首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
2.
PurposeThe aim of the present investigation was to evaluate the dosimetric variation regarding the analytical anisotropic algorithm (AAA) relative to other algorithms in lung stereotactic body radiation therapy (SBRT). We conducted a multi-institutional study involving six institutions using a secondary check program and compared the AAA to the Acuros XB (AXB) in two institutions.MethodsAll lung SBRT plans (128 patients) were generated using the AAA, pencil beam convolution with the Batho (PBC-B) and adaptive convolve (AC). All institutions used the same secondary check program (simple MU analysis [SMU]) implemented by a Clarkson-based dose calculation algorithm. Measurement was performed in a heterogeneous phantom to compare doses using the three different algorithms and the SMU for the measurements. A retrospective analysis was performed to compute the confidence limit (CL; mean ± 2SD) for the dose deviation between the AAA, PBC, AC and SMU. The variations between the AAA and AXB were evaluated in two institutions, then the CL was acquired.ResultsIn comparing the measurements, the AAA showed the largest systematic dose error (3%). In calculation comparisons, the CLs of the dose deviation were 8.7 ± 9.9% (AAA), 4.2 ± 3.9% (PBC-B) and 5.7 ± 4.9% (AC). The CLs of the dose deviation between the AXB and the AAA were 1.8 ± 1.5% and −0.1 ± 4.4%, respectively, in the two institutions.ConclusionsThe CL of the AAA showed much larger variation than the other algorithms. Relative to the AXB, larger systematic and random deviations still appeared. Thus, care should be taken in the use of AAA for lung SBRT.  相似文献   

3.
The aim of this study was to determine the surface doses using GafChromic EBT films and compare them with plane-parallel ionization chamber measurements for 6 and 18 MV high energy photon beams. The measurements were made in a water equivalent solid phantom in the build-up region of the 6 and 18 MV photon beams at 100 cm SSD for various field sizes. Markus type plane-parallel ion chamber with fixed-separation between collecting electrodes was used to measure the percent depth doses. GafChromic EBT film measurements were performed both on the phantom surface and maximum dose depth at the same geometry with ion chamber measurements. The surface doses found using GafChromic EBT film were 15%, 20%, 29%and 39% ± 2% (1SD) for 6 MV photons, 6%, 11%, 23% and 32% ± 2% (1SD) for 18 MV photons at 5, 10, 20 and 30 cm2 field sizes, respectively. GafChromic EBT film provides precise measurements for surface dose in the high energy photons. Agreement between film and plane-parallel chamber measurements was found to be within ±3% for 18 MV photon beams. There was 5% overestimate on the surface doses when compared with the plane-parallel chamber measurements for all field sizes in the 6 MV photon beams.  相似文献   

4.
PurposeTo verify lung stereotactic body radiotherapy (SBRT) plans using a secondary treatment planning system (TPS) as an independent method of verification and to define tolerance levels (TLs) in lung SBRT between the primary and secondary TPSs.MethodsA total of 147 lung SBRT plans calculated using X-ray voxel Monte Carlo (XVMC) were exported from iPlan to Eclipse in DICOM format. Dose distributions were recalculated using the Acuros XB (AXB) and the anisotropic analytical algorithm (AAA), while maintaining monitor units (MUs) and the beam arrangement. Dose to isocenter and dose-volumetric parameters, such as D2, D50, D95 and D98, were evaluated for each patient. The TLs of all parameters between XVMC and AXB (TLAXB) and between XVMC and AAA (TLAAA) were calculated as the mean ± 1.96 standard deviations.ResultsAXB values agreed with XVMC values within 3.5% for all dosimetric parameters in all patients. By contrast, AAA sometimes calculated a 10% higher dose in PTV D95 and D98 than XVMC. The TLAXB and TLAAA of the dose to isocenter were −0.3 ± 1.4% and 0.6 ± 2.9%, respectively. Those of D95 were 1.3 ± 1.8% and 1.7 ± 3.6%, respectively.ConclusionsThis study quantitatively demonstrated that the dosimetric performance of AXB is almost equal to that of XVMC, compared with that of AAA. Therefore, AXB is a more appropriate algorithm for an independent verification method for XVMC.  相似文献   

5.
AimTo examine the application of Statistical Process Control (SPC) and Ishikawa diagrams for retrospective evaluation of machine Quality Assurance (QA) performance in radiotherapyBackgroundSPC is a popular method for supplementing the performance of QA techniques in healthcare. This work investigates the applicability of SPC techniques and Ishikawa charts in machine QA.Materials and MethodsSPC has been applied to recommend QA limits on the particular beam parameters using the QUICKCHECKwebline QA portable constancy check device for 6 MV and 10 MV flattened photon beams from the Elekta Versa HD linear accelerator (Linac). Four machine QA parameters – beam flatness, beam symmetry along gun target direction and left-right direction, and beam quality factor (BQF) – were selected for retrospective analysis. Shewhart charts, Exponentially Weighted Moving Average (EWMA) charts and Cumulative Sum (CUSUM) charts were obtained for each parameter. The root causes for a failure in machine QA were broken down into an Ishikawa diagram enabling the user to identify the root cause of error and rectify the problem subsequently.ResultsShewhart charts and EWMA charts applied could detect loss in control in one variable in the 6 MV beams and in all four variables in 10 MV beams. CUSUM charts detected offsets in the readings. The Ishikawa chart exhaustively included the possible errors that lead to loss of control.ConclusionSPC is proven to be effective for detection of loss in control in machine QA. The Ishikawa chart provides the set of probable root causes of machine error useful while troubleshooting.  相似文献   

6.
PurposeTo investigate the feasibility of a fast protocol for radiochromic film dosimetry to verify intensity-modulated radiotherapy (IMRT) plans.Method and materialsEBT3 film dosimetry was conducted in this study using the triple-channel method implemented in the cloud computing application (Radiochromic.com). We described a fast protocol for radiochromic film dosimetry to obtain measurement results within 1 h.Ten IMRT plans were delivered to evaluate the feasibility of the fast protocol. The dose distribution of the verification film was derived at 15, 30, 45 min using the fast protocol and also at 24 h after completing the irradiation. The four dose maps obtained per plan were compared using global and local gamma index (5%/3 mm) with the calculated one by the treatment planning system. Gamma passing rates obtained for 15, 30 and 45 min post-exposure were compared with those obtained after 24 h.ResultsSmall differences respect to the 24 h protocol were found in the gamma passing rates obtained for films digitized at 15 min (global: 99.6% ± 0.9% vs. 99.7% ± 0.5%; local: 96.3% ± 3.4% vs. 96.3% ± 3.8%), at 30 min (global: 99.5% ± 0.9% vs. 99.7% ± 0.5%; local: 96.5% ± 3.2% vs. 96.3 ± 3.8%) and at 45 min (global: 99.2% ± 1.5% vs. 99.7% ± 0.5%; local: 96.1% ± 3.8% vs. 96.3 ± 3.8%).ConclusionsThe fast protocol permits dosimetric results within 1 h when IMRT plans are verified, with similar results as those reported by the standard 24 h protocol.  相似文献   

7.
8.
PurposeThis study evaluates the radiological properties of different 3D printing materials for a range of photon energies, including kV and MV CT imaging and MV radiotherapy beams.MethodsThe CT values of a number of materials were measured on an Aquilion One CT scanner at 80 kVp, 120 kVp and a Tomotherapy Hi Art MVCT imaging beam. Attenuation of the materials in a 6 MV radiotherapy beam was investigated.ResultsPlastic filaments printed with various infill densities have CT values of −743 ± 4, −580 ± 1 and −113 ± 3 in 120 kVp CT images which approximate the CT values of low-density lung, high-density lung and soft tissue respectively. Metal-infused plastic filaments printed with a 90% infill density have CT values of 658 ± 1 and 739 ± 6 in MVCT images which approximate the attenuation of cortical bone. The effective relative electron density REDeff is used to describe the attenuation of a megavoltage treatment beam, taking into account effects relating to the atomic number and mass density of the material. Plastic filaments printed with a 90% infill density have REDeff values of 1.02 ± 0.03 and 0.94 ± 0.02 which approximate the relative electron density RED of soft tissue. Printed resins have REDeff values of 1.11 ± 0.03 and 1.09 ± 0.03 which approximate the RED of bone mineral.Conclusions3D printers can model a variety of body tissues which can be used to create phantoms useful for both imaging and dosimetric studies.  相似文献   

9.
《Cytokine》2010,49(3):295-302
Blood vessel growth is regulated by angiogenic and angiostatic CXC chemokines, and radiation is a vasculogenic stimulus. We investigated the effect of radiation on endothelial cell chemokine signaling, receptor expression, and migration and apoptosis. Human umbilical vein endothelial cells were exposed to a single fraction of 0, 5, or 20 Gy of ionizing radiation (IR). All vasculogenic chemokines (CXCL1–3/5–8) increased 3–13-fold after 5 or 20 Gy IR. 20 Gy induced a marked increase (1.6–4-fold) in angiostatic CXC chemokines. CXCR4 expression increased 3.5 and 7-fold at 48 h after 5 and 20 Gy, respectively. Bone marrow progenitor cell chemotaxis was augmented by conditioned media from cells treated with 5 Gy IR. Whereas 5 Gy markedly decreased intrinsic cell apoptosis (0 Gy = 16% ± 3.6 vs. 5 Gy = 4.5% ± 0.3), 20 Gy increased it (21.4% ± 1.2); a reflection of pro-survival angiogenic chemokine expression. Radiation induces a dose-dependent increase in pro-angiogenic CXC chemokines and CXCR4. In contrast, angiostatic chemokines and apoptosis were induced at higher (20 Gy) radiation doses. Cell migration improved significantly following 5 Gy, but not 20 Gy IR. Collectively, these data suggest that lower doses of IR induce an angiogenic cascade while higher doses produce an angiostatic profile.  相似文献   

10.
AimThe aim of this study was to characterize the radiation contamination inside and outside the megavoltage radiotherapy room.BackgroundRadiation contamination components in the 18 MV linac room are the secondary neutron, prompt gamma ray, electron and linac leakage radiation.Materials and MethodsAn 18 MV linac modeled in a typical bunker employing the MCNPX code of Monte Carlo. For fast calculation, phase-space distribution (PSD) file modeling was applied and the calculations were conducted for the radiation contamination components dose and spectra at 6 locations inside and outside the bunker.ResultsThe results showed that the difference of measured and calculated percent depth-dose (PDD) and photo beam-profile (PBP) datasets were lower than acceptable values. At isocenter, the obtained photon dose and neutron fluence were 2.4 × 10−14 Gy/initial e° and 2.22 × 10-8 n°/cm2, respectively. Then, neutron apparent source strength (QN) value was found as 1.34 × 1012 n°/Gy X at isocenter and the model verified to photon and neutron calculations. A surface at 2 cm below the flattening filter was modeled as phase-space (PS) file for PDD and PBP calculations. Then by use of a spherical cell in the center of the linac target as a PS surface, contaminant radiations dose, fluence and spectra were estimated at 6 locations in a considerably short time, using the registered history of all particles and photons in the 13GB PSD file as primary source in the second step.ConclusionDesigning the PSD file in MC modeling helps user to solve the problems with complex geometry and physics precisely in a shorter run-time.  相似文献   

11.
PurposeTo investigate the degree of 18 and 22 MeV electron beam dose perturbations caused by unilateral hip titanium (Ti) prosthesis.MethodsMeasurements were acquired using Gafchromic EBT2 film in a novel pelvic phantom made out of Nylon-12 slices in which a Ti-prosthesis is embedded. Dose perturbations were measured and compared using depth doses for 8 × 8, 10 × 10 and 11 × 11 cm2 applicator-defined field sizes at 95 cm source-surface-distance (SSD). Comparisons were also made between film data at 100 cm SSD for a 10 × 10 cm2 field and dose calculations made on CMS XiO treatment planning system utilizing the pencil beam algorithm. The extent of dose deviations caused by the Ti prosthesis based on film data was quantified through the dose enhancement factor (DEF), defined as the ratio of the dose influenced by the prosthesis and the unchanged beam.ResultsAt the interface between Nylon-12 and the Ti implant on the prosthesis entrance side, the dose increased to values of 21 ± 1% and 23 ± 1% for 18 and 22 MeV electron beams, respectively. DEFs increased with increasing electron energy and field size, and were found to fall off quickly with distance from the nylon-prosthesis interface. A comparison of film and XiO depth dose data for 18 and 22 MeV gave relative errors of 20% and 25%, respectively.ConclusionThis study outlines the lack of accuracy of the XiO TPS for electron planning in highly heterogeneous media. So a dosimetric error of 20–25% could influence clinical outcome.  相似文献   

12.
PurposeThe quality assurance (QA) procedures in particle therapy centers with active beam scanning make extensive use of films, which do not provide immediate results. The purpose of this work is to verify whether the 2D MatriXX detector by IBA Dosimetry has enough sensitivity to replace films in some of the measurements.MethodsMatriXX is a commercial detector composed of 32 × 32 parallel plate ionization chambers designed for pre-treatment dose verification in conventional radiation therapy. The detector and GAFCHROMIC® films were exposed simultaneously to a 131.44 MeV proton and a 221.45 MeV/u carbon-ion therapeutic beam at the CNAO therapy center of Pavia – Italy, and the results were analyzed and compared.ResultsThe sensitivity MatriXX on the beam position, beam width and field flatness was investigated. For the first two quantities, a method for correcting systematic uncertainties, dependent on the beam size, was developed allowing to achieve a position resolution equal to 230 μm for carbon ions and less than 100 μm for protons. The beam size and the field flatness measured using MatriXX were compared with the same quantities measured with the irradiated film, showing a good agreement.ConclusionsThe results indicate that a 2D detector such as MatriXX can be used to measure several parameters of a scanned ion beam quickly and precisely and suggest that the QA would benefit from a new protocol where the MatriXX detector is added to the existing systems.  相似文献   

13.
PurposeTo evaluate the respiratory motion of adrenal gland metastases in three-dimensional directions using four-dimensional computed tomography (4DCT) images.MethodsFrom January 2013 to May 2016, 12 patients with adrenal gland metastases were included in this study. They all underwent 4DCT scans to assess respiratory motion of adrenal gland metastases in free breathing state. The 4DCT images were sorted into 10 image series according to the respiratory phase from the end inspiration to the end expiration, and then transferred to FocalSim workstation. All gross tumor volumes (GTVs) of adrenal gland metastases were drawn by a single physician and confirmed by a second. Relative coordinates of adrenal gland metastases were automatically generated to calculate adrenal gland metastases motion in different axial directions.ResultsThe average respiratory motion of adrenal gland metastases in left-right (LR), cranial-caudal (CC), anterior-posterior (AP), 3-dimensional (3D) vector directions was 3.4 ± 2.2 mm, 9.5 ± 5.5 mm, 3.8 ± 2.0 mm and 11.3 ± 5.3 mm, respectively. The ratios were 58.6% ± 11.4% and 63.2% ± 12.5% when the volumes of GTVIn0% and GTV In100% were compared with volume of IGTV10phase. The volume ratio of IGTV10phase to GTV3D was 1.73 ± 0.48.ConclusionsAdrenal gland metastasis is a respiration-induced moving target, and an internal target volume boundary should be provided when designing the treatment plan. The CC motion of adrenal gland metastasis is predominant and >5 mm, thus motion management strategies are recommended for patients undergoing external radiotherapy for adrenal gland metastasis.  相似文献   

14.
PurposeThis treatment planning study was conducted to determine whether spot scanning proton beam therapy (SSPT) reduces the risk of grade ⩾3 hematologic toxicity (HT3+) compared with intensity modulated radiation therapy (IMRT) for postoperative whole pelvic radiation therapy (WPRT).Methods and materialsThe normal tissue complication probability (NTCP) of the risk of HT3+ was used as an in silico surrogate marker in this analysis. IMRT and SSPT plans were created for 13 gynecologic malignancy patients who had received hysterectomies. The IMRT plans were generated using the 7-fields step and shoot technique. The SSPT plans were generated using anterior-posterior field with single field optimization. Using the relative biological effectives (RBE) value of 1.0 for IMRT and 1.1 for SSPT, the prescribed dose was 45 Gy(RBE) in 1.8 Gy(RBE) per fractions for 95% of the planning target volume (PTV). The homogeneity index (HI) and the conformity index (CI) of the PTV were also compared.ResultsThe bone marrow (BM) and femoral head doses using SSPT were significantly lower than with IMRT. The NTCP modeling analysis showed that the risk of HT3+ using SSPT was significantly lower than with IMRT (NTCP = 0.04 ± 0.01 and 0.19 ± 0.03, p = 0.0002, respectively). There were no significant differences in the CI and HI of the PTV between IMRT and SSPT (CI = 0.97 ± 0.01 and 0.96 ± 0.02, p = 0.3177, and HI = 1.24 ± 0.11 and 1.27 ± 0.05, p = 0.8473, respectively).ConclusionThe SSPT achieves significant reductions in the dose to BM without compromising target coverage, compared with IMRT. The NTCP value for HT3+ in SSPT was significantly lower than in IMRT.  相似文献   

15.
PurposeThe aim of this work was the commissioning of delivery procedures for the treatment of moving targets in scanning pencil beam hadrontherapy.MethodsEBT3 films fixed to the Anzai Respiratory Phantom were exposed to carbon ion scanned homogeneous fields (E = 332 MeV/u). To evaluate the interplay effect, field size and flatness for 3 different scenarios were compared to static condition: gated irradiation or repainting alone and combination of both. Respiratory signal was provided by Anzai pressure sensor or optical tracking system (OTS). End-exhale phase and 1 s gating window were chosen (2.5 mm residual motion). Dose measurements were performed using a PinPoint ionization chamber inserted into the Brainlab ET Gating Phantom. A sub-set of tests was also performed using proton beams.ResultsThe combination of gating technique and repainting (N = 5) showed excellent results (6.1% vs 4.3% flatness, identical field size and dose deviation within 1.3%). Treatment delivery time was acceptable. Dose homogeneity for gated irradiation alone was poor. Both Anzai sensor and OTS appeared suitable for providing respiratory signal. Comparisons between protons and carbon ions showed that larger beam spot sizes represent more favorable condition for minimizing motion effect.ConclusionResults of measurements performed on different phantoms showed that the combination of gating and layered repainting is suitable to treat moving targets using scanning ion beams. Abdominal compression using thermoplastic masks, together with multi-field planning approach and multi-fractionation, have also been assessed as additional strategies to mitigate the effect of patient respiration in the clinical practice.  相似文献   

16.
BackgroundHigh-energy photon and electron therapeutic beams generated in medical linear accelerators can cause the electronuclear and photonuclear reactions in which neutrons with a broad energy spectrum are produced. A low-energy component of this neutron radiation induces simple capture reactions from which various radioisotopes originate and in which the radioactivity of a linac head and various objects in the treatment room appear.AimThe aim of this paper is to present the results of the thermal/resonance neutron fluence measurements during therapeutic beam emission and exemplary spectra of gamma radiation emitted by medical linac components activated in neutron reactions for four X-ray beams and for four electron beams generated by various manufacturers’ accelerators installed in typical concrete bunkers in Polish oncological centers.Materials and methodsThe measurements of neutron fluence were performed with the use of the induced activity method, whereas the spectra of gamma radiation from decays of the resulting radioisotopes were measured by means of a portable high-purity germanium detector set for field spectroscopy.ResultsThe fluence of thermal neutrons as well as resonance neutrons connected with the emission of a 20 MV X-ray beam is ~106 neutrons/cm2 per 1 Gy of a dose in water at a reference depth. It is about one order of magnitude greater than that for the 15 MV X-ray beams and about two orders of magnitude greater than for the 18–22 MeV electron beams regardless of the type of an accelerator.ConclusionThe thermal as well as resonance neutron fluence depends strongly on the type and the nominal potential of a therapeutic beam. It is greater for X-ray beams than for electrons. The accelerator accessories and other large objects should not be stored in a treatment room during high-energy therapeutic beam emission to avoid their activation caused by thermal and resonance neutrons. Half-lives of the radioisotopes originating from the simple capture reaction (n,γ) (from minutes to hours) are long enough to accumulate radioactivity of components of the accelerator head. The radiation emitted by induced radioisotopes causes the additional doses to staff operating the accelerators.  相似文献   

17.
AimWe conducted a study to validate the MDASI-HN based nomogram, which is used to predict the acute toxicities in head and neck cancer patients undergoing radiation therapy with or without chemotherapy.BackgroundTolerance to radiation varies from patient to patient and also depends on various other factors like tumor volume, dose of radiation, chemotherapy. Predicting the toxicities allow us to identify potential candidates who are likely to have a higher toxicity and, in addition, evaluates the nomogram when done on an independent group of patients.Materials and MethodsSixty biopsy confirmed head and neck cancer patients undergoing radiation were the subjects of the study. The patients completed patient reported outcome instrument (PRO) MDASI-HN questionnaire at the beginning and at the fifth week of radiation. The baseline score obtained was used to obtain the predicted score using nomogram. The nomogram was also externally validated as per the TRIPOD guidelines.ResultsThe mean baseline, predicted and score at the fifth week were 27.28 ± 11.04, 73.33 ± 15.51 and 82.62 ± 17.67, respectively, for all sub-sites. A positive, significant correlation (p < 0.01) between the predicted score and the score at the fifth week was seen across all sub sites such as Oral cavity (p = 0.05), Oropharynx (p = 0.02), Hypo pharynx (p = 0.02) and Larynx (p = 0.02).ConclusionThe MDASI-HN questionnaire based nomogram is simple, easily doable and takes into consideration the initial symptoms as well the treatment details; thereby, it is able to predict the toxicities accurately.  相似文献   

18.
PurposeTo measure the environmental doses from stray neutrons in the vicinity of a solid slab phantom as a function of beam energy, field size and modulation width, using the proton pencil beam scanning (PBS) technique.MethodMeasurements were carried out using two extended range WENDI-II rem-counters and three tissue equivalent proportional counters. Detectors were suitably placed at different distances around the RW3 slab phantom. Beam irradiation parameters were varied to cover the clinical ranges of proton beam energies (100–220 MeV), field sizes ((2 × 2)–(20 × 20) cm2) and modulation widths (0–15 cm).ResultsFor pristine proton peak irradiations, large variations of neutron H1(10)/D were observed with changes in beam energy and field size, while these were less dependent on modulation widths. H1(10)/D for pristine proton pencil beams varied between 0.04 μSv Gy−1 at beam energy 100 MeV and a (2 × 2) cm2 field at 2.25 m distance and 90° angle with respect to the beam axis, and 72.3 μSv Gy−1 at beam energy 200 MeV and a (20 × 20) cm2 field at 1 m distance along the beam axis.ConclusionsThe obtained results will be useful in benchmarking Monte Carlo calculations of proton radiotherapy in PBS mode and in estimating the exposure to stray radiation of the patient. Such estimates may be facilitated by the obtained best-fitted simple analytical formulae relating the stray neutron doses at points of interest with beam irradiation parameters.  相似文献   

19.
PurposeDosimetry of fast, epithermal and thermal photoneutrons in 6 MV X-ray beams of two medical accelerators were studied by novel dosimetry methods.MethodsA Siemens ONCOR and an Elekta COMPACT medical accelerators were used. Fast, epithermal and thermal photoneutron dose equivalents in 10 cm × 10 cm 6 MV X-rays fields were determined in air and on surface of a polyethylene phantom in X and Y directions. Polycarbonate dosimeters as bare or with enriched 10B convertors (with or without cadmium covers) were used applying a 50 Hz-HV electrochemical etching method.ResultsFast, epithermal and thermal photoneutron dose equivalents were efficiently determined respectively as ∼1145.8, ∼45.3 and ∼170.6 μSv in air and ∼1888.5, ∼96.1 and ∼640.6 μSv on phantom per 100 Gy X-rays at the isocenter of Siemens ONCOR accelerator in air. The dose equivalent is maximum at the isocenter which decreases as distance from it increases reaching a constant level. Tissue-to-air ratios are constants up to 15 cm from the isocenter. No photoneutrons was detected in the Elekta COMPACT accelerator.ConclusionsFast, epithermal and thermal photoneutron dosimetry of 6 MV X-rays were made by novel dosimetry methods in a Siemens ONCOR accelerator with sum dose equivalent per Gy of ∼0.0014% μSv with ∼0.21 MeV mean energy at the isocenter; i.e. ∼150 times smaller than that of 18 MV X-rays. This observation assures clinical safety of 6 MV X-rays in particular in single-mode machines like Elekta COMPACT producing no photoneutrons due to no “beryllium exit window” in the head structure.  相似文献   

20.
PurposeTo demonstrate the accuracy of an unsupervised (fully automated) software for fat segmentation in magnetic resonance imaging. The proposed software is a freeware solution developed in ImageJ that enables the quantification of metabolically different adipose tissues in large cohort studies.MethodsThe lumbar part of the abdomen (19 cm in craniocaudal direction, centered in L3) of eleven healthy volunteers (age range: 21–46 years, BMI range: 21.7–31.6 kg/m2) was examined in a breath hold on expiration with a GE T1 Dixon sequence. Single-slice and volumetric data were considered for each subject. The results of the visceral and subcutaneous adipose tissue assessments obtained by the unsupervised software were compared to supervised segmentations of reference. The associated statistical analysis included Pearson correlations, Bland-Altman plots and volumetric differences (VD%).ResultsValues calculated by the unsupervised software significantly correlated with corresponding supervised segmentations of reference for both subcutaneous adipose tissue – SAT (R = 0.9996, p < 0.001) and visceral adipose tissue – VAT (R = 0.995, p < 0.001). Bland-Altman plots showed the absence of systematic errors and a limited spread of the differences. In the single-slice analysis, VD% were (1.6 ± 2.9)% for SAT and (4.9 ± 6.9)% for VAT. In the volumetric analysis, VD% were (1.3 ± 0.9)% for SAT and (2.9 ± 2.7)% for VAT.ConclusionsThe developed software is capable of segmenting the metabolically different adipose tissues with a high degree of accuracy. This free add-on software for ImageJ can easily have a widespread and enable large-scale population studies regarding the adipose tissue and its related diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号