首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A polychlorinated biphenyl (PCB) compound, Clophen A 50, enhanced both hepatic aryl hydrocarbon hydroxylase and p-nitroanisole O-demethylase activities (7.5-fold and 16-fold, respectively), after treating the rats for 6 days with consecutive daily injections of Clophen A 50 (15 mg/kg i.p.). The treatment increased 3-fold the content of the carbon monoxide binding hemoprotein in liver microsomes, causing a concomitant shift in its reduced carbon monoxide absorbance peak to 448 nm. NADPH cytochrome c reductase, another component reaction of the microsomal mixed-function oxidase, was enhanced 1.5-fold in 6 days. A slight enhancement in the overall hydroxylation reactions was already observable 24 h after a single injection of Clophen A 50.The UDPglucuronosyltransferase activity of native liver microsomes was enhanced 3-fold in 6 days by the Clophen A 50 treatment of rats. The enhancement was, however, more pronounced, if the microsomes were treated in vitro with membrane-perturbing agents to activate the latent UDPglucuronosyltransferase before measuring its activity. After treatment for 6 days, the enhancement was about 6-fold in digitonin-treated, 5-fold in phospholipase C-treated and about 10-fold in trypsin-digested microsomes. No enhancement could be detected 24 h after a single Clophen A 50 injection.Aryl hydrocarbon hydroxylase activity was also enhanced in lung (5-fold), and kidney (8-fold) microsomes, whereas the microsomes from the duodenal mucosa exhibited no enhancement by a Clophen A 50 treatment of rats for 3 days.The data obtained support the assumption that PCBs form a new type of inducer group in enhancing the microsomal drug biotransformation. Both the monooxygenase complex and UDPglucuronosyltransferase differ in their properties from those after enhancement with the known types of inducers, exemplified by phenobarbital and 3-methylcholanthrene, respectively.  相似文献   

2.
The effect of dinitrophenol (52 μm), an uncoupler of oxidative phosphorylation, on p-nitroanisole O-demethylation in the perfused rat liver was examined. Dinitrophenol inhibited p-nitroanisole metabolism 70% in perfused livers from fasted, phenobarbital-treated rats, and 30% in livers from normal rats, but had no effect on this reaction in isolated microsomes. Rates of p-nitroanisole O-demethylation in livers from fed, phenobarbitaltreated rats were not inhibited by dinitrophenol unless the pentose phosphate shunt was first inhibited by 6-aminonicotinamide pretreatment. Dinitrophenol diminished cellular concentrations of ATP and NADPH 30 and 50%, respectively. Since mixed-function oxidation requires NADPH, these data are consistent with the hypothesis that dinitrophenol interrupts the synthesis and/or transfer of reducing equivalents from the mitochondria into the extramitochondrial space by interfering with energy-dependent NADPH synthesis and substrate shuttle mechanisms.In addition, dinitrophenol diminished conjugation reactions 57 and 89% in all metabolic states studied, most likely because it decreased UDP-glucose levels considerably (40 to 60%).  相似文献   

3.
1. Papilio polyxenes, a caterpillar which feeds on xanthotoxin-containing plants, has cytochromes P450 that are six- to 100-fold less sensitive to the suicide substrate inhibitor, xanthotoxin, than cytochromes P450 from Manduca sexta, which does not survive on xanthotoxin-containing plants.2. Xanthotoxin is a suicide substrate inhibitor of O-demethylation of p-nitroanisole by M. sexta microsomes but a reversible inhibitor of O-demethylation by P. polyxenes microsomes.3. Aldrin epoxidation is irreversibly inhibited by xanthotoxin in both species.4. Patterns of cross inhibition demonstrate that O-demethylase and aldrin epoxidase from both species and the P. polyxenes xanthotoxin-metabolizing cytochrome P450 are distinct enzymes.  相似文献   

4.
Isotope effects of ~2 have been found for the O-demethylation of p-nitroanisole, p-methoxyacetanilide, and p-dimethoxybenzene and the respective trideuteromethyl derivatives, when mediated by rat liver microsomes.The direct insertion mode of electron impact mass spectrometry (the advantages and limitations of which are discussed) was used together with conventional methods (observation of formaldehyde release, product analysis by spectrophotometry) to determine the isotope effects. Only the mass spectrometry method was applicable for determining the isotope effect associated with the mono-O-demethylation of p-trideuteromethoxyanisole and an unusually large value (10) was found.An insignificant isotope effect (≯ 1.05) was found for the mono-N-demethylation of l-(o-carbamoylphenyl)-3,3-dimethyltriazene and its di-(trideuteromethyl) analogue. The protium and deuterium forms had closely similar growth-inhibitory activities for the TLX5 lymphoma in mice.  相似文献   

5.
The rate of p-nitroanisole O-demethylation is markedly inhibited by ethanol. To evaluate a role of acetaldehyde in the inhibition by ethanol, a comparison was made of the effects of ethanol and acetaldehyde on the metabolism of p-nitroanisole by isolated liver cells. No effect on the metabolism of p-nitroanisole was found at low concentrations of acetaldehyde (<0.5 mm), whereas inhibition occurred at high concentrations (1 mm). In fact, acetaldehyde was not any more inhibitory than crotonaldehyde, which is a poor substrate for the low-Km mitochondrial aldehyde dehydrogenase. Cyanamide, an inhibitor of acetaldehyde oxidation, did not prevent the inhibition by ethanol. Crotonol, an alcohol that does not change the mitochondrial redox state, in contrast to ethanol, proved to be a more effective inhibitor of the metabolism of p-nitroanisole than ethanol. Greater sensitivity to crotonol was also found in isolated microsomes and may reflect hydrophobic effects by crotonol, relative to ethanol. These results suggest that although high levels of acetaldehyde can be inhibitory, physiological levels of acetaldehyde did not affect the metabolism of p-nitroanisole. It is unlikely that acetaldehyde itself plays a major role in the mechanism by which ethanol inhibits the metabolism of p-nitroanisole. The inhibition of p-nitroanisole O-demethylation by ethanol was prevented by pyruvate or fructose, but not by xylitol, sorbitol, or lactate. All these substrates by themselves stimulated metabolism of p-nitroanisole. Pyruvate and glyceraldehyde (which arises from the metabolism of fructose) can oxidize cytosolic NADH. These results suggest that the generation of cytosolic NADH from the oxidation of ethanol, the subsequent requirement for substrate shuttles to transfer NADH into the mitochondria, and redox inhibition of the citric acid cycle, interfere with the transport of NADPH out of the mitochondria, and consequently with drug metabolism.  相似文献   

6.
The effect of potassium cyanide on p-nitroanisole O-demethylation in perfused rat livers has been examined. Cyanide (2 mm), an inhibitor of cytochrome oxidase, diminished p-nitroanisole O-demethylation by 50–75% in perfused livers from normal and phenobarbital-treated rats, but had much less effect on hepatic microsomal p-nitroanisole O-demethylation. The inhibition was also observed in livers where the activity of the pentose phosphate shunt was abolished by pretreatment with 6-aminonicotinamide. Cyanide infusion decreased hepatic ATPADP ratios and cellular concentrations of glutamate, α-ketoglutarate, and isocitrate, but caused an increase in the NADPV+NADPH ratio. Rates of NADPH generation via the pentose phosphate shunt were unchanged by cyanide, and hepatic concentrations of glucose 6-phosphate were markedly increased by cyanide. Thus, inhibition of p-nitroanisole metabolism could not be explained solely by a direct interaction of cyanide with mixed-function oxidases or diminished NADPH generation via the pentose cycle. These data indicate that cyanide inhibits mixed-function oxidation in intact cells by diminishing the generation of NADPH from sources other than the pentose cycle. Further, these data are consistent with the hypothesis that some NADPH for mixed-function oxidation arises from cyanidesensitive mitochondrial sources.  相似文献   

7.
Microsomal fractions were isolated from hepatic tissue, housefly abdomen and southern armyworm midgut, either by centrifugation of post-mitochondrial supernatant for 1 h at 105 000×g or by calcium sedimentation and low speed centrifugation. A comparison of the two methods of isolation were made on the basis of: NADPH oxidase activity, O-demethylation of p-nitroanisole, spectral parameters of cytochrome P-450, and integrity of ultrastructural constituents. The method of isolation did not effect these parameters appreciably for microsomes isolated from hepatic tissue. Calcium sedimentation of insect microsomes resulted in a reduction of enzyme activity and an apparent decrease in cytochrome P-450. Ultrastructural integrity did not appear to be influenced by the method of sedimentation.  相似文献   

8.
The fungus Cunninghamella bainieri effects the oxidative N-demethylation of aminopyrine, O-demethylation of 4-nitroanisole and anisole, the aryl hydroxylation of anisole, aniline, and naphthalene, and the reduction of nitro and azo groups. The hydroxylation of 4-[2H]-anisole and 2-[2H]-anisole proceeds with migration and retention of isotopic hydrogen (NIH shift). The above reactions and the formation of the trans-dihydrodiol of naphthalene and the incorporation of oxygen-18 from 18O2 into the trans-dihydrodiol and hydroxylated anisole are characteristic of reactions catalyzed by the cytochrome P450 monooxygenases of hepatic microsomes. The product ratios in these hydroxylations are very similar to those obtained using liver microsomes providing further evidence that the C. bainieri monooxygenase enzymes are similar to the liver monooxygenases. Furthermore, an epoxide hydrase enzyme similar to that present in hepatic microsomes must also be present in C. bainieri.  相似文献   

9.
The subcellular distribution of four enzymes (glucose-6-phosphatase, phosphodiesterase I, NADPH-cytochrome c reductase, and p-nitroanisole O-demethylase) in the midgut of “wandering” fifth-instar larvae of the tobacco hornworm, Manduca sexta (L), was determined and the composition of mitochondrial and microsomal pellets was examined by electron microscopy. Most of the glucose-6-phosphatase activity and one-third of the phosphodiesterase I activity were found in the high-speed supernatant. NADPH-cytochrome c reductase activity was marginal and O-demethylase activity was undetectable in the supernatant. The highest specific activities for phosphodiesterase I, NADPH-cytochrome c reductase, and p-nitroanisole O-demethylase were measured in microsomes, but the relative specific activity of phosphodiesterase I was only half that obtained with the latter two enzymes. In all subcellular preparations the relative specific activities of NADPH-cytochrome c reductase and p-nitroanisole O-demethylase were closely correlated. It is concluded that glucose-6-phosphatase and phosphodiesterase I are not microsomal marker enzymes in the midgut, but the activities of NADPH-cytochrome c reductase and p-nitroanisole O-demethylase are quantitative measures of microsomal content.  相似文献   

10.
Benzo(a)pyrene [B(a)P] treatment of gilthead seabream, 25 mg/kg, i.p. for 5 consecutive days, did not cause any significant changes in ethylmorphine N-demethylase and aniline 4-hydroxylase activities of liver microsomes. The same treatment did not alter the liver microsomal cytochrome b5 content, NADH-cytochrome b5 reductase and NADPH-cytochrome P450 reductase activities. However, benzo(a)pyrene treatment caused a 2–3-fold increase in 7-ethoxyresorufin O-deethylase (7-EROD) activity of gilthead seabream liver microsomes. Although, upon treatment, total cytochrome P450 content of liver microsomes increased about 1.7-fold in 1990 fall, no such increase was observed in spring 1991. However, a new cytochrome P450 with an apparent Mr of 58,000 was observed on SDS-PAGE of liver microsomes obtained from benzo(a)pyrene treated gilthead seabream. Besides, in vitro addition of 0.2 × 10−6 M benzo(a)pyrene to the incubation mixture inhibited 7-ethoxyresorufin O-deethylase activity by 93%. Gilthead seabream liver microsomal 7-ethoxyresorufin O-deethylase activity was characterized with respect to substrate concentration, amount of enzyme, type of buffer used, incubation period and temperature.  相似文献   

11.
The hydroxylation of N- and O-methyl drugs and polycyclic hydrocarbons has been demonstrated in microsomes prepared from colon mucosal cells. The hydroxylation of the drugs benzphetamine, ethylmorphine, p-nitroanisole, and p-nitrophenetole by colon microsomes is inducible two- to fourfold by pretreatment with phenobarbital/hydrocortisone. Colon microsomal benzo[α]pyrene hydroxylation is inducible 35-fold by pretreatment with β-naphthoflavone. Phenobarbital/hydrocortisone pretreatment also induces a fourfold increase in the specific content of colon microsomal cytochrome P-450, while β-naphthoflavone pretreatment causes a shift in the reduced CO difference spectrum peak to 448 nm and an eightfold increase in the specific content of this cytochrome. SKF 525-A inhibits the hydroxylation of the drug benzphetamine by colon microsomes or liver microsomes by 77% at a concentration of 2.0 mm. 7,8-Benzoflavone, on the other hand, inhibits the hydroxylation of the polycyclic hydrocarbon benzo[α]pyrene by colon microsomes by 76% and by liver microsomes by 44% at a concentration of 10 μm. Carbon monoxide, an inhibitor of oxygen interaction with cytochromes P-450 and P-448, inhibits benzphetamine hydroxylation and benzpyrene hydroxylation by colon microsomes 30 and 51%, respectively, at an oxygen to carbon monoxide ratio of 1:10. The Km values of colon microsomal cytochrome P-450 reductase for the artificial electron acceptors cytochrome c, dichloroindophenol, and ferricyanide (10–77 μm) are in agreement with those for purified rat liver cytochrome P-450 reductase. These data support the conclusions that hydroxylation of drugs and polycyclic hydrocarbons is catalyzed by colon mucosal microsomes and that the hydroxylation activity is attributable to a cytochrome P-450-dependent drug metabolism system similar to that found in liver microsomes.  相似文献   

12.
Effects of inadequate vitamin E (E) and/or selenium (Se) nutrition on the activities of cytochrome P-450 mixed function oxidase system (heme hydroperoxidase, p-nitroanisole O-demethylase), and epoxide hydrolase have been investigated. Heme hydroperoxidase activity of liver and lung microsomes was significantly decreased in E deficiency. In the liver, Se deficiency resulted in a significant increase in hydroperoxidase activity. In contrast to the peroxidase activity, liver demethylase activity was only marginally affected in ESe deficiency states. However, kidney demethylase activity was increased two fold in Se deficient states. Liver microsomal epoxide hydrolase activity was significantly increased in both E and Se deficiency states.  相似文献   

13.
Addition of p-nitroanisole to a reaction mixture containing phenobarbital-pretreated rabbit liver microsomes brings about an increase the reoxidation rate of NADH-reduced cytochrome b5. Addition of partially purified cytochrome b5 to a solution containing microsomes results in a marked increase in both NADH- and NADPH-dependent O-demethylation of p-nitroanisole. p-Nitroanisole also increases the rate of NADH mediated cytochrome P-450 reduction. From these and other results described in the Discussion section, we confirm that electrons required for NADH-dependent O-demethylation of p-nitroanisole is transfered from NADH to cytochrome P-450 via cytochrome b5 and that cytochrome P-450 is the enzyme which catalyzes p-nitroanisole O-demethylation.  相似文献   

14.
The effect of several membrane perturbants (digitonin, cetylpyridinium chloride (CPC), trypsin and phospholipase C) on bilirubin-conjugating UDP-glucosyl and UDPglucuronosyltransferase of rat liver microsomes was studied. All the compounds appeared to activate (maximally 6–11-fold) UDP-glucuronosyl transferase. Digitonin, CPC and trypsin had the same kind of activating effect on UDPglucosyltransferase (maximally 3–4-fold). The action of phospholipase C on these enzymes was found to be different. UDPglucosyltransferase was more sensitive toward this agent than UDPglucuronosyltransferase. The intraperitoneal administration of a polycyclic hydrocarbon, chrysene, to rats was shown to enhance the UDPglucuronosyltransferase activity of liver native microsomes about 1.5-fold. In the perturbant-treated microsomes this increment could not be found. The activity of UDPglucosyltransferase was not affected by the same chrysene treatment either in native or activated microsomes. The present data suggest that there is a difference in the phospholipid environment of bilirubin UDPglucosyI and UDPglu curonosyltransferases. Furthermore support for the hypothesis that two different enzymes are involved in the synthesis of glucoside and glucuronide conjugates of bilirubin is given.  相似文献   

15.
Melatonin, an endogenous hormone, is used as an antioxidant drug in doses quite higher than the endogenous circulating levels of this hormone. Hepatic endoplasmic reticulum contains the cytochrome P450 (CYP450) system, which catalyzes one biotransformation pathway of melatonin; this organelle is also one of the main sources of reactive oxygen species in cells. Therefore, we proposed that the antioxidant activity of this hormone may have a biological relevance in the organelle where it is biotransformed. To evaluate this postulate, we used Fe3+/ascorbate, an oxygen free radical generating system that leads to lipid peroxidation, loss of protein-thiol content, and activation of UDP-glucuronyltransferase in rat liver microsomes. We found that mM concentrations of melatonin prevented all these oxidative phenomena. We also found that Fe3+/ascorbate leads to structural alterations in the CYP450 monooxygenase, the enzyme that binds the substrate in the CYP450 system catalytic cycle, probably through direct oxidation of the protein, and also inhibited p-nitroanisole O-demethylation, a reaction catalyzed by the CYP450 system. Notably, melatonin prevented both phenomena at μM concentrations. We provide evidence suggesting that melatonin may be oxidized by oxygen free radicals. Thus, we postulate that melatonin may be acting as an oxygen free radical scavenger, and Fe3+/ascorbate-modified melatonin would be directly protecting the CYP450 system through an additional specific mechanism. Pharmacological relevance of this phenomenon is discussed.  相似文献   

16.
Flavin-containing monooxygenase (FMO) activity as N,N-dimethylaniline (DMA) N-oxygenation was characterized in microsomes from the smooth dogfish shark (Squalus acathias). DMA N-oxygenase activity from the liver of the dogfish shark was linear with increasing protein content and over 60 min. The optimal temperature for catalysis was 25°C with a 76 percent reduction in activity when incubated at 15°C and 99 percent loss of activity at 45°C. Optimal pH was approximately 9.6. The maximum velocity for DMA N-oxygenase activity was calculated to be 1.3 nmol min−1 mg−1 with an apparent Michaelis constant of 44 μM. Methimazole oxidase activity was also observed in dogfish liver microsomes which was inhibited by trimethylamine (TMA). Inhibition of DMA N-oxygenase activity by TMA and thiobenzamide was competitive, while inhibition by methimazole was not competitive. Western blot analysis indicated a single liver protein from both Squalus and Carcharhinus of approximately 50 kDa that bound to antibodies raised against FMO 2. An attempt was made to purify FMO as methimazole oxidase from the liver of the silky shark. A single peak of about 10-fold purity was observed following passage through two chromatographic media (CM-Sepharose and HA-Agarose). However, no activity was recoverable after the FMO-containing fractions were applied to a 2′5′ ADP-Sepharose column.  相似文献   

17.
Horseradish peroxidase-catalyzed N-demethylation of aminopyrine and dimethylaniline results in generation of free radical intermediates which can interact with glutathione (GSH) to form a glutathione radical. This can either dimerize to yield glutathione disulfide or react with O2 to form oxygenated products of glutathione. Ethylmorphine is not a substrate in the peroxidase-mediated reaction, and free radical intermediates which react with GSH, are not formed from aminopyrine and dimethylaniline when the horseradish peroxidase/H2O2 system is replaced by liver microsomes and NADPH. Therefore, it appears unlikely that formation of free radical intermediates can be responsible for the depletion of GSH observed during N-demethylation of several drugs in isolated liver cells.  相似文献   

18.
Two Rhodococcus strains, R. opacus strain AS2 and R. erythropolis strain AS3, that were able to use 4-nitroanisole as the sole source of carbon and energy, were isolated from environmental samples. The first step of the degradation involved the O-demethylation of 4-nitroanisole to 4-nitrophenol which accumulated transiently in the medium during growth. Oxygen uptake experiments indicated the transformation of 4-nitrophenol to 4-nitrocatechol and 1,2,4-trihydroxybenzene prior to ring cleavage and then subsequent mineralization. The nitro group was removed as nitrite, which accumulated in the medium in stoichiometric amounts. In R. opacus strain AS2 small amounts of hydroquinone were produced by a side reaction, but were not further degraded.  相似文献   

19.
Microsomal UDPglucuronosyltransferase(1-naphthol), an enzyme form previously shown to be selectively inducible in rat liver by 3-methylcholanthrene-type inducers, was purified to apparent homogeneity. Rabbit antibodies against this enzyme form precipitated UDPglucuronosyltransferase activities towards 1-naphthol and 4-methylumbelliferone faster and to greater extents than enzyme activities towards bilirubin, oestrone and 4-hydroxybiphenyl. Ouchterlony double-diffusion analysis showed immunochemical similarity of the rat liver enzyme with the enzymes from other organs of the rat (kidney, testes) and the mouse liver but not with the enzyme from cat and human liver. Electroimmunochemical quantification of the enzyme indicated that its level was enhanced 1.3-fold and 2.5-fold in liver microsomes from phenobarbital-treated and 3-methylcholanthrene-treated rats, respectively. The results indicate that 3-methylcholanthrene treatment increases the enzyme level of rat liver microsomal UDPglucuronosyltransferase(1-naphthol). Despite phospholipid-dependence of its catalytic activity microsomal enzyme activity appears to be a good index of the enzyme level.  相似文献   

20.
Rabbit lung and liver microsomes were subjected to three procedures which decreased NADPH cytochrome c reductase activity; flavoprotein antibody, trypsin and subtilisin digestion. The effects on benzphetamine and p-nitroanisode demethylation and amine metabolic-intermediate complex formation were investigated. In general, the proteolytic digestion had a greater inhibitory effect on oxidation reactions for a given loss of NADPH cytochrome c reductase activity than did flavoprotein antibody; and of the two proteases, subtilisin, which also diminises the cytochrome b5 reduction pathway, had a greater inhibitory effect than trypsin. Subtilisin digestion had similar effects in both liver and lung microsomes; a loss of flavoprotein without a loss of cytochrome P-450; but whereas all three oxidative reactions decreased in unison as the flavoprotein was lost in the liver, benzphetamine demethylation was less susceptible to flavoprotein depletion than the other two reactions in lung microsomes. With trypsin digestion flavoprotein was removed without loss of cytochrome P-450 only in lung microsomes; in liver microsomes the cytochrome P-450 was susceptible to tryptic degradation. In lung microsomes, benzphetamine and p-nitroanisole demethylations were less susceptible to flavoprotein loss than metabolic-intermediate complex formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号