首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite examples of homoploid hybrid species, theoretical work describing when, where, and how we expect homoploid hybrid speciation to occur remains relatively rare. Here, I explore the probability of homoploid hybrid speciation due to “symmetrical incompatibilities” under different selective and genetic scenarios. Through simulation, I test how genetic architecture and selection acting on traits that do not themselves generate incompatibilities interact to affect the probability that hybrids evolve symmetrical incompatibilities with their parent species. Unsurprisingly, selection against admixture at “adaptive” loci that are linked to loci that generate incompatibilities tends to reduce the probability of evolving symmetrical incompatibilities. By contrast, selection that favors admixed genotypes at adaptive loci can promote the evolution of symmetrical incompatibilities. The magnitude of these outcomes is affected by the strength of selection, aspects of genetic architecture such as linkage relationships and the linear arrangement of loci along a chromosome, and the amount of hybridization following the formation of a hybrid zone. These results highlight how understanding the nature of selection, aspects of the genetics of traits affecting fitness, and the strength of reproductive isolation between hybridizing taxa can all be used to inform when we expect to observe homoploid hybrid speciation due to symmetrical incompatibilities.  相似文献   

2.
3.
Ren GP  Abbott RJ  Zhou YF  Zhang LR  Peng YL  Liu JQ 《Heredity》2012,108(5):552-562
Although homoploid hybrid speciation in plants is probably more common than previously realized, there are few well-documented cases of homoploid hybrid origin in conifers. We examined genetic divergence between two currently widespread pines in Northeast China, Pinus sylvestris var. mongolica and Pinus densiflora, and also whether two narrowly distributed pines in the same region, Pinus funebris and Pinus takahasii, might have originated from the two widespread species by homoploid hybrid speciation. Our results, based on population genetic analysis of chloroplast (cp), mitochondrial (mt) DNA, and nuclear gene sequence variation, showed that the two widespread species were divergent for both cp- and mtDNA variation, and also for haplotype variation at two of eight nuclear gene loci surveyed. Our analysis further indicated that P. sylvestris var. mongolica and P. densiflora remained allopatric during the most severe Quaternary glacial period that occurred in Northeast China, but subsequently exhibited rapid range expansions. P. funebris and P. takahasii, were found to contain a mixture of chlorotypes and nuclear haplotypes that distinguish P. sylvestris var. mongolica and P. densiflora, in support of the hypothesis that they possibly originated via homoploid hybrid speciation following secondary contact and hybridization between P. sylvestris var. mongolica and P. densiflora.  相似文献   

4.
The Hengduan Mountains Region (HMR) is a major global biodiversity hotspot. Complex tectonic and historical climatic conditions created opportunities for natural interspecific hybridization. Likewise, anthropogenic disturbance potentially raises the frequency of hybridization. Among species studies to date, the frequency of homoploid hybridization appears in the HMR. Of nine taxa in which natural hybridization has been detected, three groups are involved in homoploid hybrid speciation, and species pairs from the remaining six genera suggest that continuous gene flow occurs in hybrid zones. Reproductive isolation may greatly affect the dynamic and architecture of hybrid zones in the HMR. Asymmetrical hybridization and introgression can primarily be attributed to both prezygotic and postzygotic barriers. The frequent observation of such asymmetry may imply that reproductive barrier contributes to maintaining species boundaries in the alpine region. Ecological isolations with environmental disturbance may promote breeding barriers between parental species and hybrids. Hybrid zones may be an important phase for homoploid hybrid speciation. Hybrid zones potentially provided abundant genetic resources for the diversification of the HMR flora. The ecological and molecular mechanisms of control and mediation for natural hybridization will help biologists to understand the formation of biodiversity in the HMR. More researches from ecological and molecular aspects were required in future studies.  相似文献   

5.
The ecological genetics of homoploid hybrid speciation   总被引:1,自引:0,他引:1  
Our understanding of homoploid hybrid speciation has advanced substantially since this mechanism of species formation was codified 50 years ago. Early theory and research focused almost exclusively on the importance of chromosomal rearrangements, but it later became evident that natural selection, specifically ecological selection, might play a major role as well. In light of this recent shift, we present an evaluation of ecology's role in homoploid hybrid speciation, with an emphasis on the genetics underlying ecological components of the speciation process. We briefly review new theoretical developments related to the ecology of homoploid hybrid speciation; propose a set of explicit, testable questions that must be answered to verify the role of ecological selection in homoploid hybrid speciation; discuss published work with reference to these questions; and also report new data supporting the importance of ecological selection in the origin of the homoploid hybrid sunflower species Helianthus deserticola. Overall, theory and empirical evidence gathered to date suggest that ecological selection is a major factor promoting homoploid hybrid speciation, with the strongest evidence coming from genetic studies.  相似文献   

6.
Although homoploid hybridization is increasingly recognized as an important phenomenon in plant evolution, its evolutionary genetic mechanisms are poorly documented and understood. Pinus densata, a pine native to the Tibetan Plateau, represents a good example of a homoploid hybrid speciation facilitated by adaptation to extreme environment and ecological isolation from the parents. Its ecologically and reproductively stabilized nature offers excellent opportunity for studying genetic processes associated with hybrid speciation. In this study, we investigated the levels and patterns of nucleotide variation in P. densata and its putative parents. Haplotype composition, gene genealogies, and the levels and patterns of nucleotide variation gave further support to the hybrid nature of P. densata. Allelic history, as revealed by our data, suggests the ancient nature of the hybrid preceding elevation of the Tibetan Plateau. We detected more deviations from neutrality in P. densata than in the parental species. Thus, at least some of the evolutionary forces that have shaped the genetic variation in P. densata are likely to be different from those acting upon parental species. We speculate that when populations of P. densata invaded new territories, they had elevated rates of response to selection in order to develop traits that help them to survive and adapt in the new environments.  相似文献   

7.
Homoploid hybrid speciation has generally been viewed as a rare evolutionary phenomenon, with relatively few well-documented cases in nature. Here, we investigate the origin of Stephanomeria diegensis , a diploid flowering plant species that has been proposed to have arisen as a result of hybridization between S. exigua and S. virgata . Across the range of S. diegensis , all individuals share a common chloroplast haplotype with S. virgata while showing a greater affinity for S. exigua in terms of nuclear genetic diversity. A prinicipal coordinates analysis (PCO) based on the nuclear data revealed that S. diegensis is most similar to each parent along different axes. Moreover, a Bayesian clustering analysis as well as a hybrid index-based analysis showed evidence of mixed ancestry, with approximately two thirds of the S. diegensis nuclear genome derived from S. exigua . These results provide strong support for a homoploid hybrid origin of S. diegensis . Finally, contrary to the finding that homoploid hybrid species are typically multiply-derived, our results were most consistent with a single origin of this species.  相似文献   

8.
Examples of recurrent homoploid hybrid speciation are few. One often‐cited example is Argyranthemum sundingii. This example includes two described species, A. lemsii and A. sundingii, resulting from reciprocal hybridization between A. broussonetii and A. frutescens on Tenerife. The four species and artificial F1 and F2 hybrids have previously been investigated morphologically and cytologically. Here, we examine population differentiation based on amplified fragment length polymorphism to get a better understanding of the genetic relationships among the species and the extent of hybridization. We aim to investigate if there is molecular support for treating the hybrid species as one taxon. Seven parental and four hybrid species populations (149 individuals) were analysed and we scored 85 polymorphic markers. A few (2–5) were private to each species but variably present and mostly rare. Our principal coordinate, STRUCTURE and BAPS analyses and AMOVA resulted in a clear separation of the parental species. The hybrid species were genetically less divergent but not identical. Our data indicate that hybridization and introgression are common in all these species on Tenerife and support the hypothesis that homoploid hybrid speciation has occurred repeatedly. Intrinsic post‐zygotic barriers are notoriously weak in Argyranthemum and reproductive isolation and speciation result primarily from strong ecological selection. © 2009 The Linnean Society of London, Botanical Journal of the Linnean Society, 2009, 159 , 19–31.  相似文献   

9.
Background and AimsHybridization is known to drive plant speciation through the establishment of homoploid or allopolyploid hybrid species. Here we investigate the origin of Pulmonaria helvetica, a narrow endemic species described across a restricted area of Switzerland that was entirely covered by ice during the last glacial maximum. This species presents an original number of chromosomes (2n = 24) and morphological traits suggestive of a hybrid origin.MethodsWe sequenced a plastid locus and 1077 double-digest restriction-site-associated DNA (ddRAD) loci in 67 individuals from across the distribution range of P. helvetica and candidate progenitor species growing in the same area. Assignment of genotypes to main genetic clusters within and among taxa using STRUCTURE tested whether P. helvetica represents a genetically differentiated lineage and addressed the hypothesis of its hybrid origin. Comparative ecological modelling further addressed possible niche differentiation among taxa.Key Results Pulmonaria helvetica was highlighted as a genetically homogeneous species distinct from co-occurring taxa. Consistent with a scenario of hybrid speciation, it presented clear evidence of balanced admixture between Pulmonaria officinalis (2n = 16) and Pulmonaria mollis s.l. (2n = 18, 22), which was also highlighted as a maternal progenitor based on plastid sequences. Limited genetic structure within the maternal progenitor is consistent with an origin of P. helvetica through either homoploid hybridization with considerable karyotype changes or via complex scenarios of allopolyploidy involving a dysploid taxon of P. mollis s.l. Comparative niche modelling indicated non-significant ecological differences between P. helvetica and its progenitors, supporting intrinsic factors resulting from hybridization as main drivers of speciation.ConclusionsHybridization appears as a major process having promoted the postglacial origin of the narrow endemic P. helvetica, suggesting hybrid speciation as an effective process that rapidly produces new species under climate changes.  相似文献   

10.
Natural hybridization of plants can result in many outcomes with several evolutionary consequences, such as hybrid speciation and introgression. Natural hybrid zones can arise in mountain systems as a result of fluctuating climate during the exchange of glacial and interglacial periods, where species retract and expand their territories, resulting in secondary contacts. Willows are a large genus of woody plants with an immense capability of interspecific crossing. In this study, the sympatric area of two diploid sister species, S. foetida and S. waldsteiniana in the eastern European Alps, was investigated to study the genomic structure of populations within and outside their contact zone and to analyze congruence of morphological phenotypes with genetic data. Eleven populations of the two species were sampled across the Alps and examined using phylogenetic network and population genetic structure analyses of RAD Seq data and morphometric analyses of leaves. The results showed that a homoploid hybrid zone between the two species was established within their sympatric area. Patterns of genetic admixture in homoploid hybrids indicated introgression with asymmetric backcrossing to not only one of the parental species but also one hybrid population forming a separate lineage. The lack of F1 hybrids indicated a long-term persistence of the hybrid populations. Insignificant isolation by distance suggests that gene flow can act over large geographical scales. Morphometric characteristics of hybrids supported the molecular data and clearly separated populations of the parental species, but showed intermediacy in the hybrid zone populations with a bias toward S. waldsteiniana. The homoploid hybrid zone might have been established via secondary contact hybridization, and its establishment was fostered by the low genetic divergence of parental species and a lack of strong intrinsic crossing barriers. Incomplete ecological separation and the ability of long-distance dispersal of willows could have contributed to the spatial expansion of the hybrid zone.  相似文献   

11.
This study aims to identify selection pressures during the historical process of homoploid hybrid speciation in three Helianthus (sunflower) hybrid species. If selection against intrinsic genetic incompatibilities (fertility selection) or for important morphological/ecological traits (phenotypic selection) were important in hybrid speciation, we would expect this selection to have influenced the parentage of molecular markers or chromosomal segments in the hybrid species' genomes. To infer past selection, we compared the parentage of molecular markers in high-density maps of the three hybrid species with predicted marker parentage from an analysis of fertility selection in artificial hybrids and from the directions of quantitative trait loci effects with respect to the phenotypes of the hybrid species. Multiple logistic regression models were consistent with both fertility and phenotypic selection in all three species. To further investigate traits under selection, we used a permutation test to determine whether marker parentage predicted from groups of functionally related traits differed from neutral expectations. Our results suggest that trait groups associated with ecological divergence were under selection during hybrid speciation. This study presents a new method to test for selection and supports earlier claims that fertility selection and phenotypic selection on ecologically relevant traits have operated simultaneously during sunflower hybrid speciation.  相似文献   

12.
We build a spatial individual-based multilocus model of homoploid hybrid speciation tailored for a tentative case of hybrid origin of Heliconius heurippa from H. melpomene and H. cydno in South America. Our model attempts to account for empirical patterns and data on genetic incompatibility, mating preferences and selection by predation (both based on coloration patterns), habitat preference, and local adaptation for all three Heliconius species. Using this model, we study the likelihood of recombinational speciation and identify the effects of various ecological and genetic parameters on the dynamics, patterns, and consequences of hybrid ecological speciation. Overall, our model supports the possibility of hybrid origin of H. heurippa under certain conditions. The most plausible scenario would include hybridization between H. melpomene and H. cydno in an area geographically isolated from the rest of both parental species with subsequent long-lasting geographic isolation of the new hybrid species, followed by changes in the species ranges, the secondary contact, and disappearance of H. melpomene -type ecomorph in the hybrid species. However, much more work (both empirical and theoretical) is necessary to be able to make more definite conclusions on the importance of homoploid hybrid speciation in animals.  相似文献   

13.
Despite the well‐known effects that Quaternary climate oscillations had on shaping intraspecific diversity, their role in driving homoploid hybrid speciation is less clear. Here, we examine their importance in the putative homoploid hybrid origin and evolution of Ostryopsis intermedia, a diploid species occurring in the Qinghai‐Tibet Plateau (QTP), a biodiversity hotspot. We investigated interspecific relationships between this species and its only other congeners, O. davidiana and O. nobilis, based on four sets of nuclear and chloroplast population genetic data and tested alternative speciation hypotheses. All nuclear data distinguished the three species clearly and supported a close relationship between O. intermedia and the disjunctly distributed O. davidiana. Chloroplast DNA sequence variation identified two tentative lineages, which distinguished O. intermedia from O. davidiana; however, both were present in O. nobilis. Admixture analyses of genetic polymorphisms at 20 SSR loci and sequence variation at 11 nuclear loci and approximate Bayesian computation (ABC) tests supported the hypothesis that O. intermedia originated by homoploid hybrid speciation from O. davidiana and O. nobilis. We further estimated that O. davidiana and O. nobilis diverged 6–11 Ma, while O. intermedia originated 0.5–1.2 Ma when O. davidiana is believed to have migrated southward, contacted and hybridized with O. nobilis possibly during the largest Quaternary glaciation that occurred in this region. Our findings highlight the importance of Quaternary climate change in the QTP in causing hybrid speciation in this important biodiversity hotspot.  相似文献   

14.
Hybridization between distinct populations or species is increasingly recognized as an important process for generating biodiversity. However, the interaction between hybridization and speciation is complex, and the diverse evolutionary outcomes of hybridization are difficult to differentiate. Here we characterize potential hybridization in a species group of swallowtail butterflies using microsatellites, DNA sequences, and morphology, and assess whether adaptive introgression or homoploid hybrid speciation was the primary process leading to each putative hybrid lineage. Four geographically separated hybrid populations were identified in the Papilio machaon species group. One distinct mitochondrial DNA clade from P. machaon was fixed in three hybrid taxa (P. brevicauda, P. joanae, and P. m. kahli), while one hybrid swarm (P. zelicaon x machaon) exhibited this hybrid mtDNA clade as well as widespread parental mtDNA haplotypes from both parental species. Microsatellite markers and morphology showed variable admixture and intermediacy, ranging from signatures of prolonged differential introgression from the paternal species (P. polyxenes/P. zelicaon) to current gene flow with both parental species. Divergences of the hybrid lineages dated to early- to mid-Pleistocene, suggesting that repeated glaciations and subsequent range shifts of parental species, particularly P. machaon hudsonianus, facilitated initial hybridization. Although each lineage is distinct, P. joanae is the only taxon with sufficient evidence (ecological separation from parental species) to define it as a homoploid hybrid species. The repetition of hybridization in this group provides a valuable foundation for future research on hybridization, and these results emphasize the potential for hybridization to drive speciation in diverse ways.  相似文献   

15.
We studied the phylogenetic relationships among Japanese Leptocarabus ground beetles, which show extensive trans-species polymorphisms in mitochondrial gene genealogies. Simultaneous analysis of combined nuclear data with partial sequences from the long-wavelength rhodopsin, wingless, phosphoenolpyruvate carboxykinase, and 28S rRNA genes resolved the relationships among the five species, although separate analyses of these genes provided topologies with low resolution. For both the nuclear gene tree resulting from the combined data from four genes and a mitochondrial cytochrome oxidase subunit I (COI) gene tree, we applied a Bayesian divergence time estimation using a common calibration method to identify mitochondrial introgression events that occurred after speciation. Three mitochondrial lineages shared by two or three species were likely subject to introgression due to interspecific hybridization because the coalescent times for these lineages were much shorter than the corresponding speciation times estimated from nuclear gene sequences. We demonstrated that when species phylogeny is fully resolved with nuclear gene sequence data, comparative analysis of nuclear and mitochondrial gene trees can be used to infer introgressive hybridization events that might cause trans-species polymorphisms in mitochondrial gene trees.  相似文献   

16.
Molecular approaches have greatly increased the number of confirmed homoploid hybrids, which suggests that the frequency of this phenomenon was underestimated in the past because it was much more difficult to detect than allopolyploidy. Centaurea is a suitable model group for studying homoploid speciation, as hybridization events have been commonly reported for this genus. Based on this, here we study Centaurea × forsythiana, a naturally occurring homoploid hybrid between two Sardinian endemics, C. horrida and C. filiformis, using a molecular approach involving nuclear and plastid markers, to understand the underlying population dynamics between homoploid hybrids and their parents. Our results confirm that C. × forsythiana is a hybrid between the above‐mentioned species and define the roles of the parents. Plastid markers point towards C. horrida as the maternal progenitor, and nuclear markers reveal that the other parental species, C. filiformis, is itself an old, stabilized homoploid hybrid related to the C. paniculata complex from the Italian mainland. Homoploid hybrid speciation is discussed and C. × forsythiana and C. filiformis are compared with other similar examples. The study confirms the importance of introgression between parental species mediated by hybrids and its potential implications in conservation. Furthermore, it shows how hybridization studies become even more complex when the parents are themselves of probable hybrid origin. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 175 , 453–467.  相似文献   

17.
Broughton RE  Harrison RG 《Genetics》2003,163(4):1389-1401
Population genetics theory predicts that genetic drift should eliminate shared polymorphism, leading to monophyly or exclusivity of populations, when the elapsed time between lineage-splitting events is large relative to effective population size. We examined patterns of nucleotide variation in introns at four nuclear loci to relate processes affecting the history of genes to patterns of divergence among natural populations and species. Ancestral polymorphisms were shared among three recognized species, Gryllus firmus, G. pennsylvanicus, and G. ovisopis, and genealogical patterns suggest that successive speciation events occurred recently and rapidly relative to effective population size. High levels of shared polymorphism among these morphologically, behaviorally, and ecologically distinct species indicate that only a small fraction of the genome needs to become differentiated for speciation to occur. Among the four nuclear gene loci there was a 10-fold range in nucleotide diversity, and patterns of polymorphism and divergence suggest that natural selection has acted to maintain or eliminate variation at some loci. While nuclear gene genealogies may have limited applications in phylogeography or other approaches dependent on population monophyly, they provide important insights into the historical, demographic, and selective forces that shape speciation.  相似文献   

18.
Many oak species are interfertile, and morphological and genetic evidence for hybridization is widespread. Here we use DNA microsatellite markers to characterize hybridization between two closely related oak species in a mixed stand in central coastal California, Quercus lobata (valley oak) and Q. douglasii (blue oak) (Fagaceae). Genotypes from four microsatellite loci indicate that many alleles are shared between the two species. However, each species harbors unique alleles, and allele frequencies differ significantly. A Bayesian analysis of genetic structure in the stand identified two highly differentiated genetic clusters, essentially corresponding to species assignment based on morphology. Data from the four loci were sufficient to assign all 135 trees to one of the two species. In addition, five putative hybrid individuals having intermediate morphologies could be assigned genetically to one or the other species, and all but one had low probability of hybrid ancestry. Overally, only six (4.6%) trees showed >0.05 probability of hybrid ancestry, in all cases their probabilities for nonhybrid ancestry were substantially higher. We conclude that adult hybrids of Q. douglasii × Q. lobata are rare at this site and plasticity in morphological characters may lead to overestimates of hybridization among Quercus species.  相似文献   

19.
The origin of new diploid, or homoploid, hybrid species is associated with rapid genomic restructuring in the hybrid neospecies. This mode of speciation has been best characterized in wild sunflower species in the genus Helianthus, where three homoploid hybrid species (H. anomalus, H. deserticola, and H. paradoxus) have independently arisen via ancient hybridization events between the same two parental species (H. annuus and H. petiolaris). Most previous work examining genomic restructuring in these sunflower hybrid species has focused on chromosomal rearrangements. However, the origin of all three homoploid hybrid sunflower species also is associated with massive proliferation events of Ty3/gypsy-like retrotransposons in the hybrid species' genomes. We compared the genomic organization of these elements in the parent species and two of the homoploid hybrid species using fluorescence in situ hybridization (FISH). We found a significant expansion of Ty3/gypsy-like retrotransposons confined to the pericentromeric regions of two hybrid sunflower species, H. deserticola and H. paradoxus. In contrast, we detected no significant increase in the frequency or extent of dispersed retrotransposon populations in the hybrid species within the resolution limits of our assay. We discuss the potential role that transposable element proliferation and localization plays in the evolution of homoploid hybrid species.  相似文献   

20.
Although members of the crustacean genusDaphniahave been the target of much research, there is little understanding of the group's evolutionary history. We addressed this gap by inferring a phylogeny for one of the major species groups (longispina) using nucleotide sequence variation of a 525-bp segment of the mitochondrial 12S rDNA and allozyme variation at 21 loci. We identified the major lineages and their relationships, assessed the phylogenetic utility of the few morphological characters in the group, and examinedDaphniaphylogeography. Nuclear and mtDNA phylogenies were generally concordant in recognizing the same four species complexes. An exception was the position ofDaphnia galeata mendotae.The allozyme tree paired this species with theDaphnia rosealineage, whereas the mtDNA trees groupedD. g. mendotaewithDaphnia galeata galeata.This discordance was consistent with the reticulate evolution of nuclear genes supporting the hypothesis thatD. g. mendotaerepresents a case of homoploid hybrid speciation. Striking morphological stasis in thelongispinagroup was evidenced by its very limited morphological divergence over an estimated 100 MY, and by the unusual transitional saturation of the conservative 12S rRNA gene within a species group. Phylogenetic inference also provided evidence that similarities in cephalic crest shape likely resulted from convergent or parallel evolution among species. Endemism at the continental level was indicated for previously cosmopolitan species, but the estimated times of these divisions were inconsistent with vicariance events suggesting recent dispersal among continents. A significant role for divergent selection in new habitats during speciation was suggested by the neighboringly sympatric distributions of four sister species pairs over broad geographic areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号