首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Mango sap (latex), a by-product in mango industry, was separated into upper non-aqueous phase and lower aqueous phase. Aqueous phase contains very low protein (4.3 mg/ml) but contains high specific activities for peroxidase and polyphenol oxidase. The aqueous phase of sap was subjected to ion-exchange chromatography on DEAE-Sephacel. The bound protein was separated into three enzyme peaks: peak I showed peroxidase activity, peak II showed polyphenol oxidase activity and peak III showed activities against substrates of peroxidase as well as polyphenol oxidase. On native PAGE and SDS-PAGE, each peak showed a single band. Based on the substrate specificity and inhibitor studies peak III was identified as laccase. Although they showed variations in their mobility on native PAGE, these enzymes showed similar molecular weight of 100,000 ± 5000. These enzymes exhibited maximum activity at pH 6 however, polyphenol oxidase showed good activity even in basic pH. Peroxidase and polyphenol oxidase showed stability up to 70 °C while laccase was found to be stable up to 60 °C. Syringaldazine was the best substrate for laccase while catechol was the best for polyphenol oxidase. Thus, mango sap a by-product in mango industry is a good source of these phenol oxidases.  相似文献   

2.
In this work, a laccase producer, Ganoderma lucidum, was separated and identified according to its morphological characteristics and phylogenetic data. A 4000 U/l and 8500 U/l of laccase activity was obtained in 500 ml flask by submerged culture and biomembrane-surface liquid culture (BSLC), respectively. Furthermore, the novel biomembrane-surface liquid co-culture (BSLCc) was developed by adding Saccharomyces cerevisiae to reactor in order to shorten the fermentation period and improve laccase production. Laccase activity obtained by BSLCc, 23 000 U/l, is 5.8 and 2.7 times of that obtained by submerged culture and BSLC, respectively. In addition, laccase production by BSLCc was successfully scaled-up to 100 l reactor, and 38 000 U/l of laccase activity was obtained on day 8. The mechanism of overproducing laccase by BSLCc was investigated by metabolism pathway analysis of glucose. The results show glucose limitation in fermentation broth induces the secretion of laccase. The addition of S. cerevisiae, on one hand, leads to an earlier occurrence of glucose limitation state, and thus shortens the fermentation time; on the other hand, it also results in the appearance of a series of metabolites of the yeast including organic acids, ethanol, glycerol and so forth in fermentation broth, and both polyacrylamide gel electrophoresis analysis and enzyme activity detection of laccase show that these metabolites contribute to the improvement of laccase activity.  相似文献   

3.
《Process Biochemistry》2004,39(11):1415-1419
The white-rot fungus Pleurotus ostreatus strain 32 is an excellent producer of the industrially important enzyme laccase. Laccase was the only ligninolytic activity detected in the supernatant when the fungus was grown in liquid culture with or without shaking. Growth and laccase production in static cultivation were superior to that in agitated cultivation, and N-limited culture is of benefit to laccase production. When using cellobiose and peptone as carbon and nitrogen source, a higher activity level was obtained. 2,2′-Azino-di-(3-ethylbenzothialozin-6-sulfonic acid) (ABTS) (1 mM) was shown to be the best inducer of laccase production, reaching maximum values of about 400 U/ml. Cu2+ (1 mM) also had a positive effect on laccase production, activity being enhanced to 360 U/ml. In addition, anthraquinone dye SN4R can be effectively decolorized by crude laccase (30 U/ml), the rate of which was 66%. The decolorization rate was increased by 90% with ABTS (0.16%) addition as a mediator of laccase.  相似文献   

4.
5.
《Process Biochemistry》2014,49(2):335-346
Selective purification still poses a challenge in the downstream processing of biomolecules such as proteins and especially enzymes. In this study a polyethylene glycol 3000 (PEG 3000)–phosphate aqueous two-phase system at 25 °C and pH 7 was successfully used for laccase purification and separation. Initially, the effect of phase forming components on enzyme activities in homogenous systems was studied. In the course of the extraction experiments tie lines, enzyme source, initial enzyme activities, phase ratio and sodium chloride concentrations were varied and their influence on the activity partitioning was determined. Partitioning results were validated using clear-native-PAGE and isoelectric focusing. Based on these results, the separation of laccases from Trametes versicolor and Pleurotus sapidus was investigated using the principle of superposition. Sodium chloride was used to adjust laccase partitioning in the applied aqueous two-phase system (ATPS). Finally, two modes of operation are proposed depending on the aim of the purification task. One mode with 0.133 g g−1 of PEG3000, 0.063 g g−1 of phosphate and without sodium chloride separates P. sapidus laccases from T. versicolor laccases with clearance factors of 5.23 and 6.45, respectively. The other mode of operation with 0.124 g g−1 of PEG3000, 0.063 g g−1 of phosphate and 0.013 g g−1 of sodium chloride enables a partitioning of both laccases into the bottom phase of the ATPS resulting in a purification factor of 2.74 and 96% activity recovery.  相似文献   

6.
Extracellular oxidase of the white rot fungus Panus tigrinus earlier reported as laccase)contains copper but has no absorption spectrum typical of ‘blue’ oxidases. Thioglycolate and sodium azide inhibit the activity of this enzyme at concentrations 2.5–3 orders lower than those needed for fungal laccases. The oxidase of P. tigrinus oxidizes syringaldazine, coniferyl alcohol, ABTS, syringic acid, diaminobenzidine, guaiacol, catechol and vanillylacetone with different efficiencies. Oxygen consumption and no hydrogen peroxide formation were detected during substrate oxidation by P. tigrinus oxidase. It is proposed that P. tigrinus oxidase is a new ligninolytic enzyme.  相似文献   

7.
《Process Biochemistry》2014,49(6):1020-1031
This work presents results of experimental and model investigation of continuous multi-stage enzyme extraction using aqueous two-phase systems for the first time. The aqueous two-phase system comprised polyethylene glycol 3000 and phosphate with additional sodium chloride buffered to pH 7. Two different laccases served as model enzymes. One of the laccases was directly taken from fungal culture supernatant, while the other laccase was solubilized lyophilisate. The modeling is based on an equilibrium stage approach. Equilibrium data were taken from single-stage experiments and approximated by different correlation equations. The model describes densities, phase equilibrium, enzyme activity partitioning between the phases. Moreover it allows to consider activity changes due to the aqueous two-phase system. Eight multi-stage mixer-settler experiments under varying operation conditions were performed to validate the proposed model; whereas the total throughput of all multi-stage extraction experiments was about 350 g h−1. The average relative deviation of modeled activities from experimentally measured activities was 23%. Therefore, the model is able to calculate the behavior of the phases as well as the partitioning of the two enzymes between the two phases for a multi-stage process based on single-stage data.  相似文献   

8.
《Process Biochemistry》2010,45(10):1720-1729
The white-rot fungus Pycnoporus sp. SYBC-L1 produced large amount of laccase in submerged fermentation. Two laccase isozymes (LacI and LacII) were purified using (NH4)2SO4 fractionation, DEAE-cellulose and Sephadex G-100 column chromatography. The molecular masses of LacI and Lac II were 55.89 and 63.07 kDa, respectively by SDS-PAGE. Both the laccases showed acidic pH optima and high catalytic activities at low temperature for oxidations of 2,6-dimethoxyphenol (DMP), 2,2-azino-bis-(3-ethylbenzothiazoline-6-sulfonate acid) (ABTS), syringaldazine and guaiacol. LacI and LacII were not only with high cold adaptation, but also fairly stable at high temperature. The half-lives of LacI at 50, 60 and 70 °C were 69.31, 2.58 and 0.13 h, respectively, whereas LacII was more stable with half-lives of 256.72, 21.00 and 2.06 h respectively. The best substrates for the enzymes were both found to be ABTS, in which the Km values of LacI and LacII were 0.0166 and 0.0435 mM and the catalytic efficiencies were 19640.36 and 31172.64 S−1 mM−1, respectively. EDTA and low concentration of Cu2+ and Mn2+ almost had non-inhibitions on their activities. LacII with syringaldehyde efficiently decolorized Remazol Brilliant Blue R. The high thermostabilities as well as cold adapted properties made Pycnoporus sp. SYBC-L1 laccases to be excellent candidates in harsh industry.  相似文献   

9.
Brazilian filamentous fungi Rhizopus sp. (SIS-31), Aspergillus sp. (SIS-18) and Penicillium sp. (SIS-21), sources of oxidases were isolated from Caatinga's soils and applied during the in situ cathodic oxygen reduction in fuel cells. All strains were cultivated in submerged cultures using an optimized saline medium enriched with 10 g L−1 of glucose, 3.0 g L−1 of peptone and 0.0005 g L−1 of CuSO4 as enzyme inducer. Parameters of oxidase activity, glucose consumption and microbial growth were evaluated. In-cell experiments evaluated by chronoamperometry were performed and two different electrode compositions were also compared. Maximum current densities of 125.7, 98.7 and 11.5 μA cm−2 were observed before 24 h and coulombic efficiencies of 56.5, 46.5 and 23.8% were obtained for SIS-31, SIS-21 and SIS-18, respectively. Conversely, maximum power outputs of 328.73, 288.80 and 197.77 mW m−3 were observed for SIS-18, SIS-21 and SIS-31, respectively. This work provides the primary experimental evidences that fungi isolated from the Caatinga region in Brazil can serve as efficient biocatalysts during the oxygen reduction in air-cathodes to improve electricity generation in MFCs.  相似文献   

10.
《Process Biochemistry》2010,45(4):507-513
The extracellular laccase produced by the ascomycete Trichoderma atroviride was purified and characterized and its ability to transform phenolic compounds was determined. The purified laccase had activity towards typical substrates of laccases including 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS), dimethoxyphenol (2,6-DMP), syringaldazine and hydroquinone. The enzyme was a monomeric protein with an apparent molecular mass of 80 kDa and an isoelectric point of 3.5. The pH optima for the oxidation of ABTS and 2,6-DMP were 3 and 5, respectively, and the optimum temperature was 50 °C with 2,6-DMP. The laccase was stable at slightly acidic pH (4 and 5). It retained 80% of its activity after 4 h incubation at 40 °C. Under standard assay conditions, Km values of the enzyme were 2.5 and 1.6 mM towards ABTS and 2,6-DMP, respectively. This enzyme was able to oxidize aromatic compounds present in industrial and agricultural wastewater, as catechol and o-cresol, although the transformation of chlorinated phenols required the presence of ABTS as mediator.  相似文献   

11.
This study presents a combined method to analyze extracellular fungal laccases using a new anti-laccase antibody together with the identification of tryptic laccase peptides by mass spectrometry (nanoLC–ESI–MS/MS). The polyclonal anti-laccase antibody LccCbr2 was raised against peptides designed from the copper binding region II of fungal laccases using in silico data obtained from GenBank database. As a consequence, detection requires denaturation of the enzymes due to the stable conformation of the copper binding region II. The specificity of the antibody was shown with denatured laccase Lcc1 of Coprinopsis cinerea and laccase of Hypholoma fasciculare. LccCbr2 detected amounts as low as 5 ng of highly purified laccase, indicating a possible use of the antibody for quantification of laccase proteins. Denatured extracellular laccases from culture supernatants of the basidiomycetes C. cinerea, H. fasciculare, Lentinula edodes, Mycena sp., Piriformospora indica, Pleurotus cornucopiae, Pleurotus ostreatus, Pycnoporus cinnabarinus, Trametes versicolor and furthermore the ascomycete Verpa conica were detected with apparent molecular masses between 60 and 70 kDa by LccCbr2. The identity of extracellular laccases from C. cinerea, H. fasciculare, P. ostreatus, P. cinnabarinus and T. versicolor were verified by tryptic peptides using nanoLC–ESI–MS/MS.  相似文献   

12.
Reported here are the production, purification and characterization of a laccase from the phytophathogenic fungus Sclerotinia sclerotiorum. This laccase is identified by mass spectrometry with a sequence coverage of 74.9% (458/577 AA) revealing that the protein is identical or highly homologous to a predicted oxidoreductase from this species (A7EM18 in the Uniprot database); the closest homologous protein previously isolated from a fungus is the Melanocarpus albomyces, with only 35% identity. The UV–vis spectral features of this laccase classify it as a “yellow” one. The EPR spectrum nevertheless demonstrates resemblance to blue laccases – including the type 1 center not detectable in UV–vis spectra. The presence of type 3 coppers was proven by fluorescence spectrum and by 330 nm band in UV–vis. The purified laccase has an apparent molecular mass of 70 kDa and appears as a monomer. The values of KM and kcat were determined for ABTS, 2,6-dimethoxyphenol, p-phenylenediamine and guaicol and are typical of a laccase. The optimal pH value is around 4 except for ABTS, for which activity is linearly increasing with acidity. The high laccase activity in liquid culture makes S. sclerotiorum a useful source of laccase for practical applications.  相似文献   

13.
For the first time, the investigation of Indigo carmine decolorization was done using an atypical Scytalidium thermophilum laccase. Crude and purified laccases required high temperatures and slight acidic pH to achieve maximum Indigo decolorization. Kinetic parameters (Km and kcat) of the homotrimeric laccase toward Indigo carmine were determined and laccase efficacy toward repeated dye decolorization process was studied. For the first time, 5 g l−1 as initial Indigo carmine concentration were efficiently transformed up to 50% within 6 h of incubation using 0.1 U ml−1 of laccase and without presence of any mediators. In this study, we showed that the atypical laccase transformed the indigoid dye structure, confirmed by the color changing from blue to red. This intermediate (red) was a subject to an efficient microbial consortium treatment monitored by measuring the decrease in optical density and the total organic carbon removal efficiencies. Toxicological studies via micro-toxicity test showed that the released enzymatic and adapted consortium degradation products were both non-toxic while the initial product was toxic.  相似文献   

14.
Oxidative transformation of tyrosol catalysed by Trametes trogii laccases in aqueous solution was investigated. LC–MS analysis shows that tyrosol was converted to its dimer. The enzymatic reaction was also investigated by 1H and 13C nuclear magnetic resonance, and the product formed was identified as a dimeric tetracyclic ketone. The bactericidal and fungicidal properties of tyrosol dimer were investigated using the NCCLS broth dilution and EN 1276 standard methods. High bactericidal and fungicidal effect of concentrations ranged between 1–0.5 g L−1 and 8–4 g L−1 were obtained. Dimer concentrations of 33 g L−1 and 66 g L−1 allowed reductions in viability higher than 5 log units per mL for Pseudomonas aeruginosa ATCC 15442, Escherichia coli ATCC 10536 and Enterococcus hirae ATCC 10541, Staphylococcus aureus ATCC 9144 respectively, within a contact time of 5 min under dirty conditions. The effect of this product on Tuta absoluta, a harmful pest of tomato in the world, was also evaluated. The results showed high insecticidal activity against this insect at a concentration of 16.5 g L−1. Germinability experiments on Lycopersicum esculetum were conducted in order to evaluate the potential of a laccase treatment in removing tyrosol phytotoxicity. The results showed that tyrosol dimer was nonphytotoxic. This study presents the first comprehensive results of biological characterisation of the product obtained by the action of laccase on tyrosol transformation with T. trogii laccases.  相似文献   

15.
Three extracellular oxidases were purified and characterized from a solid-state culture of the ligninolytic fungus Panus tigrinus 8/18. Oxidases 1 and 2 have physicochemical properties and substrate specificity typical for laccases but have no "blue" maximum in the absorption spectra. They seem to be forms of modified "yellow" laccase. The absorption spectrum of oxidase 4 is similar to that of oxidases 1 and 2. However, the molecular weight (35 kD) and substrate specificity (no reaction with guaiacol, catechol, syringic acid, and syringaldazine) are different.  相似文献   

16.
While applications of amine oxidases are increasing, few have been characterised and our understanding of their biological role and strategies for bacteria exploitation are limited. By altering the nitrogen source (NH4Cl, putrescine and cadaverine (diamines) and butylamine (monoamine)) and concentration, we have identified a constitutive flavin dependent oxidase (EC 1.4.3.10) within Rhodococcus opacus. The activity of this oxidase can be increased by over two orders of magnitude in the presence of aliphatic diamines. In addition, the expression of a copper dependent diamine oxidase (EC 1.4.3.22) was observed at diamine concentrations > 1 mM or when cells were grown with butylamine, which acts to inhibit the flavin oxidase. A Michaelis–Menten kinetic treatment of the flavin oxidase delivered a Michaelis constant (KM) = 190 μM and maximum rate (kcat) = 21.8 s?1 for the oxidative deamination of putrescine with a lower KM (=60 μM) and comparable kcat (=18.2 s?1) for the copper oxidase. MALDI–TOF and genomic analyses have indicated a metabolic clustering of functionally related genes. From a consideration of amine oxidase specificity and sequence homology, we propose a putrescine degradation pathway within Rhodococcus that utilises oxidases in tandem with subsequent dehydrogenase and transaminase enzymes. The implications of PUT homeostasis through the action of the two oxidases are discussed with respect to stressors, evolution and application in microbe-assisted phytoremediation or bio-augmentation.  相似文献   

17.
Screening of ascomycetes producing laccases during growth on agar medium or submerged cultivation in the presence of various natural sources of carbon and energy (grain crops and potato) was carried out. The conditions of submerged cultivation of the most active strains (Myrothecium roridum VKM F-3565, Stachybotrys cylindrospora VKM F-3049, and Ulocladium atrum VKM F-4302) were optimized for the purpose of increasing laccase activity. The pH-optima and substrate selectivity of laccases in the culture liquid of the strains in relation to ABTS and phenolic compounds (2,6-dimethoxyphenol, syringaldazine, ferulic acid, p-coumaryl alcohol, and coniferyl alcohol) were investigated. High laccase activity at neutral pH was shown for the culture liquids of M. roridum VKM F-3565 and S. cylindrospora VKM F-3049 strains that provides prospects for using laccases of these strains in various cell biotechnologies.  相似文献   

18.
A putative laccase gene was cloned from Shigella dysenteriae W202 and expressed in Escherichia coli as a soluble fusion protein with high yield. The purified product (Wlac) was characterized as the CueO-like laccase from E. coli, a monomer of molecular mass 55 kDa, with a maximum activity of 24.4 U/mg (Km = 0.086) and a pH optimum of 2.5, in a standard assay using ABTS (2,2′-azino-di(3-ethyl-benzthiazoline-6-sulfonate) as the substrate. Activity was stable at 0–25 °C but inhibited above 40 °C. Purified Wlac was completely inhibited by 200 mM EDTA and partially by 32 mM SDS, 50 mM NaN3 and 60 mM thioglycolic acid. Activity was stimulated by Cu2+; other metal ions had only slight or negative effects. Two mutated variants, WlacS and WlacD, were obtained by substituting Glu 106 with Phe 106, and adding a deletion of an α-helix domain (from Leu 351 to Gly 378). WlacS had a 2.2-fold (52.9 U/mg) and WlacD a 3.5-fold (85.1 U/mg) higher enzyme activity than the wild-type laccase and WlacD showed greater thermostability at higher temperatures. Sce VMA intein-associated fusion proteins maintained ~80% of total enzyme activity. Thus, deletion and site-directed mutagenesis of laccases are capable of promoting both enzymatic activity and thermostability.  相似文献   

19.
In the present paper, overproduction of laccase by microbe interaction was studied. When Trametes versicolor was co-cultured with Candida sp. HSD07A in submerged fermentation, laccase activity could be improved significantly and reached 10500 ± 160 U/l, 11.8 times more than that of the contrast group. Fermentation tests of the yeast indicated that it could produce amylase and cellulase, but couldn’t excrete laccase and the overproductive laccase was produced by T. versicolor; the interaction mechanism between T. versicolor and Candida sp. HSD07A was investigated and the results showed that amylase and cellulose could hydrolyze cell walls of T. versicolor; however, the degree of hydrolysis was at a very low level, could not lead to overproduction of laccase; glucose starvation state made by the yeast was the real reason why T. versicolor could overproduce laccase; moreover, this study also proved that making glucose starvation using the yeast was a novel and effective method.  相似文献   

20.
《Process Biochemistry》2014,49(12):2149-2157
The cell-bound cholesterol oxidase from the Rhodococcus sp. NCIM 2891 was purified three fold by diethylaminoethyl–sepharose chromatography. The estimated molecular mass (SDS-PAGE) and Km of the enzyme were ∼55.0 kDa and 151 μM, respectively. The purified cholesterol oxidase was immobilized on chitosan beads by glutaraldehyde cross-linking reaction and immobilization was confirmed by Fourier transform infrared spectroscopy, scanning electron microscopy and energy dispersive X-ray analysis. The optimum temperature (45 °C, 5 min) for activity of the enzyme was increased by 5 °C after immobilization. Both the free and immobilized cholesterol oxidases were found to be stable in many organic solvents except for acetone. Fe2+ and Pb2+ at 0.1 mM of each acted as inhibitors, while Ag+, Ca2+, Ni2+ and Zn2+ activated the enzyme at similar concentration. The biotransformation of cholesterol (3.75 mM) with the cholesterol oxidase immobilized beads (3.50 U) leads to ∼88% millimolar yield of cholestenone in a reaction time of 9 h at 25 °C. The immobilized enzyme retains ∼67% activity even after 12 successive batches of operation. The biotransformation method thus, shows a great promise for the production of pharmaceutically important cholestenone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号