首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The photosynthetic apparatus of Rhodopseudomonas palustris contains, in addition to reaction center bacteriochlorophyll (Bchl) two spectral forms of light harvesting (LH) Bchl, i.e. LH Bchl I, characterized by an infrared absorption maximum at 880 nm (890 nm at 77°K) and LH Bchl II absorbing at 805 and 855 nm (805 and 870 nm at 77°K). LH Bchl I seems to be associated with a single protein species of an apparent mol. wt. of 13000 whereas LH Bchl II is apparently associated with two proteins of mol. wts. of 9000 and 11000.Cells in anaerobic cultures adapt to changes of light intensity 1. by variation of the size of the photosynthetic unit, i.e. the molar ratio of LH Bchl II to reaction center Bchl, 2. by variation of the number of photosynthetic units per unit of membrane area, 3. by regulation of the size of the intracytoplasmic membrane system.During adaptation of changes of oxygen partial pressure cells are able to synthesize reaction center Bchl, LH Bchl and intracytoplasmic membranes at different rates. The synthesis of reaction center Bchl and LH Bchl I are, however, coordinated with each other, while the syntheses of LH Bchl II and reaction center Bchl proceed independently.List of Non-Standard Abbreviations Bchl bacteriochlorophyll - ICM mitracytoplasmic membrane - LDAO lauryldimethyl aminoxide - R Rhodopseudomonas - RC reaction center - SDS sodium dodecylsulfate  相似文献   

2.
In vivo states and functions of carotenoids in the membranes and the isolated RC-B865 pigment-protein complexes from an aerobic photosynthetic bacterium, Erythrobacter longus, are investigated by means of fluorescence excitation and resonance Raman (RR) spectra. Erythroxanthin sulfate, a dominant carotenoid species in the membranes (>70%), is found not to transfer the absorbed light energy to bacteriochlorophyll (Bchl), and its RR spectra are similar between the in vivo and in vitro states. These observations indicate that erythroxanthin sulfate does not interact with either Bchl or proteins in the membranes, and suggest that its function may be limited to photoprotection by quenching the harmful singlet oxygen. On the other hand, two other carotenoid species contained in the isolated RC-B865 complexes, zeaxanthin and bacteriorubixanthinal, have a high efficiency of energy transfer to Bchl (88±5%). The RR spectra of these two carotenoids, each of which can be selectively obtained by choosing the excitation wavelength, show some characteristics of interactions with proteins or Bchl.Abbreviations Bchl bacteriochlorophyll a - FWHM full width at half maximum - PAGE polyacrylamide gel electrophoresis - RC reaction center - RR resonance Raman - SDS sodium dodecyl sulfate  相似文献   

3.
In spite of previous reports, the activities of respiratory oxygen uptake by whole cells are higher with chemotrophically than with phototrophically grown cells of Rhodospirillum rubrum and Rhodospirillum tenue. The same applies to NADH dependent respiratory reactions as determined with isolated crede membrane preparations. This is largely, but not only, due to an outstandingly high increase in activity of cytochrome c-oxidase measurable upon adaptation of phototrophically grown cells to chemotrophic conditions. In R. rubrum the dependency of the total respiratory chain on the activities of different sections of this chain becomes confused by the presence of differently composed membranes (i.e. cytoplasmic and intracytoplasmic membranes) which under the experimental conditions become functionally differentiated to different extents. But in R. tenue, which does not produce intracytoplasmic membranes, respiration at low activities parallels clearly cytochrome c oxidase activities while high respiratory activities parallel the activities of NADH dehydrogenase. The data are interpreted to indicate that, in cells of facultative phototrophic bacteria, the formation of the respiratory chain, up to certain stages, depends on the formation of the terminal oxidase. At least in R. tenue this is comparable to the role of bacteriochlorophyll in the formation of the photosynthetic apparatus.Abbreviation Bchl bacteriochlorophyll  相似文献   

4.
The influence of temperature on yields of cell protein and bacteriochlorophyll as well as on the rates of growth and bacteriochlorophyll synthesis was studied with Rhodospirillum rubrum and Rhodopseudomonas sphaeroides. Under chemotrophic conditions net cell-protein production increased in cultures of both species along with temperature from 14°C up to the optimum at 33°C. Under phototrophic conditions cell-protein yields were largely constant within the range from 21°C to 33°C. At temperatures below 21°C and above 33°C yields decreased. These results are interpreted in terms of coupling between energy yielding or redox equivalent providing metabolisms and cell biosynthesis. Upon adaptation from chemotrophic to phototrophic conditions a direct relationship between temperature increase and bacteriochlorophyll level was observed. Arrhenius plots of both, specific growth rates and rates of bacteriochlorophyll synthesis, revealed discontinuities at about 20°C. Temperature coefficients either above or below those discontinuities were similar in both species. In R. rubrum temperature coefficients of the synthesis of total bacteriochlorophyll were also representative of the synthesis of photochemical reaction center and light harvesting bacteriochlorophylls. But in R. sphaeroides significant differences were observed between temperature coefficients of the syntheses of bacteriochlorophylls of the costantly composed reaction centerlight harvesting complex on one hand and of both, total and the quantitatively variable light harvesting bacteriochlorophylls on the other. The results are interpreted in light of hypotheses on the regulation (a) of cellular bacteriochlorophyll levels as well as (b) of the ratio of functionally different bacteriochlorophylls in the photosynthetic apparatus.Abbreviation Bchl bacteriochlorophyll  相似文献   

5.
Bacteriochlorophyll(Bchl)-protein complexes were isolated from a strictly aerobic and facultative methylotrophic bacterium Pseudomonas radiora strain MD-1. They were identified as the reaction center (RC)-B870 and the B870 complexes on the basis of their absorption spectra, light induced spectral changes and polypeptide compositions. The RC-B870 complex of this bacterium showed similar properties to those of typical purple photosynthetic bacteria, and contained c-type cytochrome which was oxidized upon illumination.Abbreviations Bchl bacteriochlorophyll - RC reaction center - SDS sodium dodecylsulfate - PAGE polyacrylamide gel electrophoresis  相似文献   

6.
The effects of transfer from low to high ligh intensity on membrane bound electrontransport reactions of Rhodospirillum rubrum were investigated. The experiments were performed with cultures which did not form bacteriochlorophyll (Bchl) for about two cell mass doublings during the initial phase of adaptation to high light intensity. Lack of Bchl synthesis causes a decrease of Bchl contents of cells and membranes. Also, the cellular amounts of photosynthetically active intracytoplasmic membranes decrease.In crude membrane fractions containing both cytoplasmic and intracytoplasmic membranes the initial activities of NADH oxidizing reactions increase only slightly (about 1.2 times) per protein, but the initial activities of succinate oxidizing reactions decrease (multiplied by a factor of 0.7). On a Bchl basis activities of NADH oxidizing reactions increase 3.4 times while activities of succinate dependent reactions increase 1.9 times. With isolated intracytoplasmic membranes activities of NADH as well as succinate dependent reactions increase to a comparable extent on a Bchl basis (about 1.8 times) and stay nearly constant on a protein basis. Cytochrome c oxidase responds like succinate dependent reactions. The data indicate that in cells growing under the conditions applied NADH oxidizing electron transport systems are incorporated into both, cytoplasmic and intracytoplasmic membranes, while incorporation of succinate oxidizing systems is confined to intracytoplasmic membranes only.Activities of photophosphorylation and succinate dependent NAD+ reduction in the light increase per Bchl about 1.8 times. On a Bchl basis increases of the fast light induced on reactions at 422 nm and increases of soluble cytochrome c 2 levels are comparable to increases of photophosphorylations and succinate dependent activities. But increases of slow light off reactions at 428 nm and of b-type cytochrome levels become three times greater then increases of cytochrome c 2 reactions and levels. These results infer that although electrontransport reactions of intracytoplasmic membranes change correlated to each other, Bchl, cytochrome c 2 and b-type cytochromes cellular levels are independent of each other. Furthermore, the data indicate that cytochrome c 2 rather than b-type cytochrome is involved with steps rate limiting for photophosphorylation.Abbreviations Bchl bacteriochlorophyll - DCIP 2,6-dichlorophenolindophenol  相似文献   

7.
Intracytoplasmic membranes of the mutant strain NK3 of Rhodopseudomonas capsulata lacking the lightharvesting complex B800-850 were fused with proteoliposomes containing the B800-850 complex. Fluorescence emission spectroscopy at 77K showed that after fusion the fluorescence of the B850 bacteriochlorophyll disappeared nearly completely and the B870 fluorescence became prominent. This result and control experiments with proteoliposome-chromatophore mixture and with chromatophore and solubilized B800-850 complexes, respectively, indicate that in fused membranes a reorientation of membrane particles took place and excitons migrated from B850 to B870 bacteriochlorophyll.In fused proteoliposome-chromatophore vesicles a light-induced carotenoid band shift was observed, reflecting the building of an electrical membrane potential due to chargeseparation. Carotenoid band shift was not observed in separated proteoliposomes and NK3 chromatophores.It is concluded that by membrane fusion and lateral diffusion of membrane particles reaction center-light-harvesting B870 complexes came in functional contact with B800-850 antenna complexes.Abbreviations Bchl bacteriochlorophyll - LDAO lauryl dimethylamine oxide - RC reaction center Dedicated to Professor R. Clinton Fuller, Amherst, MA, USA, on the occasion of his 60th birthday in recognition of his work on photosynthetic bacteria and the cooperation between our laboratories  相似文献   

8.
Zusammenfassung Rhodospirillum rubrum und Rhodopseudomonas palustris enthalten ein Bacteriochlorophyll, das mit Farnesol statt mit Phytol veretert ist. Das neue Bacteriochlorophyll (Bchl aF) läßt sich vom bekannten Bacteriochlorophyll a (Bchl aP) durch 1H-NMR-Spektroskopie unterscheiden sowie durch Dünnschichtchromatographie der entsprechenden Phäophytine an mit Silbernitrat imprägniertem Kieselgel. Die Chromophore von Bchl aF und Bchl aP sind auch bezüglich ihrer Stereochemie identisch.
A new bacteriochlorophyll from Rhodospirillum rubrum
Summary Rhodospirillum rubrum and Rhodopseudomonas palustris contain a bacteriochlorophyll which is a farnesyl rather than a phytyl ester. The new bacteriochlorophyll (Bchl aF) can be distinguished from the well known bacteriochlorophyll a (Bchl aP) by 1H-n.m.r. spectroscopy and by t.l.c. of the corresponding pheophytins on silver nitrate impregnated silica gel. The chromophores of Bchl aP and Bchl aF are identical in structure and stereochemistry.
  相似文献   

9.
Formation of the photosynthetic apparatus was induced in aerobically grown dark cultures of Rhodopseudomonas capsulata by lowering of the oxygen tension. Besides the wild type strain the carotenoid-less mutant strain A1a+ was investigated. Both strains exhibited initially a decrease of the molar ratio of total bacteriochlorophyll (Bchl) to reaction center (RC) Bchl, followed by an increase. Synthesis of RC-Bchl preceded the synthesis of light-harvesting (LH) Bchl. Activities of photophosphorylation in membrane preparations, isolated from cultures after different periods of incubation at low aeration, decreased on the basis of total Bchl from about 9 to 2 mumole ATP/mumole total Bchl-min, whereas the rate on the basis of RC-Bchl remained constant (about 500 mumole ATP/mumole RC-Bchl-min). Under the same conditions the membrane proteins were labelled with U-14C-protein hydrolysate. Corresponding to RC-Bchl the synthesis of RC-proteins dominated during the first 30 min of incubation at PO2 below 3 mm Hg. After 45-60 min of membrane formation at low aeration the synthesis of LH-complex proteins exceeded the synthesis of RC proteins. The correlations between protein and Bchl synthesis in the sequential formation of RC- and LH-complexes are discussed.  相似文献   

10.
Now is a very exciting time for researchers in the area of the primary reactions of purple bacterial photosynthesis. Detailed structural information is now available for not only the reaction center (Lancaster et al. 1995, in: Blankenship RE et al. (eds) Anoxygenic Photosynthetic Bacteria, pp 503–526), but also LH2 from Rhodopseudomonas acidophila (McDermott et al. 1995, Nature 374: 517–521) and LH1 from Rhodospirillum rubrum (Karrasch et al. 1995. EMBO J 14: 631–638). These structures can now be integrated to produce models of the complete photosynthetic unit (PSU) (Papiz et al., 1996, Trends Plant Sci, in press), which opens the door to a much more detailed understanding of the energy transfer events occurring within the PSU.Abbreviations Bchl bacteriochlorophyll - LH light-harvesting - PSU photosynthetic unit Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences  相似文献   

11.
Stark spectroscopy is a powerful technique to investigate the electrostatic interactions between pigments as well as between the pigments and the proteins in photosynthetic pigment–protein complexes. In this study, Stark spectroscopy has been used to determine two nonlinear optical parameters (polarizability change Tr(Δα) and static dipole-moment change |Δμ| upon photoexcitation) of isolated and of reconstituted LH1 complexes from the purple photosynthetic bacterium, Rhodospirillum (Rs.) rubrum. The integral LH1 complex was prepared from Rs. rubrum S1, while the reconstituted complex was assembled by addition of purified carotenoid (all-trans-spirilloxanthin) to the monomeric subunit of LH1 from Rs. rubrum S1. The reconstituted LH1 complex has its Qy absorption maximum at 878 nm. This is shifted to the blue by 3 nm in comparison to the isolated LH1 complex. The energy transfer efficiency from carotenoid to bacteriochlorophyll a (BChl a), which was determined by fluorescence excitation spectroscopy of the reconstituted LH1 complex, is increased to 40%, while the efficiency in the isolated LH1 complex is only 28%. Based on the differences in the values of Tr(Δα) and |Δμ|, between these two preparations, we can calculate the change in the electric field around the BChl a molecules in the two situations to be E Δ ≈ 3.4 × 105 [V/cm]. This change can explain the 3 nm wavelength shift of the Qy absorption band in the reconstituted LH1 complex.  相似文献   

12.
Time-correlated single photon counting was used to study energy trapping and detrapping kinetics at 295 K in Rhodobacter sphaeroides chromatophore membranes containing mutant reaction centers. The mutant reaction centers were expressed in a background strain of Rb. sphaeroides which contained only B880 antenna complexes and no B800-850 antenna complexes. The excited state decay times in the isolated reaction centers from these strains were previously shown to vary by roughly 15-fold, from 3.4 to 52 ps, due to differences in the charge separation rates in the different mutants (Allen and Williams (1995) J Bioenerg Biomembr 27: 275–283). In this study, measurements were also performed on wild type Rhodospirillum rubrum and Rb. sphaeroides B880 antenna-only mutant chromatophores for comparison. The emission kinetics in membranes containing mutant reaction centers was complex. The experimental data were analyzed in terms of a kinetic model that involved fast excitation migration between antenna complexes followed by reversible energy transfer to the reaction center and charge separation. Three emission time constants were identified by fitting the data to a sum of exponential decay components. They were assigned to trapping/quenching of antenna excitations by the reaction center, recombination of the P+H charge-separated state of the reaction center reforming an emitting state, and emission from uncoupled antenna pigment-protein complexes. The first varied from 60 to 160 ps, depending on the reaction center mutation; the second was 200–300 ps, and the third was about 700 ps. The observed weak linear dependence of the trapping time on the primary charge separation time, together with the known sub-picosecond exciton migration time within the antenna, supports the concept that it is energy transfer from the antenna to the reaction center, rather than charge separation, that limits the overall energy trapping time in wild type chromatophores. The component due to charge recombination reforming the excited state is minor in wild type membranes, but increases substantially in mutants due to the decreasing free energy gap between the states P* and P+H.Abbreviations PSU photosynthetic unit - Bchl bacteriochlorophyll - Bphe bacteriopheophytin - P reaction center primary electron donor - RC reaction center - Rb. Rhodobacter - Rs. Rhodospirillum - EDTA (ethylenediamine)tetraacetic acid - Tris tris(hydroxymethyl)aminomethane Author for correspondence  相似文献   

13.
Bacteriochlorophyll(Bchl)-protein complexes were isolated from obligate aerobic bacteria, Erythrobacter longus and Erythrobacter species OCh 114. The apparent molecular weights, absorption spectra and polypeptide compositions of the light-harvesting complexes were, in general, similar to those of the light-harvesting Bchl-protein complexes of purple photosynthetic bacteria. The reaction center complexes of these bacteria also showed similar properties to those of the purple bacteria except for slightly altered polypeptides. However, the following characteristic features of the light-harvesting systems were found in these aerobic bacteria. Major carotenoids were not bound to the Bchl-protein complex in E. longus. In Erythrobacter sp. OCh 114, a new type of Bchl-protein complex which showed a single absorption band in the near infrared region at 806 nm was obtained. The reaction center of strain OCh 114 was associated with a c-type cytochrome.Abbreviations Bchl bacteriochlorophyll a - RC reaction center - SDS sodium dodecylsulfate - PAGE polyacrylamide gel electrophoresis  相似文献   

14.
Highly purified fractions of chlorosomes and cytoplasmic membranes were isolated from Chloroflexus aurantiacus Ok-70-fl and Chlorobium limicola 6230. These fractions were comparatively analyzed for their pigmentation, phospholipid, glycolipid, and cytochrome c content as well as for their specific activities of succinate dehydrogenase and NADH-oxidase. The data showed that there are some differences in pigmentation and phospholipid content between the isolated fractions of Chloroflexus and Chlorobium. Chlorosomes of Chloroflexus contained a specific BChl a-complex with a characteristic absorption maximum at about 790 nm. This BChl a-complex could not be detected in spectra of chlorosomes from Chlorobium. The near infrared region of the spectra of the isolated cytoplasmic membranes of both organisms revealed considerable differences: The BChl a-complexes of Chloroflexus membranes exhibited peaks at 806 and 868 nm whereas the membranes of Chlorobium had a single BChl a-peak at 710 nm. In contrast to the findings with Chlorobium the chlorosomes of Chloroflexus contained at least twice as much phospholipids as did the cytoplasmic membranes. In Chlorobium the phospholipid content of cytoplasmic membranes is three times that of their chlorosomes. The distribution of all other components (carotenoid composition, enzyme activities, cytochrome c content, and glycolipids) was about the same in both strains. From the data it was concluded that differences in the organization of the photosynthetic apparatus are mainly based on differences of the organization of the photosynthetic units in the cytoplasmic membrane and probably the kind of linkage of the light harvesting system in the chlorosomes with the reaction center in the cytoplasmic membranes.Abbreviations BChl c bacteriochlorophyll c - BChl a bacteriochlorophyll a - DSM Deutsche Sammlung von Mikrorganismen  相似文献   

15.
The protein components of the reaction center (RC) and core light-harvesting (LH 1) complexes of photosynthetic bacteria have evolved to specifically, but non-covalently, bind bacteriochlorophyll (Bchl). The contribution to binding of specific structural elements in the protein and Bchl may be determined for the LH 1 complex because its subunit can be studied by reconstitution under equilibrium conditions. Important to the determination and utilization of such information is the characterization of the interacting molecular species. To aid in this characterization, a fluorescent probe molecule has been covalently attached to each of the LH 1 polypeptides. The fluorescent probes were selected for optimal absorption and emission properties in order to facilitate their unique excitation and to enable the detection of energy transfer to Bchl. Oregon Green 488 carboxylic acid and 7-diethylaminocoumarin-3-carboxylic acid seemed to fulfill these requirements. Each of these probes were utilized to derivatize the LH1 β-polypeptide of Rhodobacter sphaeroides. It was demonstrated that the β-polypeptides did not interact with each other in the absence of Bchl. When Bchl was present, the probe-labeled β-polypeptides interacted with Bchl to form subunit-type complexes much as those formed with the native polypeptides. Energy transfer from the probe to Bchl occurred with a high efficiency. The α-polypeptide from LH 1 of Rb. sphaeroides and that from Rhodospirillum rubrum were also derivatized in the same manner. Since these polypeptides do not oligomerize in the absence of a β-polypeptide, reversible binding of a single Bchl to a single polypeptide could be measured. Dissociation constants for complex formation were estimated. The relevance of these data to earlier studies of equilibria involving subunit complexes is discussed. Also involved in the photoreceptor complex of Rb. sphaeroides and Rhodobacter capsulatus is another protein referred to as PufX. Two large segments of this protein were chemically synthesized, one reproducing the amino acid sequence of the core segment predicted for Rb. sphaeroides PufX and the other reproducing the amino acid sequence predicted for the core segment of Rb. capsulatus PufX. Each polypeptide was covalently labeled with a fluorescent probe and tested for energy transfer to Bchl. Each was found to bind Bchl with an affinity similar to the affinity of the LH 1 polypeptides for Bchl. It is suggested that PufX binds Bchl and interacts with a Bchlċα-polypeptide component of LH 1 to truncate, or interupt, the LH 1 ring adjacent to the location of the QB binding site of the RC. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
A gene bank of the phototrophic bacterium Rhodopseudomonas capsulata was constructed using the binary plasmid system pRK290/pRK2013. Fragments of about 20 kb of chromosomal DNA of R. capsulata strain 37b4 were inserted into the cloning vector pRK290. The hybrid plasmids of the gene bank, maintained in Escherichia coli HB101 were transferred by conjugation to R. capsulata strains defective in the photosynthetic apparatus with frequencies of 5×10-4 to 5×10-2. Phototrophically growing transconjugants occurred with frequencies of 5×10-7 to 5×10-6. Recombination between the hybrid plasmids and the R. capsulata chromosome was shown. The hybrid plasmid pRCF1002, carrying a 25 kb insert of R. capsulata wild type DNA, was isolated from one E. coli clone of the gene bank. It reconstituted some bacteriochlorophyll- and photosynthetic negative mutants to phototrophic growth.Abbreviations Bchl Bacteriochlorophyll - RC reaction center - LH light-harvesting complex - Crt carotenoid - pho phototrophic growth - P Bchl precursor excreted, the number behind P indicates the maximum of absorption in ether (nm) - SDS sodium dodecyl sulfate - Tc tetracycline - Km kanamycin - Gm gentamicin - r resistant - kb kilo base pairs Dedicated to Hans-Günter Schlegel on occasion of his 60th birthday  相似文献   

17.
Chloroflexus aurantiacus was grown photoheterotrophically in a chemostat in order to study the influence of growth rate on the formation of bacteriochlorophyll a (Bchl a) which represents the membrane-bound photosynthetic pigment complexes, and of Bchl c which represents the light harvesting pigment-proteins of the chlorosome. Steady state cell protein levels as well as specific Bchl a contents increased linearly and specific Bchl c contents exponentially when the dilution rate, representing growth rate, was decreased. In spite of differences in the light intensities, continuous cultures growing at comparable growth rates and densities exhibited comparable specific contents of both Bchls and largely identical molar ratios of Bchl c/Bchl a. The growth rate of constantly illuminated batch cultures was varied by changing the concentration of growth-limiting nutrients. Cultures growing at higher growth rates showed higher cell densities but lower specific Bchl levels as well as lower molar ratios of Bchl c/Bchl a than cultures growing at low growth rate. Determination of the light energy flux required for half-maximal saturation of photosynthetic activity (light dependent proton extrusion) by chemostat cultures showed a dependency of that activity by the content of cellular Bchl c. In summary, the results suggest that, growth rate or a factor regulating growth rate, rather than light affected specific Bchl levels and because of the increasing molar ratio of Bchl c to Bchl a, the light harvesting capacity and photosynthetic efficiency of the photosynthetic apparatus.  相似文献   

18.
Decay of the bacteriochlorophyll excited state was measured in membranes of the purple bacteria Rhodospirillum (R.) rubrum, Rhodobacter (Rb.) sphaeroides wild type and Rb. sphaeroides mutant M21 using low intensity picosecond absorption spectroscopy. The excitation and probing pulses were chosen in the far red wing of the long wavelength absorption band, such that predominantly the minor antenna species B896 was excited. The decay of B896 was studied between 77 and 177K under conditions that the traps were active. In all species the B896 excited state decay is almost temperature independent between 100 and 177K, and probably between 100 and 300 K. In this temperature range the decay rates for the various species are very similar and close to 40 ps. Below 100 K this rate remains temperature independent in Rb. sphaeroides w. t. and M21, while in R. rubrum a steep decrease sets in. An analysis of this data with the theory of nuclear tunneling indicates an activation energy for the final transfer step from B896 to the special pair of 70cm-1 for R. rubrum and 30cm-1 or less for Rb. sphaeroides.Abbreviations B880 and B896 the main and long wavelength bacteriochlorophyll's of the LH-1 antenna - RC reaction centre - P special pair in the RC  相似文献   

19.
Excitation of photosynthetic systems with short intense flashes is known to lead to exciton-exciton annihilation processes. Here we quantify the effect of competition between annihilation and trapping for Photosystem II, Photosystem I (thylakoids from peas and membranes from the cyanobacterium Synechocystis sp.), as well as for the purple bacterium Rhodospirillum rubrum. In none of the cases it was possible to reach complete product saturation (i.e. closure of reaction centers) even with an excitation energy exceeding 10 hits per photosynthetic unit. The parameter introduced by Deprez et al. ((1990) Biochim. Biophys. Acta 1015: 295–303) describing the competition between exciton-exciton annihilation and trapping was calculated to range between 4.5 (PS II) and 6 (Rs. rubrum). The rate constants for bimolecular exciton-exciton annihilation ranged between (42 ps)-1 and (2.5 ps)-1 for PS II and PS I-membranes of Synechocystis, respectively. The data are interpreted in terms of hopping times (i.e. mean residence time of the excited state on a chromophore) according to random walk in isoenergetic antenna.Abbreviations DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - LHC II light harvesting complex II - P primary donor - PS I Photosystem I - PS II Photosystem II - PSU photosynthetic unit - RC reaction center  相似文献   

20.
Membrane preparation from the bacteriochlorophyll-containing cells of a facultative methylotroph, Protaminobacter ruber strain NR-1, contained reaction center bacteriochlorophyll similar to those in many species of purple bacteria and contained a few cytochrome species. -Peak of the reduced-minus-oxidized difference spectrum of one of the cytochromes was at 554 nm. The midpoint potential of the cytochrome at pH 7 (Em7) was 350 mV. Two other cytochromes had the same reduced-minus-oxidized difference spectra with a split -band at 557 and 566 nm, but had two different Em7s' of 130 mV and 0 mV.On flash or continuous light the reaction center bacteriochlorophyll and the cytochrome with -peak at 554 nm were reversibly oxidized. Redox titration of the light-induced cytochrome oxidation gave an Em7 value of 356 mV. Under continuous illumination the membrane preparation reversibly took up protons, and formed ATP in the presence of ADP and inorganic phosphate. The ATP formation activity on the bacteriochlorophyll basis was one-third to one-fifth that in chromatophores from Rhodospirillum rubrum under similar experimental conditions. These results clearly indicated that the membrane preparation from P. ruber which contained bacteriochlorophyll had a cyclic photosynthetic electron transfer system and coupled ATP formation activity.Abbreviations Bchl (only in figure legends) bacteriochlorophyll - CCCP carbonylcyanide-m-chlorophenylhydrazone - Eh the ambient redox potential - Em7 the midpoint potential at pH 7 - PMS N-methylphenazonium methosulfate - MES morpholinoethanesulfonic acid - MOPS morpholinopropanesulfonic acid  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号