首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 213 毫秒
1.
The microbial capacity to degrade simple organic compounds with quaternary carbon atoms was demonstrated by enrichment and isolation of five denitrifying strains on dimethylmalonate as the sole electron donor and carbon source. Quantitative growth experiments showed a complete mineralization of dimethylmalonate. According to phylogenetic analysis of the complete 16S rRNA genes, two strains isolated from activated sewage sludge were related to the genus Paracoccus within the α-Proteobacteria (98.0 and 98.2% 16S rRNA gene similarity to Paracoccus denitrificansT), and three strains isolated from freshwater ditches were affiliated with the β-Proteobacteria (97.4 and 98.3% 16S rRNA gene similarity to Herbaspirillum seropedicaeT and Acidovorax facilisT, respectively). Most-probable-number determinations for denitrifying populations in sewage sludge yielded 4.6 × 104 dimethylmalonate-utilizing cells ml−1, representing up to 0.4% of the total culturable nitrate-reducing population.  相似文献   

2.
Surface seawater in the South Pacific Gyre (SPG) is one of the cleanest oceanic environments on earth, and the photosynthetic primary production is extremely low. Despite the ecological significance of the largest aquatic desert on our planet, microbial community composition in the ultra-oligotrophic seawater remain largely unknown. In this study, we collected surface seawater along a southern transect of the SPG during the Integrated Ocean Drilling Program (IODP) Expedition 329. Samples from four distinct sites (Sites U1368, U1369, U1370 and U1371) were examined, representing ∼5400 kilometers of transect line from the gyre heart to the edge area. Real-time PCR analysis showed 16S rRNA gene abundance in the gyre seawater, ranging from 5.96×105 to 2.55×106 copies ml−1 for Bacteria and 1.17×103 to 1.90×104 copies ml−1 for Archaea. The results obtained by statistic analyses of 16S rRNA gene clone libraries revealed the community composition in the southern SPG area: diversity richness estimators in the gyre center (Sites U1368 & U1369) are generally lower than those at sites in the gyre edge (Sites U1370 & U1371) and their community structures are clearly distinguishable. Phylogenetic analysis showed the predominance of Proteobacteria (especially Alphaproteobacteria) and Cyanobacteria in bacterial 16S rRNA gene clone libraries, whereas phylotypes of Betaproteobacteria were only detected in the central gyre. Archaeal 16S rRNA genes in the clone libraries were predominated by the sequences of Marine Group II within the Euryarchaeota, and the Crenarchaeota sequences were rarely detected, which is consistent with the real-time PCR data (only 9.9 to 22.1 copies ml−1). We also performed cultivation of heterotrophic microbes onboard, resulting in 18.9% of phylogenetically distinct bacterial isolates at least at the species level. Our results suggest that the distribution and diversity of microbial communities in the SPG surface seawater are closely related to the ultra-oligotrophic oceanographic features in the Pacific Ocean.  相似文献   

3.
Chloramination is often the disinfection regimen of choice for extended drinking water systems. However, this process is prone to instability due to the growth of nitrifying bacteria. This is the first study to use alternative approaches for rapid investigation of chloraminated drinking water system instability in which flow cytometric cell sorting of bacteria with intact membranes (membrane-intact fraction) (BacLight kit) or with active esterases (esterase-active fraction) (carboxyfluorescein diacetate) was combined with 16S rRNA gene-directed PCR and denaturing gradient gel electrophoresis (DGGE). No active bacteria were detected when water left the water treatment plant (WTP), but 12 km downstream the chloramine residual had diminished and the level of active bacteria in the bulk water had increased to more than 1 × 105 bacteria ml−1. The bacterial diversity in the system was represented by six major DGGE bands for the membrane-intact fraction and 10 major DGGE bands for the esterase-active fraction. PCR targeting of the 16S rRNA gene of chemolithotrophic ammonia-oxidizing bacteria (AOB) and subsequent DGGE and DNA sequence analysis revealed the presence of an active Nitrosospira-related species and Nitrosomonas cryotolerans in the system, but no AOB were detected in the associated WTP. The abundance of active AOB was then determined by quantitative real-time PCR (qPCR) targeting the amoA gene; 3.43 × 103 active AOB ml−1 were detected in the membrane-intact fraction, and 1.40 × 104 active AOB ml−1 were detected in the esterase-active fraction. These values were several orders of magnitude greater than the 2.5 AOB ml−1 detected using a routine liquid most-probable-number assay. Culture-independent techniques described here, in combination with existing chemical indicators, should allow the water industry to obtain more comprehensive data with which to make informed decisions regarding remedial action that may be required either prior to or during an instability event.  相似文献   

4.
Cycling primed in situ amplification-fluorescent in situ hybridization (CPRINS-FISH) was developed to recognize individual genes in a single bacterial cell. In CPRINS, the amplicon was long single-stranded DNA and thus retained within the permeabilized microbial cells. FISH with a multiply labeled fluorescent probe set enabled significant reduction in nonspecific background while maintaining high fluorescence signals of target bacteria. The ampicillin resistance gene in Escherichia coli, chloramphenicol acetyltransferase gene in different gram-negative strains, and RNA polymerase sigma factor (rpoD) gene in Aeromonas spp. could be detected under identical permeabilization conditions. After concentration of environmental freshwater samples onto polycarbonate filters and subsequent coating of filters in gelatin, no decrease in bacterial cell numbers was observed with extensive permeabilization. The detection rates of bacterioplankton in river and pond water samples by CPRINS-FISH with a universal 16S rRNA gene primer and probe set ranged from 65 to 76% of total cell counts (mean, 71%). The concentrations of cells detected by CPRINS-FISH targeting of the rpoD genes of Aeromonas sobria and A. hydrophila in the water samples varied between 2.1 × 103 and 9.0 × 103 cells ml−1 and between undetectable and 5.1 × 102 cells ml−1, respectively. These results demonstrate that CPRINS-FISH provides a high sensitivity for microscopic detection of bacteria carrying a specific gene in natural aquatic samples.  相似文献   

5.
Representatives of the genus Legionella were detected by use of a real-time PCR method in all water samples collected directly after treatment from 16 surface water (SW) supplies prior to postdisinfection and from 81 groundwater (GW) supplies. Legionella concentrations ranged from 1.1 × 103 to 7.8 × 105 cells liter−1 and were significantly higher in SW treated with multiple barriers at 4°C than in GW treated at 9 to 12°C with aeration and filtration but without chemical disinfection. No Legionellae (<50 CFU liter−1) were detected in treated water by the culture method. Legionella was also observed in untreated SW and in untreated aerobic and anaerobic GW. Filtration processes in SW and GW treatment had little effect or increased the Legionella concentration, but ozonation in SW treatment caused about 1-log-unit reduction. A phylogenetic analysis of 16S rRNA gene sequences of 202 clones, obtained from a selection of samples, showed a high similarity (>91%) with Legionella sequences in the GenBank database. A total of 40 (33%) of the 16S rRNA gene sequences obtained from treated water were identified as described Legionella species and types, including L. bozemanii, L. worsleiensis, Legionella-like amoebal pathogen types, L. quateirensis, L. waltersii, and L. pneumophila. 16S rRNA gene sequences with a similarity of below 97% from described species were positioned all over the phylogenetic tree of Legionella. Hence, a large diversity of yet-uncultured Legionellae are common members of the microbial communities in SW and GW treated at water temperatures of below 15°C.  相似文献   

6.
Using quantitative PCR, the abundances of six phytoplankton viruses DNA polymerase (polB) gene fragments were estimated in water samples collected from Lake Ontario, Canada over 26 months. Four of the polB fragments were most related to marine prasinoviruses, while the other two were most closely related to cultivated chloroviruses. Two Prasinovirus-related genes reached peak abundances of >1000 copies ml−1 and were considered ‘high abundance'', whereas the other two Prasinovirus-related genes peaked at abundances <1000 copies ml−1 and were considered ‘low abundance''. Of the genes related to chloroviruses, one peaked at ca 1600 copies ml−1, whereas the other reached only ca 300 copies ml−1. Despite these differences in peak abundance, the abundances of all genes monitored were lowest during the late fall, winter and early spring; during these months the high abundance genes persisted at 100–1000 copies ml−1 while the low abundance Prasinovirus- and Chlorovirus-related genes persisted at fewer than ca 100 copies ml−1. Clone libraries of psbA genes from Lake Ontario revealed numerous Chlorella-like algae and two prasinophytes demonstrating the presence of candidate hosts for all types of viruses monitored. Our results corroborate recent metagenomic analyses that suggest that aquatic virus communities are composed of only a few abundant populations and many low abundance populations. Thus, we speculate that an ecologically important characteristic of phycodnavirus communities is seed-bank populations with members that can become numerically dominant when their host abundances reach appropriate levels.  相似文献   

7.
A competitive PCR technique was used to enumerate the proteolytic bacterium Clostridium proteoclasticum from the rumen. A PCR primer, which circumscribes this organism and several closely related strains, was designed for a variable region within their 16S rRNA genes and was used in conjunction with a universal forward primer. This primer pair was tested for specificity against 85 ruminal bacterial strains. An internal control DNA was constructed for use in competitive PCRs and was shown to amplify under the same reaction conditions and with the same amplification efficiency as the target DNA. DNA from a known number of C. proteoclasticum cells was coamplified with the internal control to construct a standard curve. Rumen samples were collected from eight dairy cows fed four diets in rotation: high nitrogen, high nitrogen supplemented with carbohydrate, low nitrogen, and low nitrogen supplemented with carbohydrate. DNA extracted from these and spiked with internal control DNA was amplified with the C. proteoclasticum primer pair. The relative intensities of the PCR products were used to quantitate the numbers of C. proteoclasticum cell equivalents from the rumen samples. The numbers ranged from 2.01 × 106 ml−1 to 3.12 × 107 ml−1. There was no significant effect on the numbers of C. proteoclasticum detected in rumen samples among cows fed the four diets. The utility of the competitive PCR approach for quantifying ruminal bacterial populations in vivo and the occurrence of C. proteoclasticum in forage-fed dairy cows are discussed.  相似文献   

8.
9.
Nitrite-dependent anaerobic methane oxidation (n-damo) is performed by “Candidatus Methylomirabilis oxyfera” (M. oxyfera), which connects the carbon and nitrogen global nutrient cycles. In the present study, M. oxyfera-like bacteria sequences were successfully recovered from Yellow River Estuary sediments using specific primers for 16S rRNA and pmoA genes. A M. oxyfera-like sequences analysis based on the 16S rRNA gene revealed greater diversity compared with the pmoA gene; the 16S rRNA gene sequences retrieved from the Yellow River Estuary sediments belong to groups A as well as B and were mainly found in freshwater habitats. Quantitative PCR showed that 16S rRNA gene abundance varied from 9.28±0.11×103 to 2.10±0.13×105 copies g-1 (dry weight), and the pmoA gene abundance ranged from 8.63±0.50×103 to 1.83±0.18×105 copies g-1 (dry weight). A correlation analysis showed that the total organic carbon (TOC) and ammonium (NH4 +) as well as the ratio of total phosphorus to total nitrogen (TP/TN) influenced the M. oxyfera-like bacteria distribution in the Yellow River Estuary sediments. These findings will aid in understanding the n-damo bacterial distribution pattern as well as their correlation with surrounding environmental factors in temperate estuarine ecosystems.  相似文献   

10.
For simultaneous identification of members of the betaproteobacterial order “Rhodocyclales” in environmental samples, a 16S rRNA gene-targeted oligonucleotide microarray (RHC-PhyloChip) consisting of 79 probes was developed. Probe design was based on phylogenetic analysis of available 16S rRNA sequences from all cultured and as yet uncultured members of the “Rhodocyclales.” The multiple nested probe set was evaluated for microarray hybridization with 16S rRNA gene PCR amplicons from 29 reference organisms. Subsequently, the RHC-PhyloChip was successfully used for cultivation-independent “Rhodocyclales” diversity analysis in activated sludge from an industrial wastewater treatment plant. The implementation of a newly designed “Rhodocyclales”-selective PCR amplification system prior to microarray hybridization greatly enhanced the sensitivity of the RHC-PhyloChip and thus enabled the detection of “Rhodocyclales” populations with relative abundances of less than 1% of all bacteria (as determined by fluorescence in situ hybridization) in the activated sludge. The presence of as yet uncultured Zoogloea-, Ferribacterium/Dechloromonas-, and Sterolibacterium-related bacteria in the industrial activated sludge, as indicated by the RHC-PhyloChip analysis, was confirmed by retrieval of their 16S rRNA gene sequences and subsequent phylogenetic analysis, demonstrating the suitability of the RHC-PhyloChip as a novel monitoring tool for environmental microbiology.  相似文献   

11.
A competitive PCR (cPCR) assay targeting 16S ribosomal DNA was developed to enumerate growth of a Dehalococcoides-like microorganism, bacterium VS, from a mixed culture catalyzing the reductive dehalogenation of cis-1,2-dichloroethene (cDCE) and vinyl chloride (VC), with hydrogen being used as an electron donor. The growth of bacterium VS was found to be coupled to the dehalogenation of VC and cDCE, suggesting unique metabolic capabilities. The average growth yield was (5.2 ± 1.5) × 108 copies of the 16S rRNA gene/μmol of Cl (number of samples, 10), with VC being used as the electron acceptor and hydrogen as the electron donor. The maximum VC utilization rate () was determined to be 7.8 × 10−10 μmol of Cl (copy−1 day−1), indicating a maximum growth rate of 0.4 day−1. These average growth yield and values agree well with values found previously for dechlorinating cultures. Decay coefficients were determined with growth (0.05 day−1) and no-growth (0.09 day−1) conditions. An important limitation of this cPCR assay was its inability to discriminate between active and inactive cells. This is an essential consideration for kinetic studies.  相似文献   

12.
Irrigation with wastewater releases pharmaceuticals, pathogenic bacteria, and resistance genes, but little is known about the accumulation of these contaminants in the environment when wastewater is applied for decades. We sampled a chronosequence of soils that were variously irrigated with wastewater from zero up to 100 years in the Mezquital Valley, Mexico, and investigated the accumulation of ciprofloxacin, enrofloxacin, sulfamethoxazole, trimethoprim, clarithromycin, carbamazepine, bezafibrate, naproxen, diclofenac, as well as the occurrence of Enterococcus spp., and sul and qnr resistance genes. Total concentrations of ciprofloxacin, sulfamethoxazole, and carbamazepine increased with irrigation duration reaching 95% of their upper limit of 1.4 µg/kg (ciprofloxacin), 4.3 µg/kg (sulfamethoxazole), and 5.4 µg/kg (carbamazepine) in soils irrigated for 19–28 years. Accumulation was soil-type-specific, with largest accumulation rates in Leptosols and no time-trend in Vertisols. Acidic pharmaceuticals (diclofenac, naproxen, bezafibrate) were not retained and thus did not accumulate in soils. We did not detect qnrA genes, but qnrS and qnrB genes were found in two of the irrigated soils. Relative concentrations of sul1 genes in irrigated soils were two orders of magnitude larger (3.15×10−3±0.22×10−3 copies/16S rDNA) than in non-irrigated soils (4.35×10−5±1.00×10−5 copies/16S rDNA), while those of sul2 exceeded the ones in non-irrigated soils still by a factor of 22 (6.61×10–4±0.59×10−4 versus 2.99×10−5±0.26×10−5 copies/16S rDNA). Absolute numbers of sul genes continued to increase with prolonging irrigation together with Enterococcus spp. 23S rDNA and total 16S rDNA contents. Increasing total concentrations of antibiotics in soil are not accompanied by increasing relative abundances of resistance genes. Nevertheless, wastewater irrigation enlarges the absolute concentration of resistance genes in soils due to a long-term increase in total microbial biomass.  相似文献   

13.
Quantitative PCR of denitrification genes encoding the nitrate, nitrite, and nitrous oxide reductases was used to study denitrifiers across a glacier foreland. Environmental samples collected at different distances from a receding glacier contained amounts of 16S rRNA target molecules ranging from 4.9 × 105 to 8.9 × 105 copies per nanogram of DNA but smaller amounts of narG, nirK, and nosZ target molecules. Thus, numbers of narG, nirK, nirS, and nosZ copies per nanogram of DNA ranged from 2.1 × 103 to 2.6 × 104, 7.4 × 102 to 1.4 × 103, 2.5 × 102 to 6.4 × 103, and 1.2 × 103 to 5.5 × 103, respectively. The densities of 16S rRNA genes per gram of soil increased with progressing soil development. The densities as well as relative abundances of different denitrification genes provide evidence that different denitrifier communities develop under primary succession: higher percentages of narG and nirS versus 16S rRNA genes were observed in the early stage of primary succession, while the percentages of nirK and nosZ genes showed no significant increase or decrease with soil age. Statistical analyses revealed that the amount of organic substances was the most important factor in the abundance of eubacteria as well as of nirK and nosZ communities, and copy numbers of these two genes were the most important drivers changing the denitrifying community along the chronosequence. This study yields an initial insight into the ecology of bacteria carrying genes for the denitrification pathway in a newly developing alpine environment.  相似文献   

14.
A highly enriched culture that reductively dechlorinates trichloroethene (TCE), cis-1,2-dichloroethene (cDCE), and vinyl chloride (VC) to ethene without methanogenesis is described. The Dehalococcoides strain in this enrichment culture had a yield of (5.6 ± 1.4) × 108 16S rRNA gene copies/μmol of Cl when grown on VC and hydrogen. Unlike the other VC-degrading cultures described in the literature, strains VS and BAV1, this culture maintained the ability to grow on TCE with a yield of (3.6 ± 1.3) × 108 16S rRNA gene copies/μmol of Cl. The yields on an electron-equivalent basis measured for the culture grown on TCE and on VC were not significantly different, indicating that both substrates supported growth equally well. PCR followed by denaturing gradient gel electrophoresis, cloning, and phylogenetic analyses revealed that this culture contained one Dehalococcoides 16S rRNA gene sequence, designated KB-1/VC, that was identical (over 1,386 bp) to the sequences of previously described organisms FL2 and CBDB1. A second Dehalococcoides sequence found in separate KB-1 enrichment cultures maintained on cDCE, TCE, and tetrachloroethene was no longer present in the VC-H2 enrichment culture. This second Dehalococcoides sequence was identical to that of BAV1. As neither FL2 nor CBDB1 can dechlorinate VC to ethene in a growth-related fashion, it is clear that current 16S rRNA gene-based analyses do not provide sufficient information to distinguish between metabolically diverse members of the Dehalococcoides group.  相似文献   

15.
16.
Microbial oxidation is the only biological sink for atmospheric methane. We assessed seasonal changes in atmospheric methane oxidation and the underlying methanotrophic communities in grassland near Giessen (Germany), along a soil moisture gradient. Soil samples were taken from the surface layer (0–10 cm) of three sites in August 2007, November 2007, February 2008 and May 2008. The sites showed seasonal differences in hydrological parameters. Net uptake rates varied seasonally between 0 and 70 μg CH4 m−2 h−1. Greatest uptake rates coincided with lowest soil moisture in spring and summer. Over all sites and seasons, the methanotrophic communities were dominated by uncultivated methanotrophs. These formed a monophyletic cluster defined by the RA14, MHP and JR1 clades, referred to as upland soil cluster alphaproteobacteria (USCα)-like group. The copy numbers of pmoA genes ranged between 3.8 × 105–1.9 × 106 copies g−1 of soil. Temperature was positively correlated with CH4 uptake rates (P<0.001), but had no effect on methanotrophic population dynamics. The soil moisture was negatively correlated with CH4 uptake rates (P<0.001), but showed a positive correlation with changes in USCα-like diversity (P<0.001) and pmoA gene abundance (P<0.05). These were greatest at low net CH4 uptake rates during winter times and coincided with an overall increase in bacterial 16S rRNA gene abundances (P<0.05). Taken together, soil moisture had a significant but opposed effect on CH4 uptake rates and methanotrophic population dynamics, the latter being increasingly stimulated by soil moisture contents >50 vol% and primarily related to members of the MHP clade.  相似文献   

17.
Microbial ferrous iron [Fe(II)] oxidation leads to the formation of iron-rich macroscopic aggregates (“iron snow”) at the redoxcline in a stratified lignite mine lake in east-central Germany. We aimed to identify the abundant Fe-oxidizing and Fe-reducing microorganisms likely to be involved in the formation and transformation of iron snow present in the redoxcline in two basins of the lake that differ in their pH values. Nucleic acid- and lipid-stained microbial cells of various morphologies detected by confocal laser scanning microscopy were homogeneously distributed in all iron snow samples. The dominant iron mineral appeared to be schwertmannite, with shorter needles in the northern than in the central basin samples. Total bacterial 16S rRNA gene copies ranged from 5.0 × 108 copies g (dry weight)−1 in the acidic central lake basin (pH 3.3) to 4.0 × 1010 copies g (dry weight)−1 in the less acidic (pH 5.9) northern basin. Total RNA-based quantitative PCR assigned up to 61% of metabolically active microbial communities to Fe-oxidizing- and Fe-reducing-related bacteria, indicating that iron metabolism was an important metabolic strategy. Molecular identification of abundant groups suggested that iron snow surfaces were formed by chemoautotrophic iron oxidizers, such as Acidimicrobium, Ferrovum, Acidithiobacillus, Thiobacillus, and Chlorobium, in the redoxcline and were rapidly colonized by heterotrophic iron reducers, such as Acidiphilium, Albidiferax-like, and Geobacter-like groups. Metaproteomics yielded 283 different proteins from northern basin iron snow samples, and protein identification provided a glimpse into some of their in situ metabolic processes, such as primary production (CO2 fixation), respiration, motility, and survival strategies.  相似文献   

18.
19.
A metagenomic approach and network analysis was used to investigate the wide-spectrum profiles of antibiotic resistance genes (ARGs) and their co-occurrence patterns in 50 samples from 10 typical environments. In total, 260 ARG subtypes belonging to 18 ARG types were detected with an abundance range of 5.4 × 10−6–2.2 × 10−1 copy of ARG per copy of 16S-rRNA gene. The trend of the total ARG abundances in environments matched well with the levels of anthropogenic impacts on these environments. From the less impacted environments to the seriously impacted environments, the total ARG abundances increased up to three orders of magnitude, that is, from 3.2 × 10−3 to 3.1 × 100 copy of ARG per copy of 16S-rRNA gene. The abundant ARGs were associated with aminoglycoside, bacitracin, β-lactam, chloramphenicol, macrolide-lincosamide-streptogramin, quinolone, sulphonamide and tetracycline, in agreement with the antibiotics extensively used in human medicine or veterinary medicine/promoters. The widespread occurrences and abundance variation trend of vancomycin resistance genes in different environments might imply the spread of vancomycin resistance genes because of the selective pressure resulting from vancomycin use. The simultaneous enrichment of 12 ARG types in adult chicken faeces suggests the coselection of multiple ARGs in this production system. Non-metric multidimensional scaling analysis revealed that samples belonging to the same environment generally possessed similar ARG compositions. Based on the co-occurrence pattern revealed by network analysis, tetM and aminoglycoside resistance protein, the hubs of the ARG network, are proposed to be indicators to quantitatively estimate the abundance of 23 other co-occurring ARG subtypes by power functions.  相似文献   

20.
Bacterial community composition, enzymatic activities, and carbon dynamics were examined during diatom blooms in four 200-liter laboratory seawater mesocosms. The objective was to determine whether the dramatic shifts in growth rates and ectoenzyme activities, which are commonly observed during the course of phytoplankton blooms and their subsequent demise, could result from shifts in bacterial community composition. Nutrient enrichment of metazoan-free seawater resulted in diatom blooms dominated by a Thalassiosira sp., which peaked 9 days after enrichment (≈24 μg of chlorophyll a liter−1). At this time bacterial abundance abruptly decreased from 2.8 × 106 to 0.75 × 106 ml−1, and an analysis of bacterial community composition, by denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rRNA gene fragments, revealed the disappearance of three dominant phylotypes. Increased viral and flagellate abundances suggested that both lysis and grazing could have played a role in the observed phylotype-specific mortality. Subsequently, new phylotypes appeared and bacterial production, abundance, and enzyme activities shifted from being predominantly associated with the <1.0-μm size fraction towards the >1.0-μm size fraction, indicating a pronounced microbial colonization of particles. Sequencing of DGGE bands suggested that the observed rapid and extensive colonization of particulate matter was mainly by specialized α-Proteobacteria- and Cytophagales-related phylotypes. These particle-associated bacteria had high growth rates as well as high cell-specific aminopeptidase, β-glucosidase, and lipase activities. Rate measurements as well as bacterial population dynamics were almost identical among the mesocosms indicating that the observed bacterial community dynamics were systematic and repeatable responses to the manipulated conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号