首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Predator diversity and abundance are under strong human pressure in all types of ecosystems. Whereas predator potentially control standing biomass and species interactions in food webs, their effects on prey biomass and especially prey biodiversity have not yet been systematically quantified. Here, we test the effects of predation in a cross‐system meta‐analysis of prey diversity and biomass responses to local manipulation of predator presence. We found 291 predator removal experiments from 87 studies assessing both diversity and biomass responses. Across ecosystem types, predator presence significantly decreased both biomass and diversity of prey across ecosystems. Predation effects were highly similar between ecosystem types, whereas previous studies had shown that herbivory or decomposition effects differed fundamentally between terrestrial and aquatic systems based on different stoichiometry of plant material. Such stoichiometric differences between systems are unlikely for carnivorous predators, where effect sizes on species richness strongly correlated to effect sizes on biomass. However, the negative predation effect on prey biomass was ameliorated significantly with increasing prey richness and increasing species richness of the manipulated predator assemblage. Moreover, with increasing richness of the predator assemblage present, the overall negative effects of predation on prey richness switched to positive effects. Our meta‐analysis revealed strong general relationships between predator diversity, prey diversity and the interaction strength between trophic levels in terms of biomass. This study indicates that anthropogenic changes in predator abundance and diversity will potentially have strong effects on trophic interactions across ecosystems. Synthesis The past centuries we have experienced a dramatic loss of top–predator abundance and diversity in most types of ecosystems. To understand the direct consequences of predator loss on a global scale, we quantitatively summarized experiments testing predation effects on prey communities in a cross‐system meta‐analysis. Across ecosystem types, predator presence significantly decreased both biomass and diversity of prey, and predation effects were highly similar. However, with increasing predator richness, the overall negative effects of predation on prey richness switched to positive ones. Anthropogenic changes in predator communities will potentially have strong effects on prey diversity, biomass, and trophic interactions across ecosystems.  相似文献   

2.
Deer can have severe effects on plant communities, which in turn can affect insect communities. We studied the effects of Key deer herbivory on the incidence of insect herbivores that occur within deer habitats in the lower Florida Keys, within the National Key Deer Refuge (NKDR). We analyzed plant chemistry (tannins, nitrogen) and surveyed for the occurrence of insects (above the browse tier) among plant species that were either deer-preferred or less-preferred. Results indicated higher levels of foliar tannins on islands with fewer Key deer and larger amounts of foliar nitrogen on islands with a high density of Key deer. Consequently, leaf miners were significantly more abundant on islands with high deer density, irrespective of deer-preference of plant species. On islands with a high deer density, incidence of leaves damaged by chewing insects was lower on preferred plant species but greater on less-preferred species than on islands with fewer deer. No apparent patterns were evident in the distribution of leaf gallers among plant species or islands with different deer density. Our results imply that plant nutrition levels—either preexisting or indirectly affected by deer deposition—are more important than plant defenses in determining the distribution of insect herbivores in the NKDR. Although high densities of the endangered Key deer have negative effects on some plant species in the NKDR, it seems Key deer might have an indirect positive influence on insect incidence primarily above the browse tier. Further research is warranted to enable fuller understanding of the interactions between Key deer and the insect community.  相似文献   

3.
Integration of ecosystem engineering and trophic effects of herbivores   总被引:4,自引:0,他引:4  
Herbivores affect vegetation in a variety of ways, involving both trophic and ecosystem engineering interactions, but the study of these different interaction types has rarely been integrated. The aim of this study was to investigate both the trophic and engineering effects of herbivores on plant communities in the Negev desert, Israel, and to promote an integrative approach to the study of herbivore effects in ecosystems. First, we summarise previous studies of the Indian crested porcupine (Hystrix indica), which show that in digging for food, porcupines excavate soil pits, which accumulate resources and seeds resulting in marked changes in plant species richness, density and biomass. By contrast, their trophic effect, via consumption of bulbs, has little impact on populations of perennial plants. Second, we present an empirical study of the trophic and ecosystem engineering effects of harvester ants (Messor spp.). An exclusion experiment, using barriers to restrict ant access, failed to reveal any significant effect of seed collection by harvester ants on plant species incidence (proportional occurrence in samples) or abundance (number of individuals). However, we show that vegetation on nest mounds of M. ebeninus differs in plant density, species richness and biomass from that on undisturbed soil. An analysis of incidence and abundance responses of individual plant species suggests that the observed differences in vegetation resulted from multiple interacting mechanisms.
The case studies highlight that many interactions between herbivores and plant communities can occur simultaneously, and that ecosystem engineering and trophic processes can be closely associated, resulting from single actions of herbivores. We propose a conceptual framework that classifies the range of possible trophic and engineering interactions between herbivores and plant communities with respect to the level of association between trophic and engineering effects. The framework is presented as an aid to the design and interpretation of studies of interactions between herbivores and plant communities, and promotes integrative research into the roles of herbivores in ecosystems.  相似文献   

4.
Understanding the consequences of trophic interactions for ecosystem functioning is challenging, as contrasting effects of species and functional diversity can be expected across trophic levels. We experimentally manipulated functional identity and diversity of grassland insect herbivores and tested their impact on plant community biomass. Herbivore resource acquisition traits, i.e. mandible strength and the diversity of mandibular traits, had more important effects on plant biomass than body size. Higher herbivore functional diversity increased overall impact on plant biomass due to feeding niche complementarity. Higher plant functional diversity limited biomass pre‐emption by herbivores. The functional diversity within and across trophic levels therefore regulates the impact of functionally contrasting consumers on primary producers. By experimentally manipulating the functional diversity across trophic levels, our study illustrates how trait‐based approaches constitute a promising way to tackle existing links between trophic interactions and ecosystem functioning.  相似文献   

5.
Plant diversity affects species richness and abundance of taxa at higher trophic levels. However, plant diversity effects on omnivores (feeding on multiple trophic levels) and their trophic and non-trophic interactions are not yet studied because appropriate methods were lacking. A promising approach is the DNA-based analysis of gut contents using next generation sequencing (NGS) technologies. Here, we integrate NGS-based analysis into the framework of a biodiversity experiment where plant taxonomic and functional diversity were manipulated to directly assess environmental interactions involving the omnivorous ground beetle Pterostichus melanarius. Beetle regurgitates were used for NGS-based analysis with universal 18S rDNA primers for eukaryotes. We detected a wide range of taxa with the NGS approach in regurgitates, including organisms representing trophic, phoretic, parasitic, and neutral interactions with P. melanarius. Our findings suggest that the frequency of (i) trophic interactions increased with plant diversity and vegetation cover; (ii) intraguild predation increased with vegetation cover, and (iii) neutral interactions with organisms such as fungi and protists increased with vegetation cover. Experimentally manipulated plant diversity likely affects multitrophic interactions involving omnivorous consumers. Our study therefore shows that trophic and non-trophic interactions can be assessed via NGS to address fundamental questions in biodiversity research.  相似文献   

6.
1. In ecological webs, net indirect interactions between species are composed of interactions that vary in sign and magnitude. Most studies have focused on negative component interactions (e.g. predation, herbivory) without considering the relative importance of positive interactions (e.g. mutualism, facilitation) for determining net indirect effects. 2. In plant/arthropod communities, ants have multiple top-down effects via mutualisms with honeydew-producing herbivores and harassment of and predation on other herbivores; these ant effects provide opportunities for testing the relative importance of positive and negative interspecific interactions. We manipulated the presence of ants, honeydew-producing membracids and leaf-chewing beetles on perennial host plants in field experiments in Colorado to quantify the relative strength of these different types of interactions and their impact on the ant's net indirect effect on plants. 3. In 2007, we demonstrated that ants simultaneously had a positive effect on membracids and a negative effect on beetles, resulting in less beetle damage on plants hosting the mutualism. 4. In 2008, we used structural equation modelling to describe interaction strengths through the entire insect herbivore community on plants with and without ants. The ant's mutualism with membracids was the sole strong interaction contributing to the net indirect effect of ants on plants. Predation, herbivory and facilitation were weak, and the net effect of ants reduced plant reproduction. This net indirect effect was also partially because of behavioural changes of herbivores in the presence of ants. An additional membracid manipulation showed that the membracid's effect on ant activity was largely responsible for the ant's net effect on plants; ant workers were nearly ten times as abundant on plants with mutualists, and effects on other herbivores were similar to those in the ant manipulation experiment. 5. These results demonstrate that mutualisms can be strong relative to negative direct interspecific interactions and that positive interactions deserve attention as important components of ecological webs.  相似文献   

7.
Interactions between above‐ and belowground invertebrate herbivores alter plant diversity, however, little is known on how these effects may influence higher trophic level organisms belowground. Here we explore whether above‐ and belowground invertebrate herbivores which alter plant community diversity and biomass, in turn affect soil nematode communities. We test the hypotheses that insect herbivores 1) alter soil nematode diversity, 2) stimulate bacterial‐feeding and 3) reduce plant‐feeding nematode abundances. In a full factorial outdoor mesocosm experiment we introduced grasshoppers (aboveground herbivores), wireworms (belowground herbivores) and a diverse soil nematode community to species‐rich model plant communities. After two years, insect herbivore effects on nematode diversity and on abundance of herbivorous, bacterivorous, fungivorous and omni‐carnivorous nematodes were evaluated in relation to plant community composition. Wireworms did not affect nematode diversity despite enhanced plant diversity, while grasshoppers, which did not affect plant diversity, reduced nematode diversity. Although grasshoppers and wireworms caused contrasting shifts in plant species dominance, they did not affect abundances of decomposer nematodes at any trophic level. Primary consumer nematodes were, however, strongly promoted by wireworms, while community root biomass was not altered by the insect herbivores. Overall, interaction effects of wireworms and grasshoppers on the soil nematodes were not observed, and we found no support for bottom‐up control of the nematodes. However, our results show that above‐ and belowground insect herbivores may facilitate root‐feeding rather than decomposer nematodes and that this facilitation appears to be driven by shifts in plant species composition. Moreover, the addition of nematodes strongly suppressed shoot biomass of several forb species and reduced grasshopper abundance. Thus, our results suggest that nematode feedback effects on plant community composition, due to plant and herbivore parasitism, may strongly depend on the presence of insect herbivores.  相似文献   

8.
Above‐ and belowground herbivores promote plant diversity when selectively feeding on dominant plant species, but little is known about their combined effects. Using a model system, we show that neutral effects of an aboveground herbivore and positive effects of a belowground herbivore on plant diversity became profoundly negative when adding these herbivores in combination. The non‐additive effects were explained by differences in plant preference between the aboveground‐ and the belowground herbivores and their consequences for indirect interactions among plant species. Simultaneous exposure to aboveground‐ and belowground herbivores led to plant communities being dominated by a few highly abundant species. As above‐ and belowground invertebrate herbivores generally differ in their mobility and local distribution patterns, our results strongly suggest that aboveground–belowground interactions contribute to local spatial heterogeneity of diversity patterns within plant communities.  相似文献   

9.
Plant diversity is a key driver of ecosystem functioning best documented for its influence on plant productivity. The strength and direction of plant diversity effects on species interactions across trophic levels are less clear. For example, with respect to the interactions between herbivorous invertebrates and plants, a number of competing hypotheses have been proposed that predict either increasing or decreasing community herbivory with increasing plant species richness. We investigated foliar herbivory rates and consumed leaf biomass along an experimental grassland plant diversity gradient in year eight after establishment. The gradient ranged from one to 60 plant species and manipulated also functional group richness (from one to four functional groups—legumes, grasses, small herbs, and tall herbs) and plant community composition. Measurements in monocultures of each plant species showed that functional groups differed in the quantity and quality of herbivory damage they experienced, with legumes being more damaged than grasses or non-legume herbs. In mixed plant communities, herbivory increased with plant diversity and the presence of two key plant functional groups in mixtures had a positive (legumes) and a negative (grasses) effect on levels of herbivory. Further, plant community biomass had a strong positive impact on consumed leaf biomass, but little effect on herbivory rates. Our results contribute detailed data from a well-established biodiversity experiment to a growing body of evidence suggesting that an increase of herbivory with increasing plant diversity is the rule rather than an exception. Considering documented effects of herbivory on other ecosystem functions and the increase of herbivory with plant diversity, levels of herbivory damage might not only be a result, but also a trigger within the diversity–productivity relationship.  相似文献   

10.
Herbivores exert a strong influence on the species composition and richness of plant communities, but the magnitude of their effect on belowground communities remains poorly understood. While an increasing number of studies acknowledge the importance of documenting belowground effects of herbivores, very few of these evaluate variation in the strength of the response from aboveground to belowground communities. Our study documents the long-term consequences of sustained deer herbivory for plant and arthropod communities adjacent to 15 exclosures that have been in place since 1996. We hypothesized that herbivory would alter the composition and diversity of communities, but the strength of the effects of herbivory would weaken from plants, to leaf-litter invertebrates, and to belowground microarthropod communities. First, we found that herbivory negatively impacted plant seedling and sapling abundance and performance, reduced the abundance of ants and the taxonomic richness of arthropods in the litter layer and reduced the richness of soil microarthropod communities. Second, in contrast to our hypothesis, the magnitude of effect size did not vary among trophic levels, indicating that effects of deer herbivory cascade from plants to the leaf-litter and soil arthropod communities with equal strength. While much recent research has focused on how specific traits of plants may mediate the effects of herbivory on associated species, our results suggest that indirect effects of herbivory might influence many components of belowground communities.  相似文献   

11.
Jennifer A. Lau 《Oikos》2013,122(3):474-480
As invasive species become integrated into existing communities, they engage in a wide variety of trophic interactions with other community members. Many of these interactions are direct (e.g. predator–prey interactions or interference competition), but invasive species also can affect native community members indirectly, by influencing the abundances of intermediary species in trophic webs. Observational studies suggest that invasive plant species affect herbivorous arthropod communities and that these effects may flow up trophic webs to influence the abundance of predators. However, few studies have experimentally manipulated the presence of invasive plants to quantify the effects of plant invasion on higher trophic levels. Here, I use comparisons across sites that have or have not been invaded by the invasive plant Medicago polymorpha, combined with experimental removals of Medicago and insect herbivores, to investigate how a plant invasion affects the abundance of predators. Both manipulative and observational experiments showed that Medicago increased the abundance of the exotic herbivore Hypera and predatory spiders, suggesting positive bottom–up effects of plant invasions on higher trophic levels. Path analyses conducted on data from natural habitats revealed that Medicago primarily increased spider abundance through herbivore‐mediated indirect pathways. Specifically, Medicago density was positively correlated with the abundance of the dominant herbivore Hypera, and increased Hypera densities were correlated with increased spider abundance. Smaller‐scale experimental studies confirmed that Medicago may increase spider abundance through herbivore‐mediated indirect pathways, but also showed that the effects of Medicago varied across sites, including having no effect or having direct effects on spider abundance. If effects of invasive species commonly flow through trophic webs, then invasive species have the potential to affect numerous species throughout the community, especially those species whose dynamics are tightly connected to highly‐impacted community members through trophic linkages.  相似文献   

12.
Loss of plant diversity influences essential ecosystem processes as aboveground productivity, and can have cascading effects on the arthropod communities in adjacent trophic levels. However, few studies have examined how those changes in arthropod communities can have additional impacts on ecosystem processes caused by them (e.g. pollination, bioturbation, predation, decomposition, herbivory). Therefore, including arthropod effects in predictions of the impact of plant diversity loss on such ecosystem processes is an important but little studied piece of information. In a grassland biodiversity experiment, we addressed this gap by assessing aboveground decomposer and herbivore communities and linking their abundance and diversity to rates of decomposition and herbivory. Path analyses showed that increasing plant diversity led to higher abundance and diversity of decomposing arthropods through higher plant biomass. Higher species richness of decomposers, in turn, enhanced decomposition. Similarly, species-rich plant communities hosted a higher abundance and diversity of herbivores through elevated plant biomass and C:N ratio, leading to higher herbivory rates. Integrating trophic interactions into the study of biodiversity effects is required to understand the multiple pathways by which biodiversity affects ecosystem functioning.  相似文献   

13.
Interactions between species of different trophic levels have long been recognized as fundamental processes in ecology. Although mounting evidence indicates that plant species diversity (PSD) or plant genetic diversity (PGD) can influence the plant-associated arthropod community, these two fundamental levels of biodiversity are not often manipulated simultaneously to assess their effects on species interactions. We used a large tree diversity experiment (BEF-China), which manipulates PSD and PGD in a crossed design to test individual and combined effects of PSD and PGD on multitrophic interaction networks and interaction partner species richness and occurrence. We focused on two tree species, on which sap-sucking Hemiptera and interacting ant species commonly occur. This tri-trophic interaction can be divided into the antagonistic plant–Hemiptera interaction and the mutualistic Hemiptera–ant interaction, known as trophobioses. Qualitative evaluation of tri-trophic interaction networks at different PSD and PGD combinations showed increased interaction partner redundancy at high PSD and PGD. This was supported by increased Hemiptera species richness at high PSD and PGD. Furthermore, the data indicate higher occurrence of Hemiptera and trophobioses and higher trophobiotic ant species richness with increasing PSD and PGD. As no plant diversity component alone caused an effect we conclude that the combined effect of high PGD and high PSD might be additive. In summary, as plant genetic diversity, especially at low species richness, seems to increase the interaction partner redundancy in interaction networks and the diversity of interacting communities, we suggest that genetic diversity should be considered in forest conservation and restoration programs.  相似文献   

14.
Changes to primary producer diversity can cascade up to consumers and affect ecosystem processes. Although the effect of producer diversity on higher trophic groups have been studied, these studies often quantify taxonomy‐based measures of biodiversity, like species richness, which do not necessarily reflect the functioning of these communities. In this study, we assess how plant species richness affects the functional composition and diversity of higher trophic levels and discuss how this might affect ecosystem processes, such as herbivory, predation and decomposition. Based on six different consumer traits, we examined the functional composition of arthropod communities sampled in experimental plots that differed in plant species richness. The two components we focused on were functional variation in the consumer community structure (functional structure) and functional diversity, expressed as functional richness, evenness and divergence. We found a consistent positive effect of plant species richness on the functional richness of herbivores, carnivores, and omnivores, but not decomposers, and contrasting patterns for functional evenness and divergence. Increasing plant species richness shifted the omnivore community to more predatory and less mobile species, and the herbivore community to more specialized and smaller species. This was accompanied by a shift towards more species occurring in the vegetation than in the ground layer. Our study shows that plant species richness strongly affects the functional structure and diversity of aboveground arthropod communities. The observed shifts in body size (herbivores), specialization (herbivores), and feeding mode (omnivores) together with changes in the functional diversity may underlie previously observed increases in herbivory and predation in plant communities of higher diversity.  相似文献   

15.
Global change is predicted to cause non-random species loss in plant communities, with consequences for ecosystem functioning. However, beyond the simple effects of plant species richness, little is known about how plant diversity and its loss influence higher trophic levels, which are crucial to the functioning of many species-rich ecosystems. We analyzed to what extent woody plant phylogenetic diversity and species richness contribute to explaining the biomass and abundance of herbivorous and predatory arthropods in a species-rich forest in subtropical China. The biomass and abundance of leaf-chewing herbivores, and the biomass dispersion of herbivores within plots, increased with woody plant phylogenetic diversity. Woody plant species richness had much weaker effects on arthropods, but interacted with plant phylogenetic diversity to negatively affect the ratio of predator to herbivore biomass. Overall, our results point to a strong bottom–up control of functionally important herbivores mediated particularly by plant phylogenetic diversity, but do not support the general expectation that top–down predator effects increase with plant diversity. The observed effects appear to be driven primarily by increasing resource diversity rather than diversity-dependent primary productivity, as the latter did not affect arthropods. The strong effects of plant phylogenetic diversity and the overall weaker effects of plant species richness show that the diversity-dependence of ecosystem processes and interactions across trophic levels can depend fundamentally on non-random species associations. This has important implications for the regulation of ecosystem functions via trophic interaction pathways and for the way species loss may impact these pathways in species-rich forests.  相似文献   

16.
Plant diversity has a positive influence on the number of ecosystem functions maintained simultaneously by a community, or multifunctionality. While the presence of multiple trophic levels beyond plants, or trophic complexity, affects individual functions, the effect of trophic complexity on the diversity–multifunctionality relationship is less well known. To address this issue, we tested whether the independent or simultaneous manipulation of both plant diversity and trophic complexity impacted multifunctionality using a mesocosm experiment from Cedar Creek, Minnesota, USA. Our analyses revealed that neither plant diversity nor trophic complexity had significant effects on single functions, but trophic complexity altered the diversity–multifunctionality relationship in two key ways: It lowered the maximum strength of the diversity–multifunctionality effect, and it shifted the relationship between increasing diversity and multifunctionality from positive to negative at lower function thresholds. Our findings highlight the importance to account for interactions with higher trophic levels, as they can alter the biodiversity effect on multifunctionality.  相似文献   

17.
Despite increasing evidence that plant intra- and inter-specific diversity increases primary productivity, and that such effect may in turn cascade up to influence herbivores, there is little information about plant diversity effects on plant anti-herbivore defenses, the relative importance of different sources of plant diversity, and the mechanisms for such effects. For example, increased plant growth at high diversity may lead to reduced investment in defenses via growth-defense trade-offs. Alternatively, positive effects of plant diversity on plant growth may lead to increased herbivore abundance which in turn leads to a greater investment in plant defenses. The magnitude of trait variation underlying diversity effects is usually greater among species than among genotypes within a given species, so plant species diversity effects on resource use by producers as well as on higher trophic levels should be stronger than genotypic diversity effects. Here we compared the relative importance of plant genotypic and species diversity on anti-herbivore defenses and whether such effects are mediated indirectly via diversity effects on plant growth and/or herbivore damage. To this end, we performed a large-scale field experiment where we manipulated genotypic diversity of big-leaf mahogany (Swietenia macrophylla) and tree species diversity, and measured effects on mahogany growth, damage by the stem-boring specialist caterpillar Hypsipyla grandella, and defensive traits (polyphenolics and condensed tannins in stem and leaves). We found that both forms of plant diversity had positive effects on stem (but not leaf) defenses. However, neither source of diversity influenced mahogany growth, and diversity effects on defenses were not mediated by either growth-defense trade-offs or changes in stem-borer damage. Although the mechanism(s) of diversity effects on plant defenses are yet to be determined, our study is one of the few to test for and show producer diversity effects on plant chemical defenses.  相似文献   

18.
1.?We studied the theoretical prediction that a loss of plant species richness has a strong impact on community interactions among all trophic levels and tested whether decreased plant species diversity results in a less complex structure and reduced interactions in ecological networks. 2.?Using plant species-specific biomass and arthropod abundance data from experimental grassland plots (Jena Experiment), we constructed multitrophic functional group interaction webs to compare communities based on 4 and 16 plant species. 427 insect and spider species were classified into 13 functional groups. These functional groups represent the nodes of ecological networks. Direct and indirect interactions among them were assessed using partial Mantel tests. Interaction web complexity was quantified using three measures of network structure: connectance, interaction diversity and interaction strength. 3.?Compared with high plant diversity plots, interaction webs based on low plant diversity plots showed reduced complexity in terms of total connectance, interaction diversity and mean interaction strength. Plant diversity effects obviously cascade up the food web and modify interactions across all trophic levels. The strongest effects occurred in interactions between adjacent trophic levels (i.e. predominantly trophic interactions), while significant interactions among plant and carnivore functional groups, as well as horizontal interactions (i.e. interactions between functional groups of the same trophic level), showed rather inconsistent responses and were generally rarer. 4.?Reduced interaction diversity has the potential to decrease and destabilize ecosystem processes. Therefore, we conclude that the loss of basal producer species leads to more simple structured, less and more loosely connected species assemblages, which in turn are very likely to decrease ecosystem functioning, community robustness and tolerance to disturbance. Our results suggest that the functioning of the entire ecological community is critically linked to the diversity of its component plants species.  相似文献   

19.
Declining plant diversity alters ecological networks, such as plant–herbivore interactions. However, our knowledge of the potential mechanisms underlying effects of plant species loss on plant–herbivore network structure is still limited. We used DNA barcoding to identify herbivore–host plant associations along declining levels of tree diversity in a large‐scale, subtropical biodiversity experiment. We tested for effects of tree species richness, host functional and phylogenetic diversity, and host functional (leaf trait) and phylogenetic composition on species, phylogenetic and network composition of herbivore communities. We found that phylogenetic host composition and related palatability/defence traits but not tree species richness significantly affected herbivore communities and interaction network complexity at both the species and community levels. Our study indicates that evolutionary dependencies and functional traits of host plants determine the composition of higher trophic levels and corresponding interaction networks in species‐rich ecosystems. Our findings highlight that characteristics of the species lost have effects on ecosystem structure and functioning across trophic levels that cannot be predicted from mere reductions in species richness.  相似文献   

20.
Characteristics used to categorize plant species into functional groups for their effects on ecosystem functioning may also be relevant to higher trophic levels. In addition, plant and consumer diversity should be positively related because more diverse plant communities offer a greater variety of resources for the consumers. Thus, the functional group composition and richness of a plant community may affect the composition and diversity of the herbivores and even higher trophic levels associated with that community. We tested this hypothesis by sampling arthropods with a vacuum sampler (34 531 individuals of 494 species) from an experiment in which we manipulated plant functional group richness and composition. Plant manipulations included all combinations of three functional groups (forbs, C3 graminoids, and C4 graminoids) removed zero, one, or two at a time from grassland plots at Cedar Creek Natural History Area, MN. Although total arthropod species richness was unrelated to plant functional group richness or composition, the species richness of some arthropod orders was affected by plant functional group composition. Two plant characteristics explained most of the effects of plant functional groups on arthropod species richness. Nutritional quality, a characteristic related to ecosystem functioning, and taxonomic diversity, a characteristic not used to designate plant functional groups, seemed to affect arthropod species richness both directly and indirectly. Thus, plant functional groups designated for their effects on ecosystem processes will only be partially relevant to consumer diversity and abundance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号