首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The long-lasting opiate antagonist, naltrexone (NTX), was examined for its effects on various types of consummatory behavior in male golden hamsters and rats. Rat, but not hamster, 24 hr food and water intakes were significantly decreased by four daily NTX (10.0 mg/kg) injections. Hamsters displayed a minimal night to day feeding ratio compared to rats. hamsters increased food intake following insulin (50 U/kg) administration, but not after 24 hr food deprivation (FD) or 2-deoxy-D-glucose (2-DG; 800 mg/kg) injections. NTX (1.0 and 10 mg/kg) had no effect on feeding, but markedly attenuated hamster drinking induced by 48 hr water deprivation or hypertonic saline injection. Dexamethasone (DEX), a glucocorticoid which depletes pituitary β-endorphin and produces anorexia in rats, had no effect on daily hamster intake. Since the normal feeding profile of the hamster is similar to that of naloxone and DEX-treated rats, hamsters appear to lack an opiate-sensitive feeding system. In contrast, stimulated drinking behavior of hamsters operates through an opiate-sensitive mechanism. Thus, there are marked species differences concerning the involvement of endogenous opioids is consummatory behavior.  相似文献   

2.
Chronic treatment with naloxone (Nx) or naltrexone (Ntx) induces paradoxical analgesia. In the present study, the effects of chronic treatment with opioid receptor antagonists, such as nor-binaltorphimine (nor-BNI) for kappa and naltrindole (NTI) for delta receptors, on analgesic response using the hot plate test and on morphine physical dependence in rats were examined. The hot plate latency was significantly increased by pretreatment with Nx (5 mg/kg, s.c.), nor-BNI (20 mg/kg, i.p.) or NTI (20 mg/kg, i.p.) for 5 days. After chronic pretreatment with these antagonists, the rats were treated with morphine-admixed food (0.5 mg/g of food) for 3 days. Chronic pretreatment with Nx and NTI significantly increased Nx precipitated body weight loss in morphine dependent rats, while chronic pretreatment with nor-BNI produced small increase. These results indicate that chronic treatment with nor-BNI or NTI as well as with Nx induces obviously paradoxical analgesia, and that chronic blockade of mu or delta may enhance the development of physical dependence on morphine.  相似文献   

3.
In this study, the authors evaluated the analgesic efficacy of tramadol (an opioid-like analgesic), carprofen (a nonsteroidal anti-inflammatory drug) and a combination of both drugs (multimodal therapy) in a rat laparotomy model. The authors randomly assigned rats to undergo either surgery (abdominal laparotomy with visceral manipulation and anesthesia) or anesthesia only. Rats in each group were treated with tramadol (12.5 mg per kg body weight), carprofen (5 mg per kg body weight), a combination of tramadol and carprofen (12.5 mg per kg body weight and 5 mg per kg body weight, respectively) or saline (anesthesia control group only; 5 mg per kg body weight). The authors administered analgesia 10 min before anesthesia, 4 h after surgery or (for the rats that received anesthesia only) anesthesia and 24 h after surgery or anesthesia. They measured locomotor activity, running wheel activity, feed and water consumption, body weight and fecal corticosterone concentration of each animal before and after surgery. Clinical observations were made after surgery or anesthesia to evaluate signs of pain and distress. The authors found that carprofen, tramadol and a combination of carprofen and tramadol were all acceptable analgesia regimens for a rat laparotomy model.  相似文献   

4.
Kanoski SE  Walls EK  Davidson TL 《Peptides》2007,28(5):988-1002
The present studies assessed the extent to which the adiposity signal leptin and the brain-gut hormone cholecystokinin (CCK), administered alone or in combination, give rise to interoceptive sensory cues like those that are produced by a low (1h) level of food deprivation. Rats were trained with cues arising from 1 to 24-h food deprivation as discriminative stimuli. For one group, 24-h food deprivation predicted the delivery of sucrose pellets, whereas 1-h food deprivation did not. Another group received the reversed deprivation level-sucrose contingency. After asymptotic performance was achieved, the effects of leptin and CCK on food intake and on discrimination performance were tested under 24-h food deprivation. In Experiment 1a, leptin administered into the third cerebroventricle (i3vt) at 3.5 or 7.0 microg doses had little effect, compared to saline on food intake or discriminative responding. In Experiment 1b, leptin (7.0 microg, i3vt) combined with CCK-8 (2 microg/kg, i.p.) reduced food intake significantly, but the findings indicated that CCK-8 alone produces interoceptive discriminative cues more like those produced by 1- than 24-h food deprivation. Experiment 2a tested rats with i.p. leptin (0.3 and 0.5mg/kg). Although neither dose suppressed intake, the 0.3mg/kg dose produced interoceptive cues like 1-h food deprivation. Experiment 2b tested two doses of CCK-8 (2 and 4 mg/kg, i.p.) and found significant intake suppression and generalization of discrimination with both doses of CCK-8. These findings suggest a role for both leptin and CCK in the production of sensory consequences that correspond to "satiety".  相似文献   

5.
Eight male rats were trained to discriminate between the internal states produced by food deprivation of 3 hours (satiation) and that produced by food deprivation of 27 hours duration (deprivation). One lever, in a two-lever operant chamber, had to be pressed to receive reinforcement in the satiation state, whereas pressing the other lever was required when the rat was in the deprivation state. Once the rats were trained, increasing the number of hours of food deprivation, from 1 to 48 hours, resulted in more deprivation-appropriate lever responses in the two-lever operant task. Administration of doses of fenfluramine (0.5-1.5 mg.kg), its active metabolite norfenfluramine (0.25-1.0 mg/kg) or d-amphetamine (0.5-1.5 mg/kg) produced a dose-responsive decrease in deprivation-appropriate responses when each drug/dose was injected (i.p.) 15 min prior to deprivation (27 hours) testing. Norfenfluramine was 1.5 times more potent than fenfluramine which was 1.5 times more potent than amphetamine.  相似文献   

6.
L.H. Fossom  S.B. Sparber 《Life sciences》1982,31(25):2827-2835
Rats were trained to perform a fixed ratio-15 operant for food reinforcement during a 30 minute daily session. Naltrexone, in doses up to 45 mg/kg administered 15 min before the behavioral session, failed to disrupt responding. However, 0.3 and 1.0 mg naltrexone/kg produced a dose related potentiation of the operant behavioral suppression induced by 1.0 mg d-amphetamine/kg injected immediately before the session. The naltrexone/d-amphetamine combination also produced excessive salivation and postural abnormalities not seen when either drug was administered alone. [A subsequent study indicated that the salivation induced by naltrexone in combination with d-amphetamine may require previous exposure to naltrexone and/or d-amphetamine.] Blockade of dopamine receptors with pimozide did not modify the interaction. Functional noradrenergic blockade with a low dose of clonidine significantly reversed the potentiated suppression, of operant behavior, as well as the excessive salivation and abnormal posture. These data suggest that there is an important noradrenergic component to the interaction of naltrexone with d-amphetamine. The impressive interaction of behaviorally inactive doses of naltrexone with a moderate dose of d-amphetamine reported here for rats may have clinical implications for detoxified opiate addicts maintained on naltrexone in antagonist therapy programs.  相似文献   

7.
Electroacupuncture (EA) has been shown to modify the effects of various drugs of abuse, including alcohol. Inbred P rats were trained to drink alcohol voluntarily and then subjected to two periods of alcohol deprivation lasting 3 days. During the second deprivation, the rats received either EA or sham EA. The rats were pretreated with naltrexone (5 mg/kg) or saline 30 min before each of the EA or sham EA sessions. Approximately 6 h after the last naltrexone or saline treatment, the alcohol tubes were returned and alcohol and water intakes were recorded later at 2, 4, 6, and 24 h. Only EA led to a decrease in alcohol intake, which was most prominent at 6 and 24 h, and this inhibitory effect of EA was blocked by naltrexone, suggesting that activation of the endogenous opiate system may be responsible for EA’s effects on alcohol intake in the alcohol-dependent iP rats. Special issue article in honor of Ji-Sheng Han.  相似文献   

8.
Naltrexone modulates growth in infant rats   总被引:2,自引:0,他引:2  
I S Zagon  P J McLaughlin 《Life sciences》1983,33(24):2449-2454
Naltrexone, a potent opiate antagonist, had both stimulatory and inhibitory effects on somatic growth in preweaning rats depending on dose. Daily injections of 50 mg/kg naltrexone, which blocked morphine-induced analgesia for 24 hr/day, resulted in increased body and organ weights, and acceleration in the appearance of physical characteristics and maturation of spontaneous motor activity. Naltrexone in a dosage of 1 mg/kg, which blocked morphine-induced analgesia for 4 hr/day, had the opposite effects. These results show that naltrexone can modulate growth, and suggest a role for the endorphins and opiate receptors in developmental events.  相似文献   

9.
The discriminative effects of cyclorphan were studied in pigeons trained to discriminate 0.32 mg/kg ethylketazocine, 1.8 mg/kg cyclazocine, or 32 mg/kg naltrexone from saline. A fourth group of pigeons was administered 100 mg/kg/day morphine and trained to discriminate 0.1 mg/kg naltrexone from saline. Cyclorphan produced dose-related ethylketazocine-appropriate responding that reached a maximum of 83% of the total session responses at 0.3 mg/kg. Higher cyclorphan doses produced less ethylketazocine-appropriate responding. In pigeons trained to discriminate cyclazocine from saline, maximum drug-appropriate responding of greater than 90% occured at 5.6–10.0 mg/kg cyclorphan. In narcotic-naive pigeons trained to discriminate 32 mg/kg naltrexone from saline, cyclorphan produced a maximum of less than 50% drug-appropriate responding. In contrast, in pigeons chronically administered morphine and trained to discriminate 0.1 mg/kg naltrexone from saline, 1.0 mg/kg cyclorphan resulted in 100% drug-appropriate responding. In pigeons responding under a multiple fixed-interval, fixed-ratio schedule of food delivery, cyclorphan produced a complete dose-related reversal of the rate-decreasing effects of 10 mg/kg morphine, the maximally effective antagonist doses being 1.0–3.2 mg/kg. Higher cyclorphan doses (10 mg/kg) resulted in response rate decreases that were not reversed by naloxone (1 mg/kg). Thus, cyclorphan has discriminative effects that are similar to those of both ethylketazocine and, at 20-fold higher doses, cyclazocine. In addition, in morphine-treated pigeons, cyclorphan, across the same range of doses that produce ethylketazocine-appropriate responding, has discriminative effects that are similar to those of naltrexone, an effect that is probably related to the antagonist action of the drug.  相似文献   

10.
C A Paronis  S G Holtzman 《Life sciences》1992,50(19):1407-1416
Chronic opioid antagonist administration increases opioid binding sites and potentiates behavioral responses to morphine. Conversely, chronic opioid agonist administration attenuates behavioral responses to morphine, though this is not necessarily accompanied by a parallel loss of binding sites. We examined the possibility that the in vivo affinity of the mu receptors might be altered as a consequence of the continuous administration of either naloxone or morphine. Rats were implanted sc with naloxone- or morphine-filled osmotic pumps; control animals were implanted with sham pumps. One week later, 24 hr after removing the osmotic pumps, cumulative dose-response curves for fentanyl analgesia were generated in the presence of 0.0, 0.03, 0.1, or 0.3 mg/kg naltrexone, using a tail-flick procedure. The analgesic ED50 (with 95% C. L.) of fentanyl in sham implanted animals, following saline pretreatment was 0.027 mg/kg (0.019, 0.039). The potency of fentanyl was decreased in rats infused with morphine, ED50 = 0.051 mg/kg (0.028, 0.093), and increased in rats that received naloxone, ED50 = 0.018 mg/kg (0.015, 0.022). The mean apparent pA2 value for naltrexone (with 95% C.L.) in the control group was 7.7 (7.5, 7.9). No differences were detected in animals that had received either naloxone or morphine for 7 days, pA2 = 7.8 (7.5, 8.1) and 7.4 (7.3, 7.6), respectively. Our results indicate that there is no change in the apparent affinity of the mu-receptor following continuous exposure to either an opioid agonist or antagonist, at a time when the analgesic potency of the agonist is decreased or increased, respectively.  相似文献   

11.
Subcutaneous administration of naloxone at 1 to 10 mg/kg produced a dose-related decrease in feed intake of broiler chicks. Food deprivation for 3, 6, 12, and 24 hours produced a significant increase in feed intake compared to non-food deprived birds. Subcutaneous administration of naloxone at 1 to 10 mg/kg failed to attenuate hyperphagia of broiler chicks, deprived of food for 12 hrs. These data suggest that opiate receptors are involved in the regulation of spontaneous feeding behavior in broiler chicks. However, in contrast to other mammals and pigeons, a mechanism, other than endorphinergic system, not sensitive to naloxone blockade, might be involved in food deprivation induced hyperphagia in broiler chicks.  相似文献   

12.
《Life sciences》1997,62(2):PL/35-PL/41
Chronic (7 days), forced ethanol drinking can decrease the analgesic potency of opioid agonists in mice. In the present study, the effect of short-term ethanol treatment was examined using forced ethanol access and ethanol injection protocols. Mice were given forced access to 1, 3 or 7% (v/v) ethanol for 24 hr and then tested for s.c. morphine analgesia using the tailflick assay. Controls had access to water. Another group of mice was injected i.p. with 2.5 g/kg ethanol or water 4 times over a 21 hr period and tested 3 hr after the final injection for morphine analgesia. Other mice were injected once i.p. with 1, 2 or 3 g/kg ethanol or water and tested 24 hr later using the tailflick. In the forced access study, ethanol dose-dependently decreased morphine's analgesic potency with the highest dose (7%) producing a 1.6-fold shift in the ED50. This decrease in morphine potency was similar to that found in a related study using 7% ethanol for 7 days (1.8-fold shift). Repeated ethanol injections significantly reduced the analgesic potency of morphine (1.9-fold shift), whereas, a single injection of 1, 2 or 3 g/kg ethanol did not alter the potency of morphine. Control studies indicated that neither 24 hr water nor food deprivation affected morphine potency. Overall, these data show that sustained exposure to ethanol over a 24 hr period will dose-dependently decrease morphine's analgesic potency. © 1998 Elsevier Science Inc.  相似文献   

13.
Synthetic peptides of 5-hydroxytryptophan (5-HTP), including N-acetyl-5-HTP-5-HTP amide (5-HTP-ACETYL-DP), specifically inhibit the binding of serotonin to serotonin binding protein. 5-HTP-ACETYL-DP also produces a long-lasting, opiate-sensitive analgesia following central, but not systemic administration. The present study evaluated an apolar derivative of 5-HTP dipeptide, N-hexanoyl-5-HTP-5-HTP amide (5-HTP-HEX-DP), for its analgesic properties in rats following systemic administration. 5-HTP-HEX-DP (5–50 mg/kg) significantly increased jump thresholds in a dose-dependent manner with peak analgesia occurring at 2.5 hr after injection, and lasting up to 5 hr. In the tail-flick assay, 5-HTP-HEX-DP (20 mg/kg) produced a significant antinociceptive effect at 1 hr post-injection using both high and low intensity levels of radiant heat. While 5-HTP-HEX-DP and morphine each elicited analgesia following acute administration, chronic (14 days) incremental dosing with 5-HTP-HEX-DP or morphine resulted in persistent analgesia in 5-HTP-HEX-DP-treated animals, and a loss of analgesia in morphine-treated rats. Thus, significant tolerance to morphine, but not 5-HTP-HEX-DP analgesia developed using this protocol. Hence, 5-HTP-HEX-DP is a systemically-active analgesic which fails to develop tolerance when administered daily over 14 days.  相似文献   

14.
H Izumi  S Hayashi  K Karita 《Life sciences》1988,42(16):1529-1535
The effects of subcutaneous (s.c.) administration of compound 48/80 (a well known histamine liberator) on latency to thermoalgesic stimulus, hematocrit (Hct) and plasma levels of beta-endorphin-like immunoreactivity (beta-END-LI) were investigated in male rats. The s.c. administration of compound 48/80 in doses ranging from 0.5 to 5.0 mg/kg into the rats produced significant analgesia in the hot plate test and increased Hct in a dose-dependent manner. Concomitant variation was observed between the analgesia and the increase of Hct. This analgesic effect, but not the increase of Hct, was diminished by pretreatment with the opiate receptor antagonist, naloxone (5 mg/kg, s.c.). A significant increase of plasma beta-END-LI was observed by s.c. injection of compound 48/80. Together with a previous finding that compound 48/80 induced-hypovolemia increases the renin release from kidney and then causes water intake in the rats, it is suggested that s.c. administration of compound 48/80 induced analgesia mediated through stimulation of an opioid system, may be closely related to stimulation of the renin-angiotensin system.  相似文献   

15.
L W Rogers  J Giordano 《Life sciences》1990,47(11):961-969
We have recently shown the serotonin 5-HT1A receptor agonist buspirone to produce analgesia in several pain tests in rats. As a 5-HT1A agonist, buspirone may change serotonergic (5-HT) tone to alter the balance of central monoaminergic (MA) systems that function in analgesia. MA-reuptake blocking drugs have been shown to produce analgesia, both when given alone and in combination with a variety of other agents, presumably via their action upon MA neurochemistry. The present study was undertaken to examine the effect of systemic administration of the 5-HT-reuptake blocker amitriptyline (AMI: 10 mg/kg), NE-reuptake blocker desipramine (DMI: 10 mg/kg) or DA-reuptake blocker GBR-12909 (7.5 mg/kg) on patterns of analgesia produced by buspirone (1-5 mg/kg) in thermal and mechanical pain tests in rats. Neither reuptake blocking agents or buspirone, when administered alone or in combination, produced overt changes in motor activity at the doses tested. AMI alone was not analgesic in either thermal or mechanical pain tests. In both assays, AMI reduced the analgesic action of buspirone, with greater effects seen in the thermal test. When administered alone, DMI produced significant analgesia against thermal and mechanical pain. DMI significantly attenuated the analgesic action of all doses of buspirone in both pain tests. Alone, GBR-12909 did not affect nociception in thermal or mechanical tests. GBR-12909 decreased buspirone-induced analgesia at all doses in the thermal test, while having no effect on buspirone-induced analgesia against mechanical pain. These results demonstrate that facilitation of 5-HT, NE and DA function with reuptake blocking drugs did not enhance the analgesic action of buspirone. These data indicate against the adjuvant use of reuptake blocking compounds and buspirone as analgesics. Furthermore, such findings may suggest other possible non-MA substrates of buspirone-induced analgesia.  相似文献   

16.
Analgesia induced by intrathecal injection of dynorphin B in the rat   总被引:3,自引:0,他引:3  
J S Han  G X Xie  A Goldstein 《Life sciences》1984,34(16):1573-1579
A dose-dependent analgesic effect of intrathecally injected dynorphin B was observed in rats using the tail flick as nociceptive test. Intrathecal injection of 20 nmol of dynorphin B increased the tail flick latency by 90 +/- 23%, an effect that lasted about 90 min. For the same degree of analgesia, dynorphin B was 50% more potent than morphine on a molar basis. The analgesic effect of this dose of dynorphin B was partially blocked by 10 mg/kg, but not by 1 mg/kg, of subcutaneous naloxone, showing a relative resistance to naloxone reversal as compared with morphine analgesia. The analgesia produced by dynorphin B was unchanged in morphine-tolerant rats but was significantly decreased in rats tolerant to ethylketazocine. These results suggest that dynorphin B produces its potent analgesic effect by activation of kappa rather than mu opioid receptors in the rat spinal cord.  相似文献   

17.
Selective ring opening reaction of the N-cyclopropylmethyl group in naltrexone (1d) was effected in the presence of platinum (IV) oxide and hydrobromic acid under a hydrogen atmosphere at rt to selectively afford N-isobutyl derivative 10. The binding affinity of N-i-Bu derivative 10 for opioid receptors was 11-17 times less than that of the corresponding N-CPM compound, naltrexone (1d). However, compound 10 showed dose-dependent analgesic effects. Contrary to expectations based on previous structure-activity relationship studies for a series of N-substituted naltrexone derivatives that compound 10 would be an opioid antagonist, 10 showed dose-dependent analgesia in the mouse acetic acid writhing test (ED(50): 5.05 mg/kg, sc), indicating it was an opioid agonist. This finding may have a great influence on the drug design of opioid agonists.  相似文献   

18.
Pain sensitivity of food and/or water-deprived male mice was tested on a hotplate. The most pronounced analgesia ensued in animals given no food and water, and no food but water ad libitum, the least one in water-deprived mice. The magnitude of the rise in pain threshold depended on the duration of deprivation and was correlated with the increase in the blood plasma beta-endorphin level. In the hypothalamus beta-endorphin level increased after 72-h food deprivation only. The level of dynorphin remained unchanged. Naloxone (10 mg/kg) almost completely reversed food or water-deprivation induced analgesia.  相似文献   

19.
The opioid antagonist naltrexone was administered to female rats during the late juvenile period, and its effects on sexual maturation were studied. Naltrexone treatment (2.5 or 20 mg/kg; four daily injections at 2-h intervals) at 28-32 days of age advanced first ovulation in about 55% of the rats. When naltrexone (20 mg/kg) was administered at 30-34 days of age, 75% of the rats responded. In these rats, first ovulation was advanced by 3.4 days and their body weight was 15.1 g lower than in control rats at first ovulation (p less than 0.01). Similar naltrexone treatment at younger (starting on Day 24 or 26) or older (starting on Day 32 or 34) ages did not advance first ovulation. The numbers of ova released in advanced, nonadvanced, and control rats were similar. A significant increase in serum luteinizing hormone (LH) concentration was seen 15 min after naltrexone injection (20 mg/kg) at all ages studied; the increase was significantly higher (p less than 0.05) at 30 days of age than before or after that age. Relatively high response to naltrexone (2.5 mg/kg) was seen from 8 to 4 days before first ovulation. Taken together, these data suggest that during the late juvenile stage (8 - 4 days before first ovulation) endogenous peptides critically restrict LH secretion and may constitute a hypothalamic restraint on the onset of puberty. However, changes in pituitary responsiveness to luteinizing hormone-releasing hormone may be part of the mechanism behind the high LH response to naltrexone in rats during the late juvenile stage.  相似文献   

20.
P D Butler  R J Bodnar 《Peptides》1987,8(2):299-307
In addition to short-acting analgesic actions by itself and modulation of analgesic responses induced by endogenous opioids and neurotensin, central administration of thyrotropin-releasing hormone (TRH) potentiates footshock analgesia. The present study evaluated the effects of TRH upon the neurohormonally-mediated though nonopioid analgesia induced by swims in rats. Intracerebroventricular TRH (10 and 50 micrograms) dose-dependently potentiated swim (21, 15, 2 degrees C baths) analgesia on the tail-flick test, an effect which was not due to the hypothermic or basal pain threshold changes. Intravenous (8 mg/kg) TRH potentiated swim (21 degrees C) analgesia; the 600:1 difference in potency between routes strongly suggests central sites of neuromodulatory action. Intracerebroventricular diketopiperazine (50 micrograms), a TRH metabolite, and RX77368 (50 micrograms), a TRH analogue, also potentiated swim (21 degrees C) analgesia, effects also independent of hypothermia and basal reactivity to pain. Finally, given the excitatory interaction between TRH and acetylcholine as well as the cholinergic involvement in swim analgesia, intracerebroventricular TRH potentiated pilocarpine (10 mg/kg, IP) analgesia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号