首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The movements of the molecular components of the luminal plasma membrane during exocytotic secretion in parotid acinar cells were examined. For immunocytochemical study, we used an antiserum of dipeptidyl peptidase IV as a marker for the components of the luminal plasma membrane of acinar cells. In unstimulated acinar cells, dipeptidyl peptidase IV immunoreactivity is restricted to the luminal plasma membrane. However, after secretion was stimulated with a -adrenergic agonist, isoproterenol, immunostaining became detectable on the membrane of discharged granules. Freeze-fracture images showed that the density of intramembrane particles on the P-fracture leaflets of discharged granule membranes is much higher than that of undischarged granule membranes during secretion. These results suggest that in parotid acinar cells of the rat, the components of the luminal plasma membrane move laterally, during secretion, to the membranes of discharged granules.  相似文献   

2.
Summary 1. To understand better the mechanisms which govern the sensitivity of secretory vesicles to a calcium stimulus, we compared the abilities of injected chromaffin granule membranes and of endogenous cortical granules to undergo exocytosis inXenopus laevis oocytes and eggs in response to cytosolic Ca2+. Exocytosis of chromaffin granule membranes was detected by the appearance of dopamine--hydroxylase of the chromaffin granule membrane in the oocyte or egg plasma membrane. Cortical granule exocytosis was detected by release of cortical granule lectin, a soluble constituent of cortical granules, from individual cells.2. Injected chromaffin granule membranes undergo exocytosis equally well in frog oocytes and eggs in response to a rise in cytosolic Ca2+ induced by incubation with ionomycin.3. Elevated Ca2+ triggered cortical granule exocytosis in eggs but not in oocytes.4. Injected chromaffin granule membranes do not contribute factors to the oocyte that allow calcium-dependent exocytosis of the endogenous cortical granules.5. Protein kinase C activation by phorbol esters stimulates cortical granule exocytosis in bothXenopus laevis oocytes andX. laevis eggs (Bement, W. M., and Capco, D. G.,J. Cell Biol. 108, 885–892, 1989). Activation of protein kinase C by phorbol ester also stimulated chromaffin granule membrane exocytosis in oocytes, indicating that although cortical granules and chromaffin granule membranes differ in calcium responsiveness, PKC activation is an effective secretory stimulus for both.6. These results suggest that structural or biochemical characteristics of the chromaffin granule membrane result in its ability to respond to a Ca2+ stimulus. In the oocytes, cortical granule components necessary for Ca2+-dependent exocytosis may be missing, nonfunctional, or unable to couple to the Ca2+ stimulus and downstream events.  相似文献   

3.
Summary During meiotic maturation, the cortex of oocytes of Xenopus laevis undergoes structural reorganization, visualized in this study by freeze-fracture electron microscopy. In the full-grown but immature oocyte, annulate lamellae are dispersed throughout the subcortex of the egg, 5 to 20 m from the plasma membrane. The annulate lamellae consist of well-organized stacks of membrane with visible pores. Stimulation of meiotic maturation by progesterone leads to disruption of the annulate lamellae and formation of an elaborate cortical endoplasmic reticulum which surrounds the cortical granules and intertwines throughout the cortex of the mature egg. Pore-like structures similar to those previously observed in the subcortical annulate lamellae are observed in the mature cortical endoplasmic reticulum. The cortical endoplasmic reticulum is often in close apposition with the plasma membrane and with membranes of cortical granules, but no junctions are visualized. This study provides further evidence that the cortical endoplasmic reticulum develops during progesterone-stimulated meiotic maturation in vitro, and that the annulate lamellae are precursors to the cortical endoplasmic reticulum.  相似文献   

4.
Cortical granules are secretory vesicles of the egg that play a fundamental role in preventing polyspermy at fertilization. In the sea urchin egg, they localize directly beneath the plasma membrane forming a compact monolayer and, upon fertilization, undergo a Ca(2+)-dependent exocytosis. Cortical granules form during early oogenesis and, during maturation, translocate from the cytosol to the oocyte cortex in a microfilament-mediated process. We tested the hypothesis that these cortical granule dynamics were regulated by Rho, a GTPase of the Ras superfamily. We observed that Rho is synthesized early in oogenesis, mainly in a soluble form. At the end of maturation, however, Rho associates with cortical granules. Inhibition of Rho with the C3 transferase from C. botulinum blocks cortical granule translocation and microfilaments undergo a significant disorganization. A similar effect is observed by GGTI-286, a geranylgeranyl transferase inhibitor, suggesting that the association of Rho with the cortical granules is indispensable for its function. In contrast, the anchorage of the cortical granules in the cortex, as well as their fusion at fertilization, are Rho-independent processes. We conclude that Rho association with the cortical granules is a critical regulatory step in their translocation to the egg cortex.  相似文献   

5.
Summary The effects of the divalent ionophore A23187 upon unfertilized eggs of the freshwater teleost fish, Brachydanio rerio, have been examined by light, scanning (SEM) and transmission (TEM) electron microscopy. Treatment of eggs with micromolar amounts (1 M, 10 M) of A23187 triggers cortical granule exocytosis and elevation of the chorion. However, the exocytosis of cortical granules in ionophore-activated eggs is explosive and occurs more rapidly than in eggs naturally activated in conditioned tap water. Eggs treated with A23187 in a medium lacking extra-cellular calcium also show cortical granule exocytosis, suggesting strongly that egg activation in Brachydanio results from release of calcium primarily from intracellular stores; however, there is a distinct delay in the onset of cortical granule breakdown. Unfertilized eggs exposed to A23187 for 1–5 min show noticeable disturbances in cell surface topography, including loss of microplicae and the appearance of prominent membrane-limited blebs.To determine if cortical granule exocytosis is self-propagating once initiated, A23187 was applied to a localized portion of the unfertilized egg surface, using either a G-50 sephadex gel bead or a 1 mm glass capillary tube. Eggs placed in continuous contact for 15 min with a bead coated with 10 M A23187 show neither exocytosis of cortical granules nor elevation of the chorion. All eggs exhibit exocytosis when positioned against a glass rod coated with 1 M A23187. The cortical granule breakdown is partial and restricted to less than 50% of the egg surface in most cells. The complete exocytosis of cortical granules in the zebra danio egg appears to require the stimulation and release of calcium from multiple sites over the cortex.  相似文献   

6.
The exocytotic process in the anterior pituitary secretory cells was studied using quick-freeze deep-etch electron microscopy, fluorescein-isothiocyanate-phalloidin staining, heavy meromyosin decoration, and immuno-electron microscopy. The subcortical actin filaments are distributed unevenly in the peripheral cytoplasm. Few secretory granules are seen beneath the plasma membrane in the region where the peripheral cytoplasm is occupied by numerous subcortical actin filaments. On the contrary, in the region free of the subcortical actin filaments, many secretory granules lie in contact with the plasma membrane. Thus, the subcortical actin filaments may control the approach of the secretory granules to the plasma membrane in these cells. The granule and plasma membranes that lie in close proximity are linked by intervening strands. Unfused portions of both membranes remain linked by these strands during membrane fusion and opening. These strands may be involved in membrane contact, fusion and opening during exocytosis. Annexin II (calpactin I) has been demonstrated immunocytochemically to be localized at the contact sites between the granule and plasma membranes, and is therefore a possible component of the intervening strands. Membrane fusion starts within focal regions of both membranes less than 50 nm in diameter. The plasma membrane shows inward depressions toward the underlying granules immediately before fusion. The disappearance of intramembranous particles from the exocytotic site of the membrane has not been observed.  相似文献   

7.
Scanning microscopy and transmission electron microscopy of sectioned specimens and freeze-fracture replicas revealed the presence of slightly elevated regions, approximately one-fourth to one-half the diameter of microvilli, which were situated along the surface of unfertilized Arbacia eggs. These modifications of the surface of the egg were observed in areas occupied by cortical granules and were greatly reduced in number following the cortical granule reaction. Few such modifications were present in immature and urethane-treated ova, in which cortical granules were located in regions of the egg other than the cortex. Freeze-fracture replicas of unfertilized eggs revealed a significantly higher density of intramembranous particles within the plasmalemma when compared to replicas of the membrane surrounding cortical granules. Areas characteristic of the cortical granule membrane, i.e., sparsely laden with particles, were not observed within the plasmalemma of the fertilized egg. Hence, following its fusion with the egg plasma membrane there is a dramatic reorganization in particle distribution of the membrane derived from cortical granules.  相似文献   

8.
Local actin assembly is associated with sites of exocytosis in processes ranging from phagocytosis to compensatory endocytosis. Here, we examine whether the trigger for actin-coat assembly around exocytosing Xenopus egg cortical granules is 'compartment mixing'--the union of the contents of the plasma membrane with that of the secretory granule membrane. Consistent with this model, compartment mixing occurs on cortical granule-plasma membrane fusion and is required for actin assembly. Compartment mixing triggers actin assembly, at least in part, through diacylglycerol (DAG), which incorporates into the cortical granule membranes from the plasma membrane after cortical granule-plasma membrane fusion. DAG, in turn, directs long-term recruitment of protein kinase Cbeta (PKCbeta) to exocytosing cortical granules, where it is required for activation of Cdc42 localized on the cortical granules. The results demonstrate that mixing of two membrane compartments can direct local actin assembly and indicate that this process is harnessed during Xenopus egg cortical granule exocytosis to drive compensatory endocytosis.  相似文献   

9.
Summary We study exocytosis in the planar isolated cortex of the egg of the sea urchinLytechinus pictus. Solutins bathing the exocytotic apparatus need not contain appreciable amounts of ions: fusion follows addition of submicromolar calcium to solutions containing only nonelectrolyte. We examine the effects of altering the granule membrane permeability to small molecules with ionophores and digitonin. Introducing holes in the secretory granule membrane to the extent of allowing free passage of small molecules does not cause seretion in vitro. We add the amphipathic compound digitonin at 12 to 15 M concentrations and demonstrate that the granule membrane can become permeable to lucifer yellow, yet that granules remain intact. Granules still undergo exocytosis after digitonin treatment at such concentrations upon subsequent addition of calcium. Higher concentrations of digitonin lead to granule content swelling and vesicle bursting. We conclude that cortical granule hydration during exocytosis is not mediated by small ionic channels.  相似文献   

10.
Using improved fixation procedures we have found that extensive endocytotic activity is turned on at fertilization in eggs of three species of sea urchins. Beginning after completion of cortical granule exocytosis and after exocytotic pits have completely smoothed over, the entire activated egg surface engages in a limited period of extensive removal of membrane via uptake into coated vesicles. This “burst phase” lasts about 3–5 min after which the number of invaginating coated vesicles decreases rapidly. At the end of this burst phase all the patches of cortical granule membranes have disappeared, and the egg surface is left uniformly covered by microvilli. For the remainder of the first cell cycle coated pits continue to form at a slower but steady rate. Endocytotic activity continues past the time of first cleavage. There is distinct overlap in onset and duration of the burst phase of endocytosis with the period of medium acidification during normal development. However, activation of eggs in choline sea water, which inhibits acid secretion, results in an endocytic burst whose timing and duration are similar to those in normal eggs. The endocytic burst is, therefore, independent of cytoplasmic alkalinization. These results suggest, in accord with the two-step model of egg activation (D. Epel, R. A. Steinhardt, and R. A. Humphreys, 1974; Dev. Biol.40, 245–255; D. Epel, 1978, Curr. Top. Dev. Biol.12, 185–246) that initiation of endocytosis is most likely a Ca2+-dependent event.  相似文献   

11.
Summary Photoautotrophically growing cultures of the fresh water cyanobacteriumAnacystis nidulans adapted to the presence of 0.4–0.5 M NaCl (about sea water level) with a lag phase of two days after which time the growth rate reassumed 80–90% of the control. Plasma and thylakoid membranes were separated from cell-free extracts of French pressure cell treatedAnacystis nidulans by discontinuous sucrose density gradient centrifugation and purified by repeated recentrifugation on fresh gradients. Identity of the plasma and thylakoid membrane fractions was confirmed by labeling of intact cells with impermeant protein markers prior to breakage and membrane isolation. Electron microscopy revealed that each type of membrane was obtained in the form of closed and perfectly spherical vesicles. Major changes in structure and function of the plasma membranes (and, to a much lesser extent, of the thylakoid membranes) were found to accompany the adaptation process. On the average, diameters of plasma membrane vesicles from salt adapted cells were only one-third of the diameters of corresponding vesicles from control cells. By contrast, the diameters of thylakoid membrane vesicles were the same in both cases.Freeze-etching the cells and counting the number of membrane-intercalating particles on both protoplasmic and exoplasmic fracture faces of plasma and thylakoid membranes indicated a roughly 50% increase of the particle density in plasma membranes during the adaptation process while that in thylakoid membranes was unaffected. Comparison between particle densities on isolated membranes and those on corresponding whole cell membranes permitted an estimate as to the percentage of inside-out and right-side-out vesicles. Stereometric measurement of particle sizes suggested that two distinct sub-populations of the particles in the plasma membranes increased during the adaptation process, tentatively correlated to the cytochrome oxidase and sodium-proton antiporter, respectively. The effects of salt adaptation described in this paper were fully reversed upon withdrawal of the additional NaCl from the growth medium (deadaptation). Moreover, they were not observed when the NaCl was replaced by KCl.Abbreviations CM cytoplasmic or plasma membrane - ICM intracytoplasmic or thylakoid membrane - EF exoplasmic fracture face - PF protoplasmic fracture face - DABS diazobenzosulfonate; Hepes N-2-hydroxyethylpiperazine-N-2-ethane-sulfonate - PMSF phenylmethylsulfonylfluoride Dedicated to the memory of Professor Oswald Kiermayer  相似文献   

12.
Exocytosis of cortical granules was observed in sea urchin eggs, either quick-frozen or chemically fixed after exposure to sperm. Fertilization produced a wave of exocytosis that began within 20 s and swept across the egg surface in the following 30 s. The front of this wave was marked by fusion of single granules at well-separated sites. Toward the rear of the wave, granule fusion became so abundant that the egg surface left with confluent patches of granule membrane. The resulting redundancy of the egg surface was accommodated by elaboration of characteristic branching microvilli, and by an intense burst of coated vesicle formation at approximately 2 min after insemination. Freeze-fracture replicas of eggs fixed with glutaraldehyde and soaked in glycerol before freezing displayed forms of granule membrane interaction with the plasma membrane which looked like what other investigators have considered to be intermediates in exocytosis. These were small disks of membrane contact or membrane fusion, which often occurred in multiple sites on one granule and also between adjacent granules. However, such membrane interactions were never found in eggs that were quick-frozen fixation, or in eggs fixed and frozen without exposure to glycerol. Glycerination of fixed material appeared to be the important variable; more concentrated glycerol produced a greater abundance of such "intermediates." Thus, these structures may be artifacts produced by dehydrating chemically fixed membranes, and may not be directly relevant to the mechanism by which membranes naturally fuse.  相似文献   

13.
Activation of the teleost (Brachydanio) fish egg includes the exocytosis of cortical granules, the construction of a mosaic surface consisting of the unfertilized egg plasma membrane and the limiting membranes of the cortical granules, and the appearance of coated and smooth vesicles in the cytoplasm (Donovan and Hart, '82). Unfertilized and activated eggs were incubated in selected extracellular tracers to (1) determine experimentally if cortical granule exocytosis was coupled with the endocytosis of membrane during the cortical reaction, and (2) establish the intracellular pathway(s) by which internalized vesicles were processed. Unfertilized eggs incubated in dechlorinated tap water or Fish Ringer's solution containing either horseradish peroxidase (HRP; 10 mg/ml), native ferritin (12.5 mg/ml), or cationized ferritin (12.5 mg/ml) were activated as judged by cortical granule breakdown and elevation of the chorion. Cells treated with HRP and native ferritin exhibited a delay in cortical granule exocytosis when compared with water-activated eggs lacking the tracer. Each tracer was internalized through the formation of a coated vesicle from a coated pit. Since coated pits appeared to be topographically restricted to the perigranular membrane domain of the mosaic egg surface, their labeling, particularly with cationized ferritin, strongly suggested that the retrieved membrane was of cortical granule origin. Cationized ferritin and concanavalin A (Con A) coupled with either hemocyanin or ferritin labeled the surface of the unactivated egg and both domains of the mosaic egg surface. Transformation of the deep evacuated cortical granule crypt into later profiles of exocytosis was accompanied by increased Con A binding. Within activated egg cortices, HRP reaction product, native ferritin, and cationized ferritin were routinely localized in smooth vesicles, multivesicular bodies, and autophagic vacuoles. Occasionally, each tracer was found in small coated vesicles adjacent to the Golgi and within Golgi cisternae. The intracellular distribution of HRP, native ferritin, and cationized ferritin suggests that internalized membrane is primarily processed by organelles of the lysosomal compartment. A second and less significant pathway is the Golgi complex.  相似文献   

14.
Sea urchin egg cortices were used as an in vitro natural membrane model system to determine the effects of inhalation anesthetics on the Ca2+-regulated exocytotic fusion of cortical vesicles with the egg plasma membrane. When Ca2+ was either absent or present in amounts below the threshold for exocytosis, methoxyflurane, halothane, enflurane, isoflurane, chloroform and fluoroxene, at concentrations up to S mM, had no effect on the fusion of cortical vesicles with the plasma membrane. However, when Ca2+ was present at or above threshold levels for exocytosis, each of the tested anesthetics caused an inhibition of cortical vesicle fusion. Exocytosis was inhibited most effectively by methoxyflurane (55%), followed by halothane (30%), while fuoroxene consistently had the least effect (< 5%). These observations support the view that volatile anesthetics can impair the Ca2+-regulated fusogenic activities of natural membranes and are consistent with other data showing that inhalational agents inhibit secretory processes in intact cells.Abbreviations PIPES piperazine-N-N-bis (2-ethane sulfonic acid) - PMSF phenylmethylsulfonylfluoride - SW sea water - TAPS trishydroxymethyl-methylaminopropane sulfonic acid  相似文献   

15.
Micromolar calcium ion concentrations stimulate exocytosis in a reconstituted system made by recombining in the plasma membrane and cortical secretory granules of the sea urchin egg. The isolated cortical granules are unaffected by calcium concentrations up to 1 mM, nor do granule aggregates undergo any mutual fusion at this concentration. Both isolated plasma membrane and cortical granules can be pretreated with 1 mM Ca before reconstitution without affecting the subsequent exocytosis of the reconstituted system in response to micromolar calcium concentrations. On reconstitution, aggregated cortical granules will fuse with one another in response to micromolar calcium provided that one of their number is in contact with the plasma membrane. If exocytosis involves the generation of lipid fusogens, then these results suggest that the calcium-stimulated production of a fusogen can occur only when contiguity exists between cortical granules and plasma membrane. They also suggest that a substance involved in exocytosis can diffuse and cause piggy-back fusion of secretory granules that are in contact with the plasma membrane. Our results are also consistent with a scheme in which calcium ions cause a reversible, allosteric activation of an exocytotic protein.  相似文献   

16.
Summary The localization of calcium and its functional properties in anterior pituitary cells were studied using a potassium pyroantimonate technique. In all kinds of secretory cells, the precipitates of the calcium-pyroantimonate complex were distributed on the limiting membrane of the secretory granule. They were present also in the cytoplasmic matrix, the mitochondrial matrix, small smooth vesicles, coated vesicles, and in the nuclear euchromatin area. The precipitates were usually seen at the contact region between the limiting membranes of two adjacent secretory granules, or between the granule limiting membrane and the plasma membrane. When the tissues were incubated in the medium containing A23187 (10 M) for 5 min, the deposits on the granule limiting membrane were increased in number and those on the mitochondrial matrix were decreased; the reaction products almost disappeared on the limiting membranes of the secretory granules after membrane fusion following single or multigranular exocytosis induced by A23187-treatment. In addition, small vesicles in the capillary endothelium contained reaction precipitates. Based on these results we propose a hypothetical model for the relationship between the localization of calcium and secretory activity.This study was supported by grants from the Japan Ministry of Education  相似文献   

17.
Egg cortical granules remain attached to the egg plasma membrane when the egg is ruptured. We present evidence that demonstrates that, when the cytoplasmic face of the egg plasma membrane is exposed to micromolar calcium concentrations, an exocytosis of the cortical granules occurs which corresponds to the cortical granule exocytosis seen when the egg is fertilized. The calcium sensitivity of the preparation is decreased by an increase in magnesium concentration and increased by a decrease in magnesium concentration. Exocytosis is inhibited by trifluoperazine (half inhibition at 6 microM), a drug that inhibits the action of the calcium-dependent regulatory protein calmodulin. Colchicine, vinblastine, nocodazole, cytochalasin B, phalloidin, N-ethylmaleimide-modified myosin subfragment 1, and antibody to actin are without effect on this in vitro exocytosis at concentrations that far exceed those required to disrupt microtubules and microfilaments. Conditions are such that penetration to the exocytotic site is optimal. It is unlikely, therefore, that either actin or tubulin participate intimately in exocytosis. Our data also exclude on quantitative grounds several other mechanisms postulated to account for the fusion of the secretory granule with the plasma membrane.  相似文献   

18.
Sea urchin (Arbacia punctulata) eggs and zygotes were treated with filipin in an effort to examine changes in membrane sterols at fertilization. The plasma membrane of treated unfertilized eggs possessed numerous filipin/sterol complexes, while fewer complexes were associated with membranes delimiting cortical granules, demonstrating that the plasmalemma is relatively rich in β-hydroxysterols in comparison to cortical granule membrane. Following fusion with the plasmalemma, membrane formerly delimiting cortical granules underwent a dramatic alteration in sterol composition, as indicated by a rapid increase in the number of filipin/sterol complexes. In contrast, portions of the zygote plasma membrane, derived from the plasmalemma of the unfertilized egg, displayed little or no change in filipin/sterol composition. Other than regions of the plasma membrane engaged in endocytosis, the plasmalemma of the zygote possessed a homogeneous distribution of filipin/sterol complexes and appeared similar to that of the unfertilized egg. These results demonstrate that following its fusion with the egg plasmalemma, membranes, formerly delimiting cortical granules, undergo a dramatic alteration in sterol composition. Changes in the localization of filipin/sterol complexes are discussed in reference to alterations in egg plasmalemmal function at fertilization.  相似文献   

19.
The distribution of concanavalin A (con A) receptor sites on the membranes of chromaffin granules has been investigated by binding studies using 125I-labelled con A and by electron-microscope studies using ferritin-labelled con A. In both experiments con A was observed to bind to chromaffin granule membranes but not to intact granules. The ferritin-con A particles bind to only one of the two possible surfaces of the chromaffin granule membranes. These results are in agreement with previous observations concerning the asymmetric distribution of saccharide residues on the surfaces of a number of different plasma membranes. They suggest that for the intracellular membrane of the chromaffin granule the saccharide sites, like those in plasma membranes, are not exposed to the cell cytoplasm. Further work is necessary to establish whether these sites are on the inner surface of the membrane or whether they are unmasked during the conversion of granules to membrane ghosts.  相似文献   

20.
《The Journal of cell biology》1995,131(5):1183-1192
At fertilization in sea urchin eggs, elevated cytosolic Ca2+ leads to the exocytosis of 15,000-18,000 1.3-microns-diam cortical secretory granules to form the fertilization envelope. Cortical granule exocytosis more than doubles the surface area of the egg. It is thought that much of the added membrane is retrieved by subsequent endocytosis. We have investigated how this is achieved by activating eggs in the presence of aqueous- and lipid-phase fluorescent dyes. We find rapid endocytosis of membrane into 1.5-microns-diam vesicles starting immediately after cortical granule exocytosis and persisting over the following 15 min. The magnitude of this membrane retrieval can compensate for the changes in the plasma membrane of the egg caused by exocytosis. This membrane retrieval is not stimulated by PMA treatment which activates the endocytosis of clathrin-coated vesicles. When eggs are treated with short wave-length ultraviolet light, cortical granule exocytosis still occurs, but granule cores fail to disperse. After egg activation, large vesicles containing semi-intact cortical granule protein cores are observed. These data together with experiments using sequential pulses of fluid-phase markers support the hypothesis that the bulk of membrane retrieval immediately after cortical granule exocytosis is achieved through direct retrieval into large endocytotic structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号