首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
This study measured total bacterial and denitrifier community abundances over time in an agricultural soil cropped to potatoes (Solanum tuberosum L.) by using quantitative PCR. Samples were collected on 10 dates from spring to autumn and from three spatial locations: in the potato "hill" between plants (H), close to the plant (H(p)), and in the "furrow" (F). The denitrification rates, N(2)O emissions, and environmental parameters were also measured. Changes in denitrifier abundance over time and spatial location were small (1.7- to 2.7-fold for the nirK, nosZ, and cnorB(B) guilds), whereas the cnorB(P) community (Pseudomonas mandelii and closely related spp.) showed an approximately 4.6-fold change. The seasonal patterns of denitrifier gene numbers varied with the specific community: lower nosZ gene numbers in April and May than in June and July, higher cnorB(P) gene numbers in May and June than in March and April and September and November, higher nirK gene numbers in early spring than in late autumn, and no change in cnorB(B) gene numbers. Gene numbers were higher for the H(p) than the H location for the nosZ and nirK communities and for the cnorB(P) community on individual dates, presumably indicating an effect of the plant on denitrifier abundance. Higher cnorB(P) gene numbers for the H location than the F location and for nosZ and cnorB(B) on individual dates reflect the effect of spatial location on abundance. Denitrifier abundance changes were not related to any environmental parameter, although a weak relationship exists between cnorB(P) gene numbers, extractable organic carbon values, and temperature. Denitrification and N(2)O emissions were mostly regulated by inorganic nitrogen availability and water-filled pore space but were uncoupled from denitrifier community abundances measured in this system.  相似文献   

2.
Earthworm activity is known to increase emissions of nitrous oxide (N(2)O) from arable soils. Earthworm gut, casts, and burrows have exhibited higher denitrification activities than the bulk soil, implicating priming of denitrifying organisms as a possible mechanism for this effect. Furthermore, the earthworm feeding strategy may drive N(2)O emissions, as it determines access to fresh organic matter for denitrification. Here, we determined whether interactions between earthworm feeding strategy and the soil denitrifier community can predict N(2)O emissions from the soil. We set up a 90-day mesocosm experiment in which (15)N-labeled maize (Zea mays L.) was either mixed in or applied on top of the soil in the presence or absence of the epigeic earthworm Lumbricus rubellus and/or the endogeic earthworm Aporrectodea caliginosa. We measured N(2)O fluxes and tested the bulk soil for denitrification enzyme activity and the abundance of 16S rRNA and denitrifier genes nirS and nosZ through real-time quantitative PCR. Compared to the control, L. rubellus increased denitrification enzyme activity and N(2)O emissions on days 21 and 90 (day 21, P = 0.034 and P = 0.002, respectively; day 90, P = 0.001 and P = 0.007, respectively), as well as cumulative N(2)O emissions (76%; P = 0.014). A. caliginosa activity led to a transient increase of N(2)O emissions on days 8 to 18 of the experiment. Abundance of nosZ was significantly increased (100%) on day 90 in the treatment mixture containing L. rubellus alone. We conclude that L. rubellus increased cumulative N(2)O emissions by affecting denitrifier community activity via incorporation of fresh residue into the soil and supplying a steady, labile carbon source.  相似文献   

3.
Land‐use practices aiming at increasing agro‐ecosystem sustainability, e.g. no‐till systems and use of temporary grasslands, have been developed in cropping areas, but their environmental benefits could be counterbalanced by increased N2O emissions produced, in particular during denitrification. Modelling denitrification in this context is thus of major importance. However, to what extent can changes in denitrification be predicted by representing the denitrifying community as a black box, i.e. without an adequate representation of the biological characteristics (abundance and composition) of this community, remains unclear. We analysed the effect of changes in land uses on denitrifiers for two different agricultural systems: (i) crop/grassland conversion and (ii) cessation/application of tillage. We surveyed potential denitrification (PD), the abundance and genetic structure of denitrifiers (nitrite reducers), and soil environmental conditions. N2O emissions were also measured during periods of several days on control plots. Time‐integrated N2O emissions and PD were well correlated among all control plots. Changes in PD were partly due to changes in denitrifier abundance but were not related to changes in the structure of the denitrifier community. Using multiple regression analysis, we showed that changes in PD were more related to changes in soil environmental conditions than in denitrifier abundance. Soil organic carbon explained 81% of the variance observed for PD at the crop/temporary grassland site, whereas soil organic carbon, water‐filled pore space and nitrate explained 92% of PD variance at the till/no‐till site, without any residual effect of denitrifier abundance. Soil environmental conditions influenced PD by modifying the specific activity of denitrifiers, and to a lesser extent by promoting a build‐up of denitrifiers. Our results show that an accurate simulation of carbon, oxygen and nitrate availability to denitrifiers is more important than an accurate simulation of denitrifier abundance and community structure to adequately understand and predict changes in PD in response to land‐use changes.  相似文献   

4.
Soils in the riparian zone, the interface between terrestrial and aquatic ecosystems, may decrease anthropogenic nitrogen (N) loads to streams through microbial transformations (e.g., denitrification). However, the ecological functioning of riparian zones is often compromised due to degraded conditions (e.g., vegetation clearing). Here we compare the efficacy of an urban remnant and a cleared riparian zone for supporting a putative denitrifying microbial community using 16S rRNA sequencing and quantitative polymerase chain reaction of archaeal and bacterial nitrogen cycling genes. Although we had no direct measure of denitrification rates, we found clear patterns in the microbial communities between the sites. Greater abundance of N-cycling genes was predicted by greater soil ammonium (N-NH4), organic phosphorus, and C:N. At the remnant site, we found positive correlations between microbial community composition, which was dominated by putative N oxidisers (Nitrosomonadaceae, Nitrospiraceae and Nitrosotaleaceae), and abundance of ammonia-oxidizing archaea (AOA), nirS, nirK and nosZ, whereas the cleared site had lower abundance of N-oxidisers and N cycling genes. These results were especially profound for the remnant riparian fringe, which suggests that this region maintains suitable soil conditions (via diverse vegetation structure and periodic saturation) to support putative N cyclers, which could amount to higher potential for N removal.  相似文献   

5.
设施菜田不同碳氮管理对反硝化菌结构和功能的影响   总被引:2,自引:0,他引:2  
【目的】通过6年长期定位试验,比较设施菜田不同碳氮管理下反硝化菌结构和功能的差异。【方法】采用末端限制性片段多态性(T-RFLP)和变性梯度凝胶电泳(DGGE)方法分别分析nir K/nir S和nos Z型反硝化菌群结构特征,利用自动连续在线培养监测体系(Robot系统)测定分析NO/(NO3-+NO2-)和N2O/(N2O+N2)产物比,并通过乙炔抑制法测定反硝化酶活性。【结果】传统施肥处理(CN)显著改变了nir K和nos Z型反硝化菌的结构,增加了NO/(NO3-+NO2-)和N2O/(N2O+N2)产物比。nir S型菌受碳氮管理影响较小。减氮(RN)和添加秸秆处理(RN+S)的nir K和nos Z型反硝化菌结构与CN处理的差异性显著,且会显著降低NO/(NO3-+NO2-)和N2O/(N2O+N2)产物比;与CN和RN相比,RN+S显著增加反硝化酶活性。【结论】设施菜田长期传统施肥措施改变了反硝化菌的结构和功能,增加土壤自身的NO产生能力并减弱了N2O还原N2的能力。减氮和添加秸秆管理能形成自身的反硝化菌群结构,并降低NO和N2O排放风险;秸秆的添加会促进反硝化潜在速率,降低菜田NO3-淋洗风险。  相似文献   

6.
Microorganisms capable of denitrification are polyphyletic and exhibit distinct denitrification regulatory phenotypes (DRP), and thus, denitrification in soils could be controlled by community composition. In a companion study (D?rsch et al., 2012) and preceding work, ex situ denitrification assays of three organic soils demonstrated profoundly different functional traits including N(2) O/N(2) ratios. Here, we explored the composition of the underlying denitrifier communities by analyzing the abundance and structure of denitrification genes (nirK, nirS, and nosZ). The relative abundance of nosZ (vs. nirK + nirS) was similar for all communities, and hence, the low N(2) O reductase activity in one of the soils was not because of the lack of organisms with this gene. Similarity in community composition between the soils was generally low for nirK and nirS, but not for nosZ. The community with the most robust denitrification (consistently low N(2) O/N(2) ) had the highest diversity/richness of nosZ and nirK, but not of nirS. Contrary results found for a second soil agreed with impaired denitrification (low overall denitrification activity, high N(2) O/N(2) ). In conclusion, differences in community composition and in the absolute abundance of denitrification genes clearly reflected the functional differences observed in laboratory studies and may shed light on differences in in situ N(2) O emission of the soils.  相似文献   

7.
Denitrifiers remove fixed nitrogen from aquatic environments and hydrologic conditions are one potential driver of denitrification rate and denitrifier community composition. In this study, two agriculturally impacted streams in the Sugar Creek watershed in Indiana, USA with different hydrologic regimes were examined; one stream is seasonally ephemeral because of its source (tile drainage), whereas the other stream has permanent flow. Additionally, a simulated flooding experiment was performed on the riparian benches of the ephemeral stream during a dry period. Denitrification activity was assayed using the chloramphenicol amended acetylene block method and bacterial communities were examined based on quantitative PCR and terminal restriction length polymorphisms of the nitrous oxide reductase (nosZ) and 16S rRNA genes. In the stream channel, hydrology had a substantial impact on denitrification rates, likely by significantly lowering water potential in sediments. Clear patterns in denitrification rates were observed among pre-drying, dry, and post-drying dates; however, a less clear scenario was apparent when analyzing bacterial community structure suggesting that denitrifier community structure and denitrification rate were not strongly coupled. This implies that the nature of the response to short-term hydrologic changes was physiological rather than increases in abundance of denitrifiers or changes in composition of the denitrifier community. Flooding of riparian bench soils had a short-term, transient effect on denitrification rate. Our results imply that brief flooding of riparian zones is unlikely to contribute substantially to removal of nitrate (NO3 -) and that seasonal drying of stream channels has a negative impact on NO3 - removal, particularly because of the time lag required for denitrification to rebound. This time lag is presumably attributable to the time required for the denitrifiers to respond physiologically rather than a change in abundance or community composition.  相似文献   

8.
Soil denitrification is one of the most significant contributors to global nitrous oxide (N(2) O) emissions, and spatial patterns of denitrifying communities and their functions may reveal the factors that drive denitrification potential and functional consortia. Although denitrifier spatial patterns have been studied extensively in most soil ecosystems, little is known about these processes in arctic soils. This study aimed to unravel the spatial relationships among denitrifier abundance, denitrification potential and soil resources in 279 soil samples collected from three Canadian arctic ecosystems encompassing 7° in latitude and 27° in longitude. The abundance of nirS (10(6) -10(8) copies?g(-1) dry soil), nirK (10(3) -10(7) copies?g(-1) dry soil) and nosZ (10(6) -10(7) copies?g(-1) dry soil) genes in these soils is in the similar range as non-arctic soil ecosystems. Potential denitrification in Organic Cryosols (1034?ng?N(2) O-N?g(-1) soil) was 5-11 times higher than Static/Turbic Cryosols and the overall denitrification potential in Cryosols was also comparable to other ecosystems. We found denitrifier functional groups and potential denitrification were highly spatially dependent within a scale of 5?m. Functional groups and soil resources were significantly (P?相似文献   

9.
Denitrifying prokaryotes are phylogenetically and functionally diverse. Little is known about the relationship between soil denitrifier community composition and functional traits. We extracted bacterial cells from three cultivated peat soils with contrasting native pH by density gradient centrifugation and investigated their kinetics of oxygen depletion and NO2 -, NO, N(2) O and N(2) accumulation during initially hypoxic batch incubations (0.5-1 μM O(2)) in minimal medium buffered at either pH 5.4 or 7.1 (2 mM glutamate, 2 mM NO3 -). The three communities differed strikingly in NO2 - accumulation and transient N(2) O accumulation at the two pH levels, whereas NO peak concentrations (24-53 nM) were similar across all communities and pH treatments. The results confirm that the communities represent different denitrification regulatory phenotypes, as indicated by previous denitrification bioassays with nonbuffered slurries of the same three soils. The composition of the extracted cells resembled that of the parent soils (PCR-TRFLP analyses of 16S rRNA genes, nirK, nirS and nosZ), which were found to differ profoundly in their genetic composition (Braker et al., ). Together, this suggests that direct pH response of denitrification depends on denitrifier community composition, with implications for the propensity of soils to emit N(2) O to the atmosphere.  相似文献   

10.
In this study, microcosms were used to investigate the influence of temperature (4 and 28 degrees C) and water content (45% and 90% WHC) on microbial communities and activities in carbon-rich fen soil. Bacterial, archaeal and denitrifier community composition was assessed during incubation of microcosms for 12 weeks using terminal restriction fragment length polymorphism (T-RFLP) profiling of 16S rRNA and nitrous oxide reductase (nosZ) genes. In addition, microbial and denitrifier abundance, potential denitrification activity and production of greenhouse gases were measured. No detectable changes were observed in prokaryote or denitrifier abundance. In general, cumulatively after 12 weeks more carbon was respired at the higher temperature (3.7 mg CO(2) g(-1) soil), irrespective of the water content, whereas nitrous oxide production was greater under wet conditions (98-336 microg N(2)O g(-1) soil). After an initial lag phase, methane emissions (963 microg CH(4) g(-1) soil) were observed only under warm and wet conditions. T-RFLP analyses of bacterial 16S rRNA and nosZ genes revealed small or undetectable community changes in response to temperature and water content, suggesting that bacterial and denitrifying microbial communities are stable and do not respond significantly to seasonal changes in soil conditions. In contrast, archaeal microbial community structure was more dynamic and was strongly influenced by temperature.  相似文献   

11.
To determine to which extent root-derived carbon contributes to the effects of plants on nitrate reducers and denitrifiers, four solutions containing different proportions of sugar, organic acids and amino acids mimicking maize root exudates were added daily to soil microcosms at a concentration of 150 microg C g(-1) of soil. Water-amended soils were used as controls. After 1 month, the size and structure of the nitrate reducer and denitrifier communities were analysed using the narG and napA, and the nirK, nirS and nosZ genes as molecular markers respectively. Addition of artificial root exudates (ARE) did not strongly affect the structure or the density of nitrate reducer and denitrifier communities whereas potential nitrate reductase and denitrification activities were stimulated by the addition of root exudates. An effect of ARE composition was also observed on N(2)O production with an N(2)O:(N(2)O + N(2)) ratio of 0.3 in microcosms amended with ARE containing 80% of sugar and of 1 in microcosms amended with ARE containing 40% of sugar. Our study indicated that ARE stimulated nitrate reduction or denitrification activity with increases in the range of those observed with the whole plant. Furthermore, we demonstrated that the composition of the ARE affected the nature of the end-product of denitrification and could thus have a putative impact on greenhouse gas emissions.  相似文献   

12.
Nitrate (NO 3 ) removal in riparian zones bordering agricultural areas occurs via plant uptake, microbial immobilisation and bacterial denitrification. Denitrification is a desirable mechanism for removal because the bacterial conversion of NO 3 to N gases permanently removes NO 3 from the watershed. A field and laboratory study was conducted in riparian soils adjacent to Carroll Creek, Ontario, Canada, to assess the spatial distribution of denitrification relative to microbial community structure and microbial functional diversity. Soil samples were collected in March, June, and August 1997 at varying soil depths and distances from the stream. Denitrification measurements made using the acetylene block technique on intact soil cores were highly variable and did not show any trends with riparian zone location. Microbial community composition and functional diversity were determined using sole carbon source utilization (SCSU) on Biolog® GN microplates. Substrate richness, evenness and diversity (Shannon index) were greatest within the riparian zone and may also have been influenced by a rhizosphere effect. A threshold relationship between denitrification and measures of microbial community structure implied minimum levels of richness, evenness and diversity were required for denitrification.  相似文献   

13.
Spatial variability in hydrological flowpaths and nitrate-removal processes complicates the overall assessment of riparian buffer zone functioning in terms of water quality improvement as well as enhancement of the greenhouse effect by N2O emissions. In this study, we evaluated denitrification and nitrous oxide emission in winter and summer along two groundwater flowpaths in a nitrate-loaded forested riparian buffer zone and related the variability in these processes to controlling soil factors. Denitrification and emissions of N2O were measured using flux chambers and incubation experiments. In winter, N2O emissions were significantly higher (12.4 mg N m−2 d−1) along the flowpath with high nitrate removal compared with the flowpath with low nitrate removal (2.58 mg N m−2 d−1). In summer a reverse pattern was observed, with higher N2O emissions (13.6 mg N m−2 d−1) from the flowpath with low nitrate-removal efficiencies. Distinct spatial patterns of denitrification and N2O emission were observed along the high nitrate-removal transect compared to no clear pattern along the low nitrate-removal transect, where denitrification activity was very low. Results from this study indicate that spots with high nitrate-removal efficiency also contribute significantly to an increased N2O emission from riparian zones. Furthermore, we conclude that high variability in N2O:N2 ratio and weak relationships with environmental conditions limit the value of this ratio as a proxy to evaluate the environmental consequences of riparian buffer zones.  相似文献   

14.
15.
Carbon (C) and nitrogen (N) are strongly coupled across ecosystems due to stoichiometrically balanced assimilatory demand as well as dissimilatory processes such as denitrification. Microorganisms mediate these biogeochemical cycles, but how microbial communities respond to environmental changes, such as dissolved organic carbon (DOC) availability, and how those responses impact coupled biogeochemical cycles in streams is not clear. We enriched a stream in central Indiana with labile DOC for 5?days to investigate coupled C and N cycling. Before, and on day 5 of the enrichment, we examined assimilatory uptake and denitrification using whole-stream 15N-nitrate tracer additions and short-term nitrate releases. Concurrently, we measured bacterial and denitrifier abundance and community structure. We predicted N assimilation and denitrification would be stimulated by the addition of labile C and would be mediated by increases in bacterial activity, abundance, and a shift in community structure. In response to the twofold increase in DOC concentrations in the water column, N assimilation increased throughout the enrichment. Community respiration doubled during the enrichment and was associated with a change in bacterial community structure (based on terminal restriction fragment length polymorphisms of the 16S rRNA gene). In contrast, there was little response in denitrification or denitrifier community structure, likely because labile C was assimilated by heterotrophic communities on the stream bed prior to reaching denitrifiers within the sediments. Our results suggest that coupling between C and N in streams involves potentially complex interactions with sediment texture and organic matter, microbial community structure, and possibly indirect biogeochemical pathways.  相似文献   

16.
【目的】对比设施菜田与棚外粮田土壤菌群以及N2O产生模式的差异。【方法】采用变性梯度凝胶电泳(DGGE)和反硝化功能基因(nirS,nosZ)方法分别比较两种土壤细菌群落以及功能基因类群丰度的差异,利用自动连续在线培养监测体系(Robot系统)测定两种土壤在好氧、厌氧阶段N2O等反硝化相关气态产物产生模式,分析N2O/(N2+N2O+NO)产物比。【结果】设施菜田与棚外粮田具有不同的土壤细菌群落结构,并且土壤细菌总量得到了显著的提升,然而两种反硝化功能基因(nirS,nosZ)丰度并没有显著变化。与设施菜田相比,棚外粮田有相对低的N2O积累量以及产物比,并且在厌氧初期气体产生模式有所不同。培养后铵态氮和亚硝态氮含量上升。【结论】设施菜田长期有别于棚外粮田的管理方式造成了土壤细菌群落的显著改变,增大了活跃微生物总量,造成土壤酸化,并导致N2O在气态产物中的比例升高。设施菜田土壤微生物进行了与棚外粮田不同的硝酸盐呼吸过程,异化硝酸盐还原成铵(DNRA)过程有可能贡献了两种土壤的部分厌氧N2O产生量。  相似文献   

17.
There is ample evidence that microbial processes can exhibit large variations in activity on a field scale. However, very little is known about the spatial distribution of the microbial communities mediating these processes. Here we used geostatistical modelling to explore spatial patterns of size and activity of the denitrifying community, a functional guild involved in N-cycling, in a grassland field subjected to different cattle grazing regimes. We observed a non-random distribution pattern of the size of the denitrifier community estimated by quantification of the denitrification genes copy numbers with a macro-scale spatial dependence (6–16 m) and mapped the distribution of this functional guild in the field. The spatial patterns of soil properties, which were strongly affected by presence of cattle, imposed significant control on potential denitrification activity, potential N2O production and relative abundance of some denitrification genes but not on the size of the denitrifier community. Absolute abundance of most denitrification genes was not correlated with the distribution patterns of potential denitrification activity or potential N2O production. However, the relative abundance of bacteria possessing the nosZ gene encoding the N2O reductase in the total bacterial community was a strong predictor of the N2O/(N2 + N2O) ratio, which provides evidence for a relationship between bacterial community composition based on the relative abundance of denitrifiers in the total bacterial community and ecosystem processes. More generally, the presented geostatistical approach allows integrated mapping of microbial communities, and hence can facilitate our understanding of relationships between the ecology of microbial communities and microbial processes along environmental gradients.  相似文献   

18.
The effects of agronomic management practices on the soil microbial community were investigated in a maize production system in New South Wales, Australia. The site has been intensively studied to measure the impact of stubble management and N-fertilizer application on greenhouse gas emissions (CO(2) and N(2)O), N-cycling, pathology, soil structure and yield. As all of these endpoints can be regulated by microbial processes, the microbiology of the system was examined. Soil samples were taken after a winter fallow period and the diversity of the bacterial and fungal communities was measured using PCR-denaturing gradient gel electrophoresis. Stubble and N shifted the structure of bacterial and fungal communities with the primary driver being stubble addition on the fungal community structure (P<0.05 for all effects). Changes in C, N (total and NO(3)), K and Na, were correlated (P<0.05) with variation in the microbial community structure. Quantitative PCR showed that nifH (nitrogen fixation) and napA (denitrification) gene abundance increased upon stubble retention, whereas amoA gene numbers were increased by N addition. These results showed that the management of both stubble and N have significant and long-term impacts on the size and structure of the soil microbial community at phylogenetic and functional levels.  相似文献   

19.
20.
Riparian forests provide important habitat for many wildlife species and are sensitive to landscape change. Among terrestrial invertebrates, dung beetles have been used to investigate the effects of environmental disturbances on forest structure and diversity. Since many studies demonstrated a negative response of dung beetle communities to increasing forest fragmentation, and that most dung beetle species had a more pronounced occurrence during warmest seasons, three hypotheses were tested: (1) Scarabaeinae richness, abundance, diversity and evenness are lower in thinner riparian zone widths than in wider widths during the warmest seasons; (2) Scarabaeinae richness and abundance are positively influenced by leaf litter coverage and height and canopy cover; and (3) Scarabaeinae composition varies with the reduction in riparian vegetation and among annual seasons. We selected four fragments with different riparian zone widths in three secondary streams in southern Brazil. In each fragment, four sampling periods were carried out seasonally between spring 2010 and winter 2011. We collected dung beetles using pitfall traps with two types of bait. We collected 1289 specimens distributed among 29 species. In spring and summer, dung beetle richness was higher in fragments with the widest riparian zone than in those with a thinner riparian zone, and it did not vary between fragments in fall and winter seasons. Dung beetle abundance did not differ among fragments with different riparian zone widths, but it was higher in spring and summer than fall and winter. Richness and abundance were positively influenced by leaf litter. While dung beetle diversity was higher in fragments with wider riparian zone widths than in those with thinner widths, the evenness was similar among fragments. Dung beetle composition differed between the fragments with the widest and thinnest riparian zones, and it also varied among the seasons. Our results suggest that decreased riparian zones affect negatively to dung beetle community structure in southern Brazil. Fragments with thinner riparian zones had lower beetle richness in warmest seasons and an altered community composition. In this sense, the dung beetles are potentially good indicators of riparian forest fragmentation since some species were indicators of a particular riparian zone width. From a conservation perspective, our results demonstrate that the new Brazilian Forest Code will greatly jeopardize not only the terrestrial and aquatic biodiversity of these ecosystems, but also countless other ecological functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号