首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Spontaneous reactions between metabolites are often neglected in favor of emphasizing enzyme-catalyzed chemistry because spontaneous reaction rates are assumed to be insignificant under physiological conditions. However, synthetic biology and engineering efforts can raise natural metabolites' levels or introduce unnatural ones, so that previously innocuous or nonexistent spontaneous reactions become an issue. Problems arise when spontaneous reaction rates exceed the capacity of a platform organism to dispose of toxic or chemically active reaction products. While various reliable sources list competing or toxic enzymatic pathways’ side-reactions, no corresponding compilation of spontaneous side-reactions exists, nor is it possible to predict their occurrence. We addressed this deficiency by creating the Chemical Damage (CD)-MINE resource. First, we used literature data to construct a comprehensive database of metabolite reactions that occur spontaneously in physiological conditions. We then leveraged this data to construct 148 reaction rules describing the known spontaneous chemistry in a substrate-generic way. We applied these rules to all compounds in the ModelSEED database, predicting 180,891 spontaneous reactions. The resulting (CD)-MINE is available at https://minedatabase.mcs.anl.gov/cdmine/#/home and through developer tools. We also demonstrate how damage-prone intermediates and end products are widely distributed among metabolic pathways, and how predicting spontaneous chemical damage helps rationalize toxicity and carbon loss using examples from published pathways to commercial products. We explain how analyzing damage-prone areas in metabolism helps design effective engineering strategies. Finally, we use the CD-MINE toolset to predict the formation of the novel damage product N-carbamoyl proline, and present mass spectrometric evidence for its presence in Escherichia coli.  相似文献   

2.
Synthetic biological pathways could enhance the development of novel processes to produce chemicals from renewable resources. On the basis of models that describe the evolution of metabolic pathways and enzymes in nature, we developed a framework to rationally identify enzymes able to catalyze reactions on new substrates that overcomes one of the major bottlenecks in the assembly of a synthetic biological pathway. We verified the framework by implementing a pathway with two novel enzymatic reactions to convert isopentenyl diphosphate into 3-methyl-3-butenol, 3-methyl-2-butenol, and 3-methylbutanol. To overcome competition with native pathways that share the same substrate, we engineered two bifunctional enzymes that redirect metabolic flux toward the synthetic pathway. Taken together, our work demonstrates a new approach to the engineering of novel synthetic pathways in the cell.  相似文献   

3.
Metabolic engineering has achieved encouraging success in producing foreign metabolites in a variety of hosts. However, common strategies for engineering metabolic pathways focus on amplifying the desired enzymes and deregulating cellular controls. As a result, uncontrolled or deregulated metabolic pathways lead to metabolic imbalance and suboptimal productivity. Here we have demonstrated the second stage of metabolic engineering effort by designing and engineering a regulatory circuit to control gene expression in response to intracellular metabolic states. Specifically, we recruited and altered one of the global regulatory systems in Escherichia coli, the Ntr regulon, to control the engineered lycopene biosynthesis pathway. The artificially engineered regulon, stimulated by excess glycolytic flux through sensing of an intracellular metabolite, acetyl phosphate, controls the expression of two key enzymes in lycopene synthesis in response to flux dynamics. This intracellular control loop significantly enhanced lycopene production while reducing the negative impact caused by metabolic imbalance. Although we demonstrated this strategy for metabolite production, it can be extended into other fields where gene expression must be closely controlled by intracellular physiology, such as gene therapy.  相似文献   

4.
Halogenated aromatics are used widely in various industrial, agricultural and household applications. However, due to their stability, most of these compounds persist for a long time, leading to accumulation in the environment. Biological degradation of halogenated aromatics provides sustainable, low-cost and environmentally friendly technologies for removing these toxicants from the environment. This minireview discusses the molecular mechanisms of the enzymatic reactions for degrading halogenated aromatics which naturally occur in various microorganisms. In general, the biodegradation process (especially for aerobic degradation) can be divided into three main steps: upper, middle and lower metabolic pathways which successively convert the toxic halogenated aromatics to common metabolites in cells. The most difficult step in the degradation of halogenated aromatics is the dehalogenation step in the middle pathway. Although a variety of enzymes are involved in the degradation of halogenated aromatics, these various pathways all share the common feature of eventually generating metabolites for utilizing in the energy-producing metabolic pathways in cells. An in-depth understanding of how microbes employ various enzymes in biodegradation can lead to the development of new biotechnologies via enzyme/cell/metabolic engineering or synthetic biology for sustainable biodegradation processes.  相似文献   

5.
Secondary metabolites are an important source of high-value chemicals, many of which exhibit important pharmacological properties. These valuable natural products are often difficult to synthesize chemically and are commonly isolated through inefficient extractions from natural biological sources. As such, they are increasingly targeted for production by biosynthesis from engineered microorganisms. The budding yeast species Saccharomyces cerevisiae has proven to be a powerful microorganism for heterologous expression of biosynthetic pathways. S. cerevisiae's usefulness as a host organism is owed in large part to the wealth of knowledge accumulated over more than a century of intense scientific study. Yet many challenges are currently faced in engineering yeast strains for the biosynthesis of complex secondary metabolite production. However, synthetic biology is advancing the development of new tools for constructing, controlling, and optimizing complex metabolic pathways in yeast. Here, we review how the coupling between yeast biology and synthetic biology is advancing the use of S. cerevisiae as a microbial host for the construction of secondary metabolic pathways.  相似文献   

6.
The ability to transfer metabolic pathways from the natural producer organisms to the well-characterized cell factory Saccharomyces cerevisiae is well documented. However, as many secondary metabolites are produced by collaborating enzymes assembled in complexes, metabolite production in yeast may be limited by the inability of the heterologous enzymes to collaborate with the native yeast enzymes. This may cause loss of intermediates by diffusion or degradation or due to conversion of the intermediate through competitive pathways. To bypass this problem, we have pursued a strategy in which key enzymes in the pathway are expressed as a physical fusion. As a model system, we have constructed several fusion protein variants in which farnesyl diphosphate synthase (FPPS) of yeast has been coupled to patchoulol synthase (PTS) of plant origin (Pogostemon cablin). Expression of the fusion proteins in S. cerevisiae increased the production of patchoulol, the main sesquiterpene produced by PTS, up to 2-fold. Moreover, we have demonstrated that the fusion strategy can be used in combination with traditional metabolic engineering to further increase the production of patchoulol. This simple test case of synthetic biology demonstrates that engineering the spatial organization of metabolic enzymes around a branch point has great potential for diverting flux toward a desired product.  相似文献   

7.
Single enzyme systems or engineered microbial hosts have been used for decades but the notion of assembling multiple enzymes into cell-free synthetic pathways is a relatively new development. The extensive possibilities that stem from this synthetic concept makes it a fast growing and potentially high impact field for biomanufacturing fine and platform chemicals, pharmaceuticals and biofuels. However, the translation of individual single enzymatic reactions into cell-free multi-enzyme pathways is not trivial. In reality, the kinetics of an enzyme pathway can be very inadequate and the production of multiple enzymes can impose a great burden on the economics of the process. We examine here strategies for designing synthetic pathways and draw attention to the requirements of substrates, enzymes and cofactor regeneration systems for improving the effectiveness and sustainability of cell-free biocatalysis. In addition, we comment on methods for the immobilisation of members of a multi-enzyme pathway to enhance the viability of the system. Finally, we focus on the recent development of integrative tools such as in silico pathway modelling and high throughput flux analysis with the aim of reinforcing their indispensable role in the future of cell-free biocatalytic pathways for biomanufacturing.  相似文献   

8.
Substrate channeling is a process of transferring the product of one enzyme to an adjacent cascade enzyme or cell without complete mixing with the bulk phase. Such phenomena can occur in vivo, in vitro, or ex vivo. Enzyme–enzyme or enzyme–cell complexes may be static or transient. In addition to enhanced reaction rates through substrate channeling in complexes, numerous potential benefits of such complexes are protection of unstable substrates, circumvention of unfavorable equilibrium and kinetics imposed, forestallment of substrate competition among different pathways, regulation of metabolic fluxes, mitigation of toxic metabolite inhibition, and so on. Here we review numerous examples of natural and synthetic complexes featuring substrate channeling. Constructing synthetic in vivo, in vitro or ex vivo complexes for substrate channeling would have great biotechnological potentials in metabolic engineering, multi-enzyme-mediated biocatalysis, and cell-free synthetic pathway biotransformation (SyPaB).  相似文献   

9.
Protein engineering has for decades been a powerful tool in biotechnology for generating vast numbers of useful enzymes for industrial applications. Today, protein engineering has a crucial role in advancing the emerging field of synthetic biology, where metabolic engineering efforts alone are insufficient to maximize the full potential of synthetic biology. This article reviews the advancements in protein engineering techniques for improving biocatalytic properties to optimize engineered pathways in host systems, which are instrumental to achieve high titer production of target molecules. We also discuss the specific means by which protein engineering has improved metabolic engineering efforts and provide our assessment on its potential to continue to advance biology engineering as a whole.  相似文献   

10.
Metabolic engineering has been playing important roles in developing high performance microorganisms capable of producing various chemicals and materials from renewable biomass in a sustainable manner. Synthetic and systems biology are also contributing significantly to the creation of novel pathways and the whole cell-wide optimization of metabolic performance, respectively. In order to expand the spectrum of chemicals that can be produced biotechnologically, it is necessary to broaden the metabolic capacities of microorganisms. Expanding the metabolic pathways for biosynthesizing the target chemicals requires not only the enumeration of a series of known enzymes, but also the identification of biochemical gaps whose corresponding enzymes might not actually exist in nature; this issue is the focus of this paper. First, pathway prediction tools, effectively combining reactions that lead to the production of a target chemical, are analyzed in terms of logics representing chemical information, and designing and ranking the proposed metabolic pathways. Then, several approaches for potentially filling in the gaps of the novel metabolic pathway are suggested along with relevant examples, including the use of promiscuous enzymes that flexibly utilize different substrates, design of novel enzymes for non-natural reactions, and exploration of hypothetical proteins. Finally, strain optimization by systems metabolic engineering in the context of novel metabolic pathways constructed is briefly described. It is hoped that this review paper will provide logical ways of efficiently utilizing ‘big’ biological data to design and develop novel metabolic pathways for the production of various bulk chemicals that are currently produced from fossil resources.  相似文献   

11.
Metabolic engineering strategies have enabled improvements in yield and titer for a variety of valuable small molecules produced naturally in microorganisms, as well as those produced via heterologous pathways. Typically, the approaches have been focused on up‐ and downregulation of genes to redistribute steady‐state pathway fluxes, but more recently a number of groups have developed strategies for dynamic regulation, which allows rebalancing of fluxes according to changing conditions in the cell or the fermentation medium. This review highlights some of the recently published work related to dynamic metabolic engineering strategies and explores how advances in high‐throughput screening and synthetic biology can support development of new dynamic systems. Dynamic gene expression profiles allow trade‐offs between growth and production to be better managed and can help avoid build‐up of undesired intermediates. The implementation is more complex relative to static control, but advances in screening techniques and DNA synthesis will continue to drive innovation in this field.  相似文献   

12.
Benzoic acid (BA) is an important platform aromatic compound in chemical industry and is widely used as food preservatives in its salt forms. Yet, current manufacture of BA is dependent on petrochemical processes under harsh conditions. Here we report the de novo production of BA from glucose using metabolically engineered Escherichia coli strains harboring a plant-like β-oxidation pathway or a newly designed synthetic pathway. First, three different natural BA biosynthetic pathways originated from plants and one synthetically designed pathway were systemically assessed for BA production from glucose by in silico flux response analyses. The selected plant-like β-oxidation pathway and the synthetic pathway were separately established in E. coli by expressing the genes encoding the necessary enzymes and screened heterologous enzymes under optimal plasmid configurations. BA production was further optimized by applying several metabolic engineering strategies to the engineered E. coli strains harboring each metabolic pathway, which included enhancement of the precursor availability, removal of competitive reactions, transporter engineering, and reduction of byproduct formation. Lastly, fed-batch fermentations of the final engineered strain harboring the β-oxidation pathway and the strain harboring the synthetic pathway were conducted, which resulted in the production of 2.37 ± 0.02 g/L and 181.0 ± 5.8 mg/L of BA from glucose, respectively; the former being the highest titer reported by microbial fermentation. The metabolic engineering strategies developed here will be useful for the production of related aromatics of high industrial interest.  相似文献   

13.
Metabolism is a highly interconnected web of chemical reactions that power life. Though the stoichiometry of metabolism is well understood, the multidimensional aspects of metabolic regulation in time and space remain difficult to define, model and engineer. Complex metabolic conversions can be performed by multiple species working cooperatively and exchanging metabolites via structured networks of organisms and resources. Within cells, metabolism is spatially regulated via sequestration in subcellular compartments and through the assembly of multienzyme complexes. Metabolic engineering and synthetic biology have had success in engineering metabolism in the first and second dimensions, designing linear metabolic pathways and channeling metabolic flux. More recently, engineering of the third dimension has improved output of engineered pathways through isolation and organization of multicell and multienzyme complexes. This review highlights natural and synthetic examples of three-dimensional metabolism both inter- and intracellularly, offering tools and perspectives for biological design.  相似文献   

14.
15.
Increasing interest in renewable resources by the energy and chemical industries has spurred new technologies both to capture solar energy and to develop biologically derived chemical feedstocks and fuels. Advances in molecular biology and metabolic engineering have provided new insights and techniques for increasing biomass and biohydrogen production, and recent efforts in synthetic biology have demonstrated that complex regulatory and metabolic networks can be designed and engineered in microorganisms. Here, we explore how light-driven processes may be incorporated into nonphotosynthetic microbes to boost metabolic capacity for the production of industrial and fine chemicals. Progress towards the introduction of light-driven proton pumping or anoxygenic photosynthesis into Escherichia coli to increase the efficiency of metabolically-engineered biosynthetic pathways is highlighted.  相似文献   

16.
Synthetic biology, encompassing the design and construction of novel artificial biological pathways and organisms and the redesign of existing natural biological systems, is rapidly expanding the number of applications for which biological systems can play an integral role. In the context of chemical production, the combination of synthetic biology and metabolic engineering approaches continues to unlock the ability to biologically produce novel and complex molecules from a variety of feedstocks. Here, we utilize a synthetic approach to design and build a pathway to produce 2-hydroxyisovaleric acid in Escherichia coli and demonstrate how pathway design can be supplemented with metabolic engineering approaches to improve pathway performance from various carbon sources. Drawing inspiration from the native pathway for the synthesis of the 5-carbon amino acid l-valine, we exploit the decarboxylative condensation of two molecules of pyruvate, with subsequent reduction and dehydration reactions enabling the synthesis of 2-hydroxyisovaleric acid. Key to our approach was the utilization of an acetolactate synthase which minimized kinetic and regulatory constraints to ensure sufficient flux entering the pathway. Critical host modifications enabling maximum product synthesis from either glycerol or glucose were then examined, with the varying degree of reduction of these carbons sources playing a major role in the required host background. Through these engineering efforts, the designed pathway produced 6.2 g/L 2-hydroxyisovaleric acid from glycerol at 58% of maximum theoretical yield and 7.8 g/L 2-hydroxyisovaleric acid from glucose at 73% of maximum theoretical yield. These results demonstrate how the combination of synthetic biology and metabolic engineering approaches can facilitate bio-based chemical production.  相似文献   

17.
18.
The evolution of enzymes and pathways is under debate. Recent studies show that recruitment of single enzymes from different pathways could be the driving force for pathway evolution. Other mechanisms of evolution, such as pathway duplication, enzyme specialization, de novo invention of pathways or retro-evolution of pathways, appear to be less abundant. Twenty percent of enzyme superfamilies are quite variable, not only in changing reaction chemistry or metabolite type but in changing both at the same time. These variable superfamilies account for nearly half of all known reactions. The most frequently occurring metabolites provide a helping hand for such changes because they can be accommodated by many enzyme superfamilies. Thus, a picture is emerging in which new pathways are evolving from central metabolites by preference, thereby keeping the overall topology of the metabolic network.  相似文献   

19.
Growing concerns over limited fossil resources and associated environmental problems are motivating the development of sustainable processes for the production of chemicals, fuels and materials from renewable resources. Metabolic engineering is a key enabling technology for transforming microorganisms into efficient cell factories for these compounds. Systems metabolic engineering, which incorporates the concepts and techniques of systems biology, synthetic biology and evolutionary engineering at the systems level, offers a conceptual and technological framework to speed the creation of new metabolic enzymes and pathways or the modification of existing pathways for the optimal production of desired products. Here we discuss the general strategies of systems metabolic engineering and examples of its application and offer insights as to when and how each of the different strategies should be used. Finally, we highlight the limitations and challenges to be overcome for the systems metabolic engineering of microorganisms at more advanced levels.  相似文献   

20.
The problems of engineering increased flux in metabolic pathways are analyzed in terms of the understanding provided by metabolic control analysis. Over-expression of a single enzyme is unlikely to be effective unless it is known to have a high flux control coefficient, which can be used as an approximate predictive tool. This is likely to rule out enzymes subject to feedback inhibition, because it transfers control downstream from the inhibited enzyme to the enzymes utilizing the feedback metabolite. Although abolishing feedback inhibition can restore flux control to an enzyme, it is also likely to cause large increases in the concentrations of metabolic intermediates. Simultaneous and coordinated over-expression of most of the enzymes in a pathway can, in principle, produce substantial flux increases without changes in metabolite levels, though technically it may be difficult to achieve. It is, however, closer to the method used by cells to change flux levels, where coordinated changes in the level of activity of pathway enzymes are the norm. Another option is to increase the demand for the pathway product, perhaps by increasing its rate of excretion or removal. Copyright 1998 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号