首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
β 肾上腺素受体作为重要的 G 蛋白偶联受体家族成员,在血液循环、代谢调节、肌肉收缩和舒张中都具有重要的作用。在心脏中, 急性激活 β 肾上腺素受体能够促进心脏功能,持续性激活 β 肾上腺素受体在心脏重构的病理生理过程中具有重要作用。心脏中的 β 肾上腺 素受体包括 3 个亚型:β1 肾上腺素受体、β2 肾上腺素受体和 β3 肾上腺素受体。文章重点讨论了 β1 和 β2 肾上腺素受体二者在心脏中不同甚 至截然相反的作用。在此基础上,提出基于 β 肾上腺素受体信号转导亚型特异性的心衰治疗新方法。  相似文献   

2.
随着受体的研究的蓬勃发展,对在心脏活动调节中起重要作用的肾上腺素受体的了解也更加深入。近年来的许多研究表明β2-肾上腺素受体不同亚型之间的信号转导及其介质的心脏反应有着很大的差异。本文扼要介绍了心脏β2-肾上腺素受体的最新研究进展,主要包括β2-肾上腺素受体中的混杂G蛋白偶联、信号转导局域化、固有活性及其与充血性心力衰竭的关系。  相似文献   

3.
慢性心衰作为发病率和死亡率很高的一种疾病,其主要表现为心脏供血功能下降,无法满足身体需求。β 肾上腺素受体信号通路对 于维持心脏正常生理功能有重要意义,心衰时,β 肾上腺素受体信号通路也发生很大改变。基于对 β 肾上腺素受体信号通路的机制研究, 目前 β1 肾上腺素受体拮抗剂被广泛应用于心衰治疗,但 β2 肾上腺素受体的功能还有争议。综述 β2 肾上腺素受体在心衰过程中作用的研究 进展,提出 β2 肾上腺素受体激动剂联合 β1 肾上腺素受体拮抗剂治疗心衰的策略,旨在为心衰治疗药物的开发提供参考。  相似文献   

4.
本文综述了心脏β-肾上腺素受体信号转导系统的生理功能及其各组成部分在心肌内缺血预处理中的作用,为心肌缺血预处理的保护机制提供科学依据。  相似文献   

5.
β肾上腺素受体中的β1和β2亚型是调节心脏功能最重要的两种蛋白。在此将阐述β肾上腺素受体亚型信号转导对心脏的生理功能与心力衰竭的关系,并综合介绍β肾上腺素受体系统中一些关键蛋白的基因多态性与心力衰竭的易感性、预后及药物治疗效果的关联。最后,将探讨如何应用功能选择理论和基因组学发现新的心衰治疗靶点和新药,为新药研发和个体化医疗提供思路。  相似文献   

6.
交感-肾上腺髓质系统在调节心血管活动中发挥至关重要的作用,而肾上腺素受体是其发挥作用的门户.肾上腺素受体是G蛋白偶联受体家族的代表性受体,介导了重要的生理信号功能.肾上腺素受体信号系统的异常是导致众多心血管疾病的主要机制,因此也是临床用药的最主要靶点.本文回顾了肾上腺素受体的发现及其研究进展,梳理了肾上腺素受体的信号转导系统及其与心血管疾病之间的关系,为肾上腺素受体的进一步研究和心血管疾病的治疗提供了理论基础.  相似文献   

7.
内皮素 (Endothelin ,ET)是一种由 2 1个氨基酸组成的生物活性多肽 ,是迄今发现最强大的内源性缩血管物质。头端延髓腹外侧区 (rVLM)是心血管活动的重要调节中枢 ,内含丰富的ET及其受体 ,rVLM内微量注射ET 1可诱发缺血心脏发生严重节律紊乱 ,其机理与兴奋交感中枢和激活机体应激系统有关。研究表明 ,中枢交感兴奋时的VF易感性 ,能通过阻断 β1 肾上腺素能受体而明显降低 ,并且肾上腺素能受体阻滞剂可完全防止应激诱发的心脏易损性的改变 ;γ 氨基丁酸 (GABA)是中枢内主要抑制性神经递质之一 ,有很强的中枢性…  相似文献   

8.
作为交感神经系统主要递质的去甲肾上腺素在多种心脏疾病中诱导心肌细胞凋亡,这种诱导作用主要由肾上腺素能受体(β-AR)介导,β-AR还介导心肌细胞凋亡的信号转导,这对于了解心脏疾病的发病机理有一定的临床意义。  相似文献   

9.
目的:探讨糖尿病合并高血压大鼠心脏α1肾上腺素受体(α1-AR)及其三种亚型的变化规律和可能的意义。方法:用Wistar雄性大鼠建立糖尿病合并高血压模型,放射配体结合实验和离体左心房收缩功能实验等方法观察心脏α1肾上腺素受体(α1-AR)及其三种亚型的改变。结果:与正常对照大鼠相比,糖尿病合并高血压大鼠心脏α1-AR最大结合容量(Bmax)显著增加(P<0.05),且α1A-AR和α1D-AR均增加。糖尿病合并高血压大鼠左心房α1-AR介导的最大收缩反应较对照组降低41%(P<0.05),pD2值不变。α1-AR亚型选择性拮抗剂5-MU、spiperon和BMY7378拮抗NE正性变力效应的pA2值不变。结论:糖尿病合并高血压大鼠心脏α1-AR介导的最大收缩反应的降低,其主要与受体后信号转导效应减弱有关,其中以α1A-AR和α1D-AR尤为显著。  相似文献   

10.
Liu J  Bai H  Xing DQ  Sun YP  Wu LL 《生理学报》2002,54(2):159-164
为了探索血小板源生长因子 (platelet derivedgrowthfactor,PDGF)受体介导的信号转导在自发性高血压大鼠(spontaneouslyhypertensiverats,SHR)心肌肥大中的作用 ,实验采用Westernblot法检测SHR及其对照WKY大鼠心肌PDGF受体β和细胞外信号调节激酶 (extracellularsignal regulatedkinase1/ 2 ,ERK 1/ 2 )的蛋白表达和ERK 1/ 2磷酸化水平的变化。结果显示 :4周龄SHR的收缩压、舒张压、±dp/dtmax和心肌肥大指数与同龄WKY大鼠相比均无明显差异 ,而 12周龄SHR上述指标与同龄WKY大鼠相比均明显升高 ,表明 12周SHR已发生高血压 ,心脏收缩功能代偿性增强 ,并出现心肌肥大。 4周龄SHR心肌PDGF受体 β和ERK1/ 2的磷酸化水平以及ERK 1/ 2的蛋白表达水平与同龄对照相比均无明显变化 ,12周时SHR心肌PDGF受体 β的蛋白表达较同龄WKY增加 32 77% (P <          0 0 5 ) ,PDGF受体介导的信号转导通路的下游信号分子ERK 1/ 2的磷酸化水平较同龄WKY升高 19 6 % (P =0 0 1) ,表明ERK 1/ 2的活化增加 ,但ERK 1/ 2的蛋白表达水平尚无变化。为进一步明确PDGF受体 β在心肌细胞生长中的作用及其与ERK 1/ 2活性的关系 ,采用PDGF BB刺激培养的乳鼠心肌细胞 ,发现 [3 H]亮氨酸掺入量明显增加 ,ERK 1/ 2的磷酸化水平明  相似文献   

11.
在主动脉与肾动脉缩窄造成的慢性心功能不全大鼠,血浆儿茶酚胺浓度增高;心脏β-肾上腺素受体(β-AR)数量增加,其中β_1-AR及其mRNA增加,而β_2-AR及其mRNA不变;左心房异丙基肾上腺素(ISO)浓度-收缩效应曲线右移;而心肌ISO浓度-cAMP蓄积曲线无显著改变;血淋巴细胞β-AR数量显著减少.结果提示心功能不全时心脏β_1-AR数量增多,但其介导的正性变力效应反而降低,在cAMP生成以后的信号转导过程或心肌收缩成分功能存在障碍,而血淋巴细胞β-AR的改变与心脏β-AR的功能改变平行.  相似文献   

12.
肾上腺素受体对心血管细胞生长和凋亡的影响   总被引:3,自引:0,他引:3  
肾上腺素受体广泛存在于心血管系统。心肌肥厚,心衰,心动粥样硬化等病理过程往往伴有心血管细胞的异常生长和凋亡,研究表明儿茶酚胺可经不同的肾上腺素受体通过不同的信号转导途径,如α-肾上腺素受体主要通过磷酯磷C/蛋白激酶C途径,β-肾上腺素受体则主要通过蛋白激酶A/cAMP途径或激活钙通道对心肌细胞,血管平滑肌细胞,内皮细胞等的生长与凋亡产生影响,探讨肾上腺素受体对心血管细胞生长和凋亡的作用机制,具有重  相似文献   

13.
雌激素是女性体内主要的类固醇性激素.对于心肌缺血性伤害,切除卵巢的成年雌性大鼠在β-肾上腺素受体激动时,比正常雌性大鼠呈现更严重的心肌损伤;而去卵巢后的雌激素替补组大鼠对β-肾上腺素受体激动时心肌缺血性伤害的反应则又回复到正常雌性大鼠水平,这为雌激素对抗缺血性伤害的心脏保护作用提供了证据.雌激素的这种保护作用是通过下调β1-肾上腺素受体的表达来实现的.也有研究证明,雌激素能抑制蛋白激酶A(protein kinase A,PKA)的表达和活性,PKA是Gs蛋白/腺苷酸环化酶(adenylyl cyclase,AC)/cAMP/PKA通路的第二信使,而该通路最终影响心肌的收缩功能.有初步证据表明雌激素还能抑制β1-肾上腺素受体通路下游的另一种第二信使钙调蛋白激酶Ⅱ-δc(Ca2+/calmodulin kinase Ⅱ-δc,CaMKⅡ-δc)的活性,而CaMKⅡ-δc参与PKA非依赖性的细胞凋亡.即时给予生理浓度雌激素可不通过雌激素受体而直接抑制心肌β1-肾上腺素受体并减弱Ca2+内流.此外,脑研究也显示雌激素能抑制负责调节动脉血压脑区的β广肾上腺素受体活性.因此,雌激素和β1-肾上腺素受体之间的相互作用及其信号通路十分复杂.雌激素不仅主导性别决定,在机体其它功能例如心脏保护方面也具有重要作用.  相似文献   

14.
Wong KA  Ma Y  Cheng WT  Wong TM 《生理学报》2007,59(5):571-577
雌激素是女性体内主要的类固醇性激素。对于心肌缺血性伤害,切除卵巢的成年雌性大鼠在β-肾上腺素受体激动时,比正常雌性大鼠呈现更严重的心肌损伤:而去卵巢后的雌激素替补组大鼠对β-肾上腺素受体激动时心肌缺血性伤害的反应则又回复到正常雌性大鼠水平,这为雌激素对抗缺血性伤害的心脏保护作用提供了证据。雌激素的这种保护作用是通过下调β1-肾上腺素受体的表达来实现的。也有研究证明,雌激素能抑制蛋白激酶A(protein kinaseA,PKA)的表达和活性,PKA是Gs蛋白/腺苷酸环化酶(adenylyl cyclase,AC)/cAMP/PKA通路的第二信使,而该通路最终影响心肌的收缩功能。有初步证据表明雌激素还能抑制β1-肾上腺素受体通路下游的另一种第二信使钙调蛋白激酶Ⅱ.δc(Ca^2+/calmodulin kinaseⅡ-δc,CaMKⅡ-δc)的活性,而CaMKII-δc参与PKA非依赖性的细胞凋亡。即时给予生理浓度雌激素可不通过雌激素受体而直接抑制心肌β1-肾上腺素受体并减弱Ca^2+内流。此外,脑研究也显示雌激素能抑制负责调节动脉血压脑区的β1-肾上腺素受体活性。因此,雌激素和β1-肾上腺素受体之间的相互作用及其信号通路十分复杂。雌激素不仅主导性别决定,在机体其它功能例如心脏保护方面也具有重要作用。  相似文献   

15.
2012年度诺贝尔化学奖授予了美国科学家罗伯特.莱夫科维茨(Robert J.Lefkowitz)和布莱恩.克比尔卡(Brian K.Kobilka),以表彰他们在G蛋白偶联受体研究中的贡献。从Robert J.Lefkowitz最初研究β-肾上腺素受体(β-adrenergic receptor,β-AR)减敏机制时发现β-arrestin1至今已有20多年,随着对β-arrestin在细胞信号转导中作用研究的逐渐深入,发现β-arrestin参与β-AR的减敏、内化和降解;近年来又发现,依赖β-arrestin的β-AR信号转导通路具有"偏向激活"现象,并提示这种依赖β-arrestin的"偏向激活"信号转导通路具有心脏保护作用。β-肾上腺素受体阻滞剂的发现和临床应用被视为20世纪药物治疗学上里程碑式的进展,是药物防治心脏疾病的最伟大突破,很多心血管药物都以β-AR为靶点。但是,由于目前受体药物均是针对受体本身的调控,这样在阻断了受体介导的病理性信号通路和功能的同时,也阻断了受体介导的正常生理性信号通路和功能,造成了严重的毒副作用。所以,研发能选择性阻滞β-AR过度激活介导的病理性信号通路和功能的同时,保留受体介导的正常生理性信号通路和功能(如β-arrestin信号通路)的药物,对治疗心血管疾病有重要意义,受体功能选择性的配体药物将成为未来药物的研究方向。该文将回顾β-arrestin的发现过程,综述其与β-AR的相互作用,期望能为心脏疾病的药物治疗提供参考。  相似文献   

16.
目的:探讨长期糖尿病大鼠心脏肾上腺素受体(AR)的改变及其与心功能变化之间的关系.方法:采用链脲佐菌素(STZ)注射造成胰岛素依赖性糖尿病大鼠模型,放射配体结合实验和离体左心房收缩功能实验等方法观察心脏AR及功能的改变.结果:与同龄对照大鼠相比,糖尿病大鼠心脏β-AR的最大结合容量(Bmax)下降34%(P<0.05),KD值不变;心脏α1-AR Bmax无显著改变.糖尿病大鼠左心房β-AR介导的最大收缩反应(Rmax)较对照组下降64%(P<0.05);α1-AR介导的最大收缩反应增加36%(P<0.05),pD2值不变.结论:长期糖尿病大鼠心脏β-AR介导的最大收缩反应降低,其可能与β-AR数量减少有关.α1-AR介导的最大收缩反应代偿性增强,其可能与受体后信号转导效应增强有关.  相似文献   

17.
目的 :观察 β3 受体激动剂 (BRL 37344 )对培养的大鼠心肌细胞搏动频率和细胞内环 -磷酸腺苷 (cAMP)水平的影响 ,以探讨 β3 受体在心肌细胞中的作用。方法 :分离培养乳鼠心肌细胞 ,随机分为八组 :对照组、ISO组、Nadolol+ISO组、BRL组、PTX +BRL组、L NAME +BRL、Nadolol+BRL组和Bupranolol+BRL组 ,观察心肌细胞搏动频率 ,并应用酶联免疫方法测定cAMP含量 ,逆转录多聚酶链反应 (RT PCR)方法测 β3 受体mRNA表达。结果 :ISO(非选择性 β受体激动剂 )可显著增加心肌细胞搏动频率和升高cAMP水平 ,这种作用可被Nadolol(为 β1,β2 受体抑制剂 )阻断。BRL 37344可显著降低心肌细胞搏动频率和cAMP含量 ,这种作用可被PTX(Gi 蛋白抑制剂 )和Bupranolol(非选择性 β受体阻滞剂 )完全阻断 ,同时可被L NAME(一氧化氮合酶抑制剂 )部分阻断 ,不受Nadolol影响。RT PCR方法测出心肌细胞中有 β3 受体mRNA表达。结论 :心肌细胞中存在 β3 受体 ,它在心肌表现为负性变力作用 ,β3 受体的效应不受 β1,β2 受体抑制剂影响。心脏 β3 受体信号途径中可能有Gi 蛋白的参与 ,并且经过一氧化氮合酶途径发挥其作用。  相似文献   

18.
Di Y  Xia SH  Tong CQ 《生理科学进展》2006,37(3):263-265
AGS3蛋白是影响受体到G蛋白的信号转导或直接影响非受体依赖型G蛋白激活的蛋白质之一。AGS3蛋白在脑、睾丸、肝脏、肾脏、心脏、胰腺及PC-12细胞中普遍分布。它不仅具有不依赖受体的Gβγ信号转导激活物的作用,也能作为二磷酸乌苷(GDP)的解离抑制剂,并负向调节G蛋白偶联受体对G蛋白的激活。AGSl、AGS2、AGS4是AGS家族的其它几个成员,能选择性激活不同类型的G蛋白。LGN和PINS蛋白是AGS3的同系物。AGS3蛋白与信号转导的关系是目前研究的热点之一。  相似文献   

19.
心脏α-肾上腺素受体研究的进展   总被引:1,自引:0,他引:1  
哺乳类动物心脏存在а-肾上腺素受体。心脏а-受体的数目明显地受动物种属、年龄、生理及病理状态的影响。心脏а-受体的正性变力作用,不依赖于cAMP和cGMP,而受细胞外钙离子跨膜内流的影响。在依赖细胞外钙方面,а_1-和α_2-受体间存在着较大的差异。本文并讨论了心脏а-受体在心律失常中的作用。  相似文献   

20.
血浆5-羟色胺对心血管功能的调节   总被引:6,自引:0,他引:6  
血浆5-羟色胺(5-HT)既直接引起血管平滑肌收缩,又增强去甲肾上腺素等血管活性物质的缩血管反应。选择性外周S_2受体阻断剂R_(41468)阻断5-HT的这种作用,在高血压病的临床治疗中取得了较好的效果。5-HT对心脏的影响主要表现为正性肌力和正性频率作用。5-HT能影响颈动脉体、主动脉区化学感受器的机能和肾上腺素能神经末梢的递质释放。研究5-HT及其相应受体与动脉血压的关系,将为高血压等心血管疾病的治疗提供新的理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号