首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mast cell-mediated allergic inflammation is involved in many diseases such as asthma, sinusitis, and rheumatoid arthritis. Mast cells induce synthesis and production of pro-inflammatory cytokines including tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6 with immune regulatory properties. The formulated ethanol extract of Artemisia asiatica Nakai (DA-9601) has been reported to have antioxidative and anti-inflammatory activities. In this report, we investigated the effect of DA-9601 on the expression of pro-inflammatory cytokines by the activated human mast cell line HMC-1 and studied its possible mechanisms of action. DA-9601 dose-dependently decreased the gene expression and production of TNF-α, IL-1β, and IL-6 on phorbol 12-myristate 13-acetate (PMA)- and calcium ionophore A23187-stimulated HMC-1 cells. In addition, DA-9601 attenuated PMA- and A23187-induced activation of NF-κB as indicated by inhibition of degradation of IκBα, nuclear translocation of NF-κB, NF-κB/DNA binding, and NF-κB-dependent gene reporter assay. Our in vitro studies provide evidence that DA-9601 might contribute to the treatment of mast cell-derived allergic inflammatory diseases.  相似文献   

2.
Vitamin K (VK) has diverse protective effects against osteoporosis, atherosclerosis and carcinogenesis. We recently reported that menatetrenone, a VK2 analogue, suppressed nuclear factor (NF)-κB activation in human hepatoma cells. Although NF-κB is regulated by isoforms of protein kinase C (PKC), the involvement of PKCs in VK2-mediated NF-κB inhibition remains unknown. Therefore, the effects of VK2 on the activation and the kinase activity of each PKC isoform were investigated. The human hepatoma Huh7 cells were treated with PKC isoform-specific inhibitors and/or siRNAs against each PKC isoform with or without 12-O-tetradecanoylphorbol-13-acetate (TPA). VK2 inhibited the TPA-induced NF-κB activation in Huh7 cells. NF-κB activity was inhibited by the pan-PKC inhibitor Ro-31-8425, but not by the PKCα-specific inhibitor Gö6976. The knockdown of individual PKC isoforms including PKCα, δ and ? showed only marginal effects on the NF-κB activity. However, the knockdown of both PKCδ and PKC?, together with treatment with a PKCα-specific inhibitor, depressed the NF-κB activity. VK2 suppressed the PKCα kinase activity and the phosphorylation of PKC? after TPA treatment, but neither the activation nor the enzyme activity of PKCδ was affected. The knockdown of PKC? abolished the TPA-induced phosphorylation of PKD1, and the effects of PKD1 knockdown on NF-κB activation were similar to those of PKC? knockdown. Collectively, all of the PKCs, including α, δ and ?, and PKD1 are involved in the TPA-mediated activation of NF-κB. VK2 inhibited the NF-κB activation through the inhibition of PKCα and ? kinase activities, as well as subsequent inhibition of PKD1 activation.  相似文献   

3.
4.
Various factors can affect the functions of dental pulp stem cells (DPSCs). However, little knowledge is available about the effects of estrogen deficiency on the differentiation of DPSCs. In this study, an estrogen-deficient rat model was constructed and multi-colony-derived DPSCs were obtained from the incisors of ovariectomized (OVX) or sham-operated rats. Odonto/osteogenic differentiation and the possible involvement of the nuclear factor kappa B (NF-κB) pathway in the OVX-DPSCs/Sham-DPSCs of these rats were then investigated. OVX-DPSCs presented decreased odonto/osteogenic capacity and an activated NF-κB pathway, as compared with Sham-DPSCs. When the cellular NF-κB pathway was specifically inhibited by BMS345541, the odonto/osteogenic potential in OVX-DPSCs was significantly upregulated. Thus, estrogen deficiency down-regulated the odonto/osteogenic differentiation of DPSCs by activating NF-κB signaling and inhibition of the NF-κB pathway effectively rescued the decreased differentiation potential of DPSCs.  相似文献   

5.
Rheumatoid arthritis fibroblast-like synoviocytes (RAFLS) proliferate abnormally and resist apoptosis. Geldanamycin (GA) and other HSP90 inhibitors have emerged as promising therapeutic agents that inhibited cancer cell growth. In this study, we explored the effects of HSP90 inhibitor, GA, on tumor necrosis factor (TNF)-α-induced proliferation and apoptosis of RAFLS, and the underlying mechanism. Human RAFLS was isolated from the knee joints of patients with RA and subjected to TNF-α treatment in combination of various concentration of GA. We found that GA dose-dependently inhibited TNF-α-induced RAFLS proliferation as measured, but promoted RAFLS apoptosis. Further mechanistic study identified that GA dose-dependently attenuated TNF-α-mediated activation of mitogen-activated protein kinases (MAPKs) and nuclear factor-kappa B (NF-κB) pathways, both of which are involved in TNF-α-mediated RAFLS proliferation. Moreover, GA-induced apoptosis and mitochondrial damage of RAFLS, as evidenced by increased Bax/Bcl-2 ratio and mitochondrial cytochrome c release, and enhanced cleavages of caspase-3, caspase-9, and poly-(ADP-ribose) polymerase. Collectively, our results revealed that chemical inhibition of HSP90 by GA suppressed TNF-α-induced proliferation of RAFLSs through the MAPK and NF-κB signaling pathways and induces RAFLS apoptosis via mitochondria-dependent pathway. These findings demonstrated for the first time that HSP90 inhibition in RAFLS could be therapeutic beneficial for RA.  相似文献   

6.
Leukotriene B(4), an arachidonic acid-derived lipid mediator, is a known proinflammatory agent that has a direct effect upon neutrophil physiology, inducing reactive oxygen species generation by the NADPH oxidase complex and impairing neutrophil spontaneous apoptosis, which in turn may corroborate to the onset of chronic inflammation. Despite those facts, a direct link between inhibition of neutrophil spontaneous apoptosis and NADPH oxidase activation by leukotriene B(4) has not been addressed so far. In this study, we aim to elucidate the putative role of NADPH oxidase-derived reactive oxygen species in leukotriene B(4)-induced anti-apoptotic effect. Our results indicate that NADPH oxidase-derived reactive oxygen species are critical to leukotriene B(4) pro-survival effect on neutrophils. This effect also relies on redox modulation of nuclear factor kappaB signaling pathway. We have also observed that LTB(4)-induced Bad degradation and mitochondrial stability require NADPH oxidase activity. All together, our results strongly suggest that LTB(4)-induced anti-apoptotic effect in neutrophils occurs in a reactive oxygen species-dependent manner. We do believe that a better knowledge of the molecular mechanisms underlying neutrophil spontaneous apoptosis may contribute to the development of more successful strategies to control chronic inflammatory conditions such as rheumatoid arthritis.  相似文献   

7.
8.
Ang ES  Yang X  Chen H  Liu Q  Zheng MH  Xu J 《FEBS letters》2011,585(17):2755-2762
Osteolytic bone diseases including osteoporosis are commonly accompanied with enhanced osteoclast formation and bone resorption. Naringin, a natural occurring flavonoid has been found to protect against retinoic acid-induced osteoporosis and improve bone quality in rats. Here, we showed that naringin perturbs osteoclast formation and bone resorption by inhibiting RANK-mediated NF-κB and ERK signaling. Naringin suppressed gene expression of key osteoclast marker genes. Naringin was found to inhibit RANKL-induced activation of NF-κB by suppressing RANKL-mediated IκB-α degradation. In addition, naringin inhibited RANKL-induced phosphorylation of ERK. This study identifies naringin as an inhibitor for osteoclast formation and bone resorption, and provides evidence that natural compounds such as naringin might be beneficial as an alternative medicine for the prevention and treatment of osteolysis.  相似文献   

9.
10.
Yang C  Yang Z  Zhang M  Dong Q  Wang X  Lan A  Zeng F  Chen P  Wang C  Feng J 《PloS one》2011,6(7):e21971
Hydrogen sulfide (H(2)S) has been shown to protect against oxidative stress injury and inflammation in various hypoxia-induced insult models. However, it remains unknown whether H(2)S protects human skin keratinocytes (HaCaT cells) against chemical hypoxia-induced damage. In the current study, HaCaT cells were treated with cobalt chloride (CoCl(2)), a well known hypoxia mimetic agent, to establish a chemical hypoxia-induced cell injury model. Our findings showed that pretreatment of HaCaT cells with NaHS (a donor of H(2)S) for 30 min before exposure to CoCl(2) for 24 h significantly attenuated CoCl(2)-induced injuries and inflammatory responses, evidenced by increases in cell viability and GSH level and decreases in ROS generation and secretions of IL-1β, IL-6 and IL-8. In addition, pretreatment with NaHS markedly reduced CoCl(2)-induced COX-2 overexpression and PGE(2) secretion as well as intranuclear NF-κB p65 subunit accumulation (the central step of NF-κB activation). Similar to the protective effect of H(2)S, both NS-398 (a selective COX-2 inhibitor) and PDTC (a selective NF-κB inhibitor) depressed not only CoCl(2)-induced cytotoxicity, but also the secretions of IL-1β, IL-6 and IL-8. Importantly, PDTC obviously attenuated overexpression of COX-2 induced by CoCl(2). Notably, NAC, a ROS scavenger, conferred a similar protective effect of H(2)S against CoCl(2)-induced insults and inflammatory responses. Taken together, the findings of the present study have demonstrated for the first time that H(2)S protects HaCaT cells against CoCl(2)-induced injuries and inflammatory responses through inhibition of ROS-activated NF-κB/COX-2 pathway.  相似文献   

11.
Hyperglycemia-induced generation of reactive oxygen species (ROS) can lead to cardiomyocyte apoptosis and cardiac dysfunction. However, the mechanism by which high glucose causes cardiomyocyte apoptosis is not clear. In this study, we investigated the signaling pathways involved in NADPH oxidase-derived ROS-induced apoptosis in cardiomyocytes under hyperglycemic conditions. H9c2 cells were treated with 5.5 or 33 mM glucose for 36 h. We found that 33 mM glucose resulted in a time-dependent increase in ROS generation as well as a time-dependent increase in protein expression of p22(phox), p47(phox), gp91(phox), phosphorylated IκB, c-Jun N-terminal kinase (JNK) and p38, as well as the nuclear translocation of NF-kB. Treatment with apocynin or diphenylene iodonium (DPI), NADPH oxidase inhibitors, resulted in reduced expression of p22(phox), p47(phox), gp91(phox), phosphorylated IκB, c-Jun N-terminal kinase (JNK) and p38. In addition, treatment with JNK and NF-kB siRNAs blocked the activity of caspase-3. Furthermore, treatment with JNK, but not p38, siRNA inhibited the glucose-induced activation of NF-κB. Similar results were obtained in neonatal cardiomyocytes exposed to high glucose concentrations. Therefore, we propose that NADPH oxidase-derived ROS-induced apoptosis is mediated via the JNK-dependent activation of NF-κB in cardiomyocytes exposed to high glucose.  相似文献   

12.
13.
14.
Interleukin-1β (IL-1β) induces the expression of matrix metalloproteinases (MMPs) implicated in cartilage and joint degradation in osteoarthritis (OA) and rheumatoid arthritis (RA). Polyoxypregnane glycoside (PPG), active compound was identified from Dregea volubilis extract by chemical analysis, shown to exert chondroprotective effects in cartilage explant models. However, no studies have been undertaken for the molecular investigation of whether PPG constituents protect the human articular chondrocyte (HAC). In the present studies, HAC was co-treated with IL-1β and PPG. The expression of MMPs, type II collagen, phosphorylation of mitogen-activated protein kinases (MAPKs) and NF-κB signaling pathway were determined by Western immunoblotting. PPG (6.25–25 μM) decreased the IL-1β-induced HA release from chondrocyte to culture medium. The mode of action of PPG was likely mediated through inhibiting expression of MMP-1, -3 and -13 in the medium, which was associated with the inhibition of mRNA expression. PPG had no effect on IL-1β-induced phosphorylation of MAPK pathway. Conversely, PPG decreased phosphorylation of IκB kinase and IκBα degradation. Taken together, these results indicate that PPG may inhibit cartilage degradation in OA and may also be used as nutritional supplement for maintaining joint integrity and function.  相似文献   

15.
16.
17.
NF-κB activity is tightly regulated by IκB class of proteins. IκB proteins possess ankyrin repeats for binding to and inhibiting NF-κB. The regulatory protein, NPR1 from Brassica juncea possesses ankyrin repeats with sequence similarity to IκBα subgroup. Therefore, we examined whether stably expressed BjNPR1 could function as IκB in inhibiting NF-κB in human glioblastoma cell lines. We observed that BjNPR1 bound to NF-κB and inhibited its nuclear translocation. Further, BjNPR1 expression down-regulated the NF-κB target genes iNOS, Cox-2, c-Myc and cyclin D1 and reduced the proliferation rate of U373 cells. Finally, BjNPR1 decreased the levels of pERK, pJNK and PKCα and increased the Caspase-3 and Caspase-8 activities. These results suggested that inhibition of NF-κB activation by BjNPR1 can be a promising therapy in NF-κB dependent pathologies.  相似文献   

18.
19.
CpG-oligonucleotides (CpG-ODNs), mimicking bacterial DNA, have recently been shown to stimulate prostate cancer invasion in vitro via Toll-like receptor 9 (TLR9). Since cyclooxygenase 2 (COX-2), frequently overexpressed in multiple tumor types including prostate cancer, is a causal factor for tumor development, invasion and metastasis, an interesting question is raised whether TLR9 regulates COX-2 expression in prostate cancer cells. To address this question, herein we examined COX-2 expression in PC-3 cells stimulated with different doses and time courses of CpG-ODNs. The regulatory role of NF-κB in TLR9-mediated COX-2 expression was also investigated. CpG-ODN was found to up-regulate the expression of COX-2 in PC-3 cells in a dose- and time-dependent manner, but have little impact on COX-1 expression. Moreover, CpG-ODN also promoted nuclear translocation and activation of NF-κB, which appeared to be required for COX-2 induction by CpG-ODN. Overall, TLR9 up-regulates COX-2 expression in prostate cancer cells, at least partially through the activation of NF-κB, which may be implicated in tumor invasion and metastasis.  相似文献   

20.
A previous investigation showed that deep-sea water (DSW) can affect the expression of genes that regulate metastasis, including cyclooxygenase-2 (COX-2), matrix metalloproteinase-2 (MMP-2), urokinase plasminogen activator (uPA) and uPA receptor (uPAR), in HT-29 human colorectal adenocarcinomas. In the present study, we investigated the effects of DSW on inducible nitric oxide synthase (iNOS) expression and cell migration and also explored the mechanism of DSW-induced anti-metastatic potential in HT-29 human colorectal adenocarcinomas. Cytokine-induced expression of iNOS, which is highly expressed in colon cancer and enhances cancer growth and metastasis, was decreased in a hardness-dependent manner by DSW. Also, the wound healing assay revealed that DSW inhibited 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced cell migration in a hardness-dependent manner. DSW also decreased the phosphorylation of various MAPKs, including p38, ERK and JNK, and suppressed the nuclear translocation of NF-κB but not c-Jun. The results suggest that DSW may inhibit cancer cell growth related to iNOS overexpression and PKC-mediated cell migration in HT-29 human colorectal adenocarcinomas and the antimetastatic potential of DSW may be regulated by prevention of NF-κB nuclear translocation via inhibition of p38, ERK and JNK phosphorylation. In conclusion, the present investigation demonstrates that DSW inhibits cancer growth and metastasis via down-regulation of iNOS expression and the MAPK/NF-κB signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号