conventionally considered as the sum of non-specific and specific binding (hybridization). Non-specific binding of the oligonucleotide probes with a biomass of activated sludge was 37% of the total binding of the EUB338 probe, 54% of the total binding of the Nsm156 probe, and 69% of the total binding of the Nb1000 probe. The ratio of the specific binding of the Nsm156 and Nb1000 probes was 2.3:1. The ratio of the numbers of ammonium-oxidizing bacteria to nitrite-oxidizing bacteria, determined by microbiological methods, was 2.4:1. Measuring fluorescent in situ hybridization by fluorescence spectrometry appears to be a practical tool for monitoring the microbial communities that contain nitrifying bacteria. However, a method that accounts for the non-specific binding of the probes more easily and reliably should be developed for practical application.  相似文献   

18.
Abstract

In adult animals, signaling through the leptin receptor (OB-R) has been shown to play a critical role in fat metabolism. However, it is not known when these receptors are first expressed and what their role may be during embryonic development. to date, at least 6 splice variants of the OB-R have been identified. Although the function of each of these individual splice variants are unknown, only one of them, ob-rL, encodes a receptor with a long intracellular domain that is implicated in OB-R signaling. in this study we have used in situ hybridization to examine the localization of OB-R splice variants during embryonic development of C57B1/6J mice. Using a probe, ob-r, that recognizes all of the splice variants, ob-r mRNA was found to be distributed in developing bone, mesenchyme, notochord and liver. in addition, epithelial structures including leptomeninges, choroid plexi and hair follicles also expressed ob-r No ob-r mRNA was detected in the CNS. ob-rL, expression was only detected in notochord, bone and mesenchyme. the differential expression of these two mRNA isoforms suggests that the extracellular and intracellular domains of the OB receptor perform different biological functions.  相似文献   

19.
Fluorescence in situ hybridisation (FISH) is a rapid and reliable technique for chromosomal investigations that is used for a wide variety of cytogenetic purposes at present. This molecular-cytogenetic method has been developed continuously for many years. As a consequence, various modifications with different kinds of fluorescently labelled probes have been introduced to optimise the detection of DNA and RNA sequences. This review articlepaper presents the general principles of in situ hybridisation, probe labelling and examples of proper use of different kinds of probes. In addition, some newer FISH methods and their usefulness in human molecular cytogenetics are described.  相似文献   

20.
Summary Collagen types II and X mRNAs have been demonstrated simultaneously in newly formed hypertrophic chondrocytes of embryonic chick vertebral cartilage using a double-fluorescence in situ hybridization technique. Digoxigenin- and biotin-labelled type-specific collagen II and X cDNA probes were used. In the embryonic chick vertebra at stage 45, two different fluorescence signals (Fluorescein isothiocyanate and Rhodamine) - one for collagen type II mRNA, the other for type X mRNA - showed differential distribution of the two collagen mRNAs in the proliferating and hypertrophic chondrocyte zones. Several layers of newly formed hypertrophic chondrocytes expressing both collagen types II and X genes were identified in the same section as two different fluorescent colour signals. Low levels of fluorescent signals for collagen type II mRNA were also detected in the hypertrophic chondrocyte zone. Cytological identification of maturing chondrocyte phenotypes, expressing collagen mRNAs, is easier in sections processed by non-radioactive in situ hybridization than in those subjected to radioactive in situ hybridization using 3H-labelled cDNA probes.This study demonstrates that double-fluorescence in situ hybridization is a useful tool for simultaneously detecting the expression of two collagen genes in the same chondrocyte population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号