首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
  • Recent discoveries pointed out the importance of the mutual correlation between timing of environmental stress and plant fitness. However, the internal reshaping of plant growth under daily stress sensing, and their metabolic coordination remain to be investigated. Thus, we studied the connection between time of day, growth and defence to understand how plant fitness is affected by diurnal stress inputs.
  • We examined if simulated herbivory (leaf wounding) in the morning, at midday or the evening differentially influence plant defence state vs growth in three crop species of Brassica: broccoli (Brassica oleraceae), turnip greens (B. rapa) and rapeseed (B. napus).
  • The data revealed that plant's tolerance of wounding stress is diurnally regulated in Brassica crops. Trade-offs between biomass and investment in glucosinolates (GSL) and phenolics were affected by timing of leaf stress. Negative correlations between biomass and induction of defence compounds were found for plants treeated in the morning and evening. However, the correlations were positive for midday treatment. Interestingly, we revealed a new connection between plant growth and changes in aliphatic GSLs and flavonoids in response to wounding.
  • These data suggest that metabolic stress-dependent circadian oscillations in leaf defences could be one mechanism conferring a competitive advantage to plants to anticipate daily environmental variations by synchronizing them with growth. Moreover, this work provides first insights into how secondary metabolites are linked to growth response in a timing-related manner.
  相似文献   

3.
Wild ungulates are key determinants in shaping boreal plant communities, and may also affect ecosystem function through inducing the plant defence systems of key plant species. We examined whether winter browsing by deer could increase the resistance of bilberry (Vaccinium myrtillus). We used three indicators of induced bilberry defence: reduced growth (a), reduced reproduction (b) and decreased insect herbivory (c) in focal plants. In a field experiment, using a randomised block design, we exposed half of plants twice in winter to exogenously applied methyl jasmonate (MeJA) and crossed this factor with randomly selecting browsed and unbrowsed plants. We predicted that MeJA-plants would have significant lower growth, reproduction and insect herbivory than Control plants. We also expected that Browsed plants would experience similar negative effects and that there would be an interaction between MeJa and Browsed indicating a possible additive effect. Growth, flowering and insect herbivory were significantly lower in MeJA than in Control, as expected. We did not find the same reduction for Browsed and no significant interaction between factors. The combined treatment, unexpectedly, flowered more and showed higher levels of insect herbivory than MeJA. Our study showed that defence responses of bilberry may be induced by exogenously-applied MeJA in winter. Our study could not confirm whether winter browsing by deer can induce the same defence responses.  相似文献   

4.
  • Plants have evolved diverse secondary metabolites to counteract biotic stress. Volatile organic compounds (VOCs) are released upon herbivore attack or pathogen infection. Recent studies suggest that VOCs can act as signalling molecules in plant defence and induce resistance in distant organs and neighbouring plants. However, knowledge is lacking on the function of VOCs in biotrophic fungal infection on cereal plants.
  • We analysed VOCs emitted by 13 ± 1-day-old barley plants (Hordeum vulgare L.) after mechanical wounding using passive absorbers and TD-GC/MS. We investigated the effect of pure VOC and complex VOC mixtures released from wounded plants on the barley–powdery mildew interaction by pre-exposure in a dynamic headspace connected to a powdery mildew susceptibility assay. Untargeted metabolomics and lipidomics were applied to investigate metabolic changes in sender and receiver barley plants.
  • Green leaf volatiles (GLVs) dominated the volatile profile of wounded barley plants, with (Z)-3-hexenyl acetate (Z3HAC) as the most abundant compound. Barley volatiles emitted after mechanical wounding enhanced resistance in receiver plants towards fungal infection. We found volatile-mediated modifications of the plant–pathogen interaction in a concentration-dependent manner. Pre-exposure with physiologically relevant concentrations of Z3HAC resulted in induced resistance, suggesting that this GLV is a key player in barley anti-pathogen defence.
  • The complex VOC mixture released from wounded barley and Z3HAC induced e.g. accumulation of chlorophyll, linolenic acid and linolenate-conjugated lipids, as well as defence-related secondary metabolites, such as hordatines in receiving plants. Barley VOCs hence induce a complex physiological response and disease resistance in receiver plants.
  相似文献   

5.
  • The induction of defences in response to herbivory is a key mechanism of plant resistance. While a number of studies have investigated the time course and magnitude of plant induction in response to a single event of herbivory, few have looked at the effects of recurrent herbivory. Furthermore, studies measuring the effects of the total amount and recurrence of herbivory on both direct and indirect plant defences are lacking. To address this gap, here we asked whether insect leaf herbivory induced changes in the amount and concentration of extrafloral nectar (an indirect defence) and concentration of leaf phenolic compounds (a direct defence) in wild cotton (Gossypium hirsutum).
  • We conducted a greenhouse experiment where we tested single event or recurrent herbivory effects on defence induction by applying mechanical leaf damage and caterpillar (Spodoptera frugiperda) regurgitant.
  • Single events of 25% and 50% leaf damage did not significantly influence extrafloral nectar production or concentration. Extrafloral nectar traits did, however, increase significantly relative to controls when plants were exposed to recurrent herbivory (two episodes of 25% damage). In contrast, phenolic compounds increased significantly in response to single events of  leaf damage but not to recurrent damage. In addition, we found. that local induction of extrafloral nectar production was stronger than systemic induction, whereas the reverse pattern was observed for phenolics.
  • Together, these results reveal seemingly inverse patterns of induction of direct and indirect defences in response to herbivory in wild cotton.
  相似文献   

6.
Carnivorous sundew plants catch and digest insect prey for their own nutrition. The sundew species Drosera capensis shows a pronounced leaf bending reaction upon prey capture in order to form an ‘outer stomach’. This formation is triggered by jasmonates, phytohormones typically involved in defence reactions against herbivory and wounding. Whether jasmonates still have this function in D. capensis in addition to mediating the leaf bending reaction was investigated here. Wounded, insect prey‐fed and insect‐derived oral secretion‐treated leaves of D. capensis were analysed for jasmonates (jasmonic acid, JA; jasmonic acid‐isoleucine conjugate, JA‐Ile) using LC‐MS/MS. Prey‐induced jasmonate accumulation in D. capensis leaves was persistent, and showed high levels of JA and JA‐Ile (575 and 55.7 pmol·g·FW?1, respectively), whereas wounding induced a transient increase of JA (maximum 500 pmol·g·FW?1) and only low (3.1 pmol·g·FW?1) accumulation of JA‐Ile. Herbivory, mimicked with a combined treatment of wounding plus oral secretion (W+OS) obtained from Spodoptera littoralis larvae induced both JA (4000 pmol·g·FW?1) and JA‐Ile (25 pmol·g·FW?1) accumulation, with kinetics similar to prey treatment. Only prey and W+OS, but not wounding alone or OS, induced leaf bending. The results indicate that both mechanical and chemical stimuli trigger JA and JA‐Ile synthesis. Differences in kinetics and induced jasmonate levels suggest different sensing and signalling events upon injury and insect‐dependent challenge. Thus, in Drosera, jasmonates are still part of the response to wounding. Jasmonates are also employed in insect‐induced reactions, including responses to herbivory and carnivory.  相似文献   

7.
Arbuscular mycorrhizal fungi (AMF) establish symbiotic associations with a majority of terrestrial plants to form underground common mycorrhizal networks (CMNs) that connect neighbouring plants. Because Nicotiana attenuata plants do not respond to herbivory‐elicited volatiles from neighbours, we used this ecological model system to evaluate if CMNs function in interplant transmission of herbivory‐elicited responses. A mesocosm system was designed to establish and remove CMNs linking N. attenuata plants to examine the herbivory‐elicited metabolic and hormone responses in CMNs‐connected “receiver” plants after the elicitation of “donor” plants by wounding (W) treated with Manduca sexta larval oral secretions (OS). AMF colonization increased constitutive jasmonate (JA and JA‐Ile) levels in N. attenuata roots but did not affect well‐characterized JAs‐regulated defensive metabolites in systemic leaves. Interestingly, larger JAs bursts, and higher levels of several amino acids and particular sectors of hydroxygeranyllinalool diterpene glycoside metabolism were elevated in the leaves of W + OS‐elicited “receivers” with CMN connections with “donors” that had been W + OS‐elicited 6 hr previously. Our results demonstrate that AMF colonization alone does not enhance systemic defence responses but that sectors of systemic responses in leaves can be primed by CMNs, suggesting that CMNs can transmit and even filter defence signalling among connected plants.  相似文献   

8.
9.
10.
Plant induced responses are activated by multiple biotic and abiotic stresses, and may affect the interactions between a plant and phytophagous insects. The objective of this work was to evaluate the effects of different stresses inflicted to potato plants (Solanum tuberosum) on the potato aphid (Macrosiphum euphorbiae). Abiotic wounding, biotic wounding by Leptinotarsa decemlineata and treatment with volatile methyl jasmonate (MeJA) were evaluated with regard to the orientation behaviour, the feeding behaviour and the development of the potato aphids. Dual‐choice olfactometry showed that plants treated with MeJA lost their attractiveness for the potato aphids, while both abiotic and biotic wounding did not alter the orientation of aphids. Electropenetrography revealed that the feeding behaviour of aphids was only slightly disturbed by a previous L. decemlineata wounding, while it was highly disturbed by mechanical wounding and MeJA treatment. Aphid nymph survival was reduced on mechanically wounded plants, the pre‐reproductive period was lengthened and the fecundity reduced on plants treated with MeJA. Our results bring new information about the effects of various stresses inflicted to S. tuberosum on M. euphorbiae. We showed that wounding and MeJA treatment induced an antixenosis resistance in potato plants against M. euphorbiae, which may influence aphid colonization processes.  相似文献   

11.
Plants can defend themselves indirectly against herbivores by emitting a volatile blend upon herbivory that attracts the natural enemies of these herbivores, either predators or parasitoids. Although signal transduction in plants from herbivory to induced volatile production depends on jasmonic acid (JA) and salicylic acid (SA), the pathways downstream of JA and SA are unknown. Use of Arabidopsis provides a unique possibility to study signal transduction by use of signalling mutants, which so far has not been exploited in studies on indirect plant defence. In the present study it was demonstrated that jar1‐1 and npr1‐1 mutants are not affected in caterpillar (Pieris rapae)‐induced attraction of the parasitoid Cotesia rubecula. Both JAR1 and NPR1 (also known as NIM1) are involved in signalling downstream of JA in induced defence against pathogens such as induced systemic resistance (ISR). NPR1 is also involved in signalling downstream of SA in defence against pathogens such as systemic acquired resistance (SAR). These results demonstrate that signalling downstream of JA and SA differs between induced indirect defence against herbivores and defence against pathogens such as SAR and ISR. Furthermore, it was demonstrated that herbivore‐derived elicitors are involved in induced attraction of the parasitoid Cotesia rubecula  相似文献   

12.

Background

Reactive oxygen species (ROS) are not only cytotoxic compounds leading to oxidative damage, but also signaling molecules for regulating plant responses to stress and hormones. Arabidopsis cytosolic ascorbate peroxidase 1 (APX1) is thought to be a central regulator for cellular ROS levels. However, it remains unclear whether APX1 is involved in plant tolerance to wounding and methyl jasmonate (MeJA) treatment, which are known to enhance ROS production.

Methods

We studied the effect of wounding and MeJA treatment on the levels of H2O2 and oxidative damage in the Arabidopsis wild-type plants and knockout mutants lacking APX1 (KO-APX1).

Results

The KO-APX1 plants showed high sensitivity to wounding and MeJA treatment. In the leaves of wild-type plants, H2O2 accumulated only in the vicinity of the wound, while in the leaves of the KO-APX1 plants it accumulated extensively from damaged to undamaged regions. During MeJA treatment, the levels of H2O2 were much higher in the leaves of KO-APX1 plants. Oxidative damage in the chloroplasts and nucleus was also enhanced in the leaves of KO-APX1 plants. These findings suggest that APX1 protects organelles against oxidative stress by wounding and MeJA treatment.

General significance

This is the first report demonstrating that H2O2-scavenging in the cytosol is essential for plant tolerance to wounding and MeJA treatment.  相似文献   

13.
Abstract.
  • 1 The response of different clones of sand-dune willow, Salix cordata, to herbivory by a specialist herbivore, Altica subplicata, was studied in three glasshouse experiments. Plants were caged and exposed to three herbivory treatments: no beetles, low number of beetles, and high number of beetles.
  • 2 Plants consistently had significantly higher growth rates in the absence of herbivory than under conditions of low or high herbivory (1.5–6 times higher).
  • 3 Herbivore treatment influenced mortality from drought stress; more plants from the low and high herbivory treatments (40% and 80%) died from drought stress than did control plants (0%).
  • 4 Clone genotype significantly influenced growth rates and the susceptibility of plants to drought stress. However, clones showed similar growth responses to herbivory, suggesting a lack of genetic variation in tolerance or resistance to herbivory.
  相似文献   

14.
  • Plants are part of biodiverse communities and frequently suffer from attack by multiple herbivorous insects. Plant responses to these herbivores are specific for insect feeding guilds: aphids and caterpillars induce different plant phenotypes. Moreover, plants respond differentially to single or dual herbivory, which may cascade into a chain of interactions in terms of resistance to other community members. Whether differential responses to single or dual herbivory have consequences for plant resistance to yet a third herbivore is unknown.
  • We assessed the effects of single or dual herbivory by Brevicoryne brassicae aphids and/or Plutella xylostella caterpillars on resistance of plants from three natural populations of wild cabbage to feeding by caterpillars of Mamestra brassicae. We measured plant gene expression and phytohormone concentrations to illustrate mechanisms involved in induced responses.
  • Performance of both B. brassicae and P. xylostella was reduced when feeding simultaneously with the other herbivore, compared to feeding alone. Gene expression and phytohormone concentrations in plants exposed to dual herbivory were different from those found in plants exposed to herbivory by either insect alone. Plants previously induced by both P. xylostella and B. brassicae negatively affected growth of the subsequently arriving M. brassicae. Furthermore, induced responses varied between wild cabbage populations.
  • Feeding by multiple herbivores differentially activates plant defences, which has plant‐mediated negative consequences for a subsequently arriving herbivore. Plant population‐specific responses suggest that plant populations adapt to the specific communities of insect herbivores. Our study contributes to the understanding of plant defence plasticity in response to multiple insect attacks.
  相似文献   

15.
Enhanced ultraviolet-B (UV-B) radiation may have multiple effects on both plants and animals and affect plant–herbivore interactions directly and indirectly by inducing changes in host plant quality. In this study, we examined combined effects of UV-B and herbivory on the defence of the mountain birch (Betula pubescens ssp. czerepanovii) and also the effects of enhanced UV-B radiation on a geometrid with an outbreak cycle: the autumnal moth (Epirrita autumnata). We established an experiment mimicking ozone depletion of 30% (a relevant level when simulating ozone depletion above Northern Lapland). Both arctic species responded only slightly to the enhanced level of UV-B radiation, which may indicate that these species are already adapted to a broader range of UV-B radiation. UV-B exposure slightly induced the accumulation of myricetin glycosides but had no significant effect on the contents of quercetin or kaempferol derivatives. Mountain birch seedlings responded more efficiently to herbivory wounding than to enhanced UV-B exposure. Herbivory induced the activities of foliar oxidases that had earlier been shown to impair both feeding and growth of moth larvae. In contrast, the contents of foliar phenolics did not show the same response in different clones, except for a decrease in the contents of tannin precursors. The induction of foliar phenoloxidase activities is a specific defence response of mountain birches against insect herbivory. To conclude, our results do not support the hypothesis that the outbreak cycle of the autumnal moth can be explained by the cycles of solar activity and UV-B.  相似文献   

16.
  • 1 The induced resistance of the subarctic mountain birch Betula pubescens ssp. czerepanovii is a well‐characterized phenomenon, whereas the induced responses of Betula nana L., one of the parental species of mountain birch, have not yet been characterized. Betula nana is more resistant to several classes of insectivorous herbivores than the mountain birch, although the mechanisms responsible for the better ability to resist herbivores are not known.
  • 2 The present study aimed to determine the metabolic changes that are induced by early season herbivory in B. nana leaves and to study the effects of rapidly induced resistance on the growth of Epirrita autumnata larvae.
  • 3 Defoliation of B. nana was accomplished by E. autumnata larvae and leaf samples for chemical analyses were collected when the defoliating larvae were at their third and fifth instar. At the same time, laboratory assays for the growth and consumption rates of E. autumnata larvae were conducted.
  • 4 The wounding of leaves by E. autumna larvae induced the production of ellagitannins (ETs) in B. nana. Intriguingly, the concentrations of protein‐bound amino acids were also induced by herbivory; however, an increase in proteins was not mirrored in the growth rate of larvae, which was less on the induced foliage. The decreased growth rate of larvae was apparently linked to the increased concentrations of oxidatively‐active ETs and the high concentration of ETs may explain the better resistance of this parental species compared with the hybrid mountain birch with its lower levels of ETs.
  相似文献   

17.
Methyl jasmonate (MeJA) is an important plant regulator that involves in plant development and regulates the expression of plant defense genes in response to various stresses such as wounding, drought, and pathogens. In order to determine the physiological role of endogenous MeJA in plants, a NTR1 from Brassica campestris encoding a jasmonic acid carboxyl methyltransferase that produces methyl jasmonate was constructed under the control of CaMV 35S promoter and transformed into soybean [Glycine max (L) Merrill]. The transgenic soybean plants constitutively expressed the NTR1 and accumulated more MeJA levels than wild type plants. Overexpression of the gene in transgenic soybean conferred tolerance to dehydration during seed germination and seedling growth as reflected by the percentage of the fresh weight of seedlings. In addition, the transgenic soybean plants also conferred better capacity to retain water than wild type plants when drought tolerance was tested using detached leaves.  相似文献   

18.
Optimal defence theory (ODT) predicts that, whereas high risk of herbivory should select for high constitutive levels of defence, induced defences should be more advantageous in environments with a low probability of herbivory. In the present field study, conducted on the AztecaCecropia ant–plant system in a Neotropical rainforest, we evaluated whether the constitutive and induced ant defence of leaves are directly and inversely related to an estimate of herbivory risk, respectively. To assess the constitutive level of Azteca defence in Cecropia obtusifolia trees, we recorded the number of ants patrolling undamaged leaves. To evaluate the induced level of Azteca defence, the same leaves were subjected to simulated herbivory by punching circular holes in them. We recorded the maximum number of ants patrolling the damaged leaves from 2 to 15 min after damage. Past herbivory (% defoliation of old leaves) was assumed to indicate a risk of herbivory. Regression analyses showed that, whereas the constitutive level of ant patrolling was positively associated with the magnitude of herbivory on old leaves, there was a negative association between the magnitude of induced ant defence and past herbivory. These preliminary results lend support to ODT.  相似文献   

19.
The functional significance of herbivore-induced plant traits known to directly or indirectly influence herbivore performance remains largely untested under field conditions due to the difficulty of uncoupling the response to herbivory from the act of herbivory. The signals that activate many of the induced responses in plants are endogenously produced in response to wounding, unlike many of the predator-induced responses found in aquatic invertebrates (which are activated by exogenous cues derived from predators). Jasmonates, endogenously-produced damage signals, activate diverse wound-induced responses in plants including induced nicotine production in Nicotiana sylvestris. The results presented here are from two experiments which illustrate the use of jasmonates to uncouple induced nicotine production in Nicotiana attenuata (Torrey ex. Watson) from wounding. The exogenous addition of methyl jasmonate (MJ) in small quantities (11 g for a 1.4 g dry mass plant) to roots of hydroponically-grown plants induces de novo nicotine synthesis and increases whole-plant nicotine concentrations just as wounding does. The MJ-induced changes were proportional to the quantity of MJ given. Moreover, the effects of MJ were additive to the effects of damage. Applications of MJ to shoots were less effective. Root treatments also worked with plants growing in a field plot. The application of MJ represents a promising tool for examining the functional significance of induced nicotine responses in plants growing in their native environments.  相似文献   

20.
Plants can detect cues associated with the risk of future herbivory and modify defence phenotypes accordingly; however, our current understanding is limited both with respect to the range of early warning cues to which plants respond and the nature of the responses. Here we report that exposure to volatile emissions from plant tissues infested with herbivore eggs promotes stronger defence responses to subsequent herbivory in two Brassica species. Furthermore, exposure to these volatile cues elicited an apparent shift from growth to reproduction in Brassica nigra, with exposed plants exhibiting increased flower and seed production, but reduced leaf production, relative to unexposed controls. Our results thus document plant defence priming in response to a novel environmental cue, oviposition‐induced plant volatiles, while also showing that plant responses to early warning cues can include changes in both defence and life‐history traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号