首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
When exponentially growing KB cells were deprived of arginine, cell multiplication ceased after 12 h but viability was maintained throughout the experimental period (42-48 h). Although tritiated thymidine ([(3)H]TdR) incorporation into acid-insoluble material declined to 5 percent of the initial rate, the fraction of cells engaged in DNA synthesis, determined by autoradiography, remained constant throughout the starvation period and approximately equal to the synthesizing fraction in exponentially growing controls (40 percent). Continous [(3)H]TdR-labeling indicated that 80 percent of the arginine-starved cells incorporated (3)H at some time during a 48-h deprivation period. Thus, some cells ceased DNA synthesis, whereas some initially nonsynthesizing cells initiated DNA synthesis during starvation. Flow microfluorometric profiles of distribution of cellular DNA contents at the end of the starvation period indicated that essentially no cells had a 4c or G2 complement. If arginine was restored after 30 h of starvation, cultures resumed active, largely asynchronous division after a 16-h lag. Autoradiographs of metaphase figures from cultures continuously labeled with [(3)H]TdR after restoration indicated that all cells in the culture underwent DNA synthesis before dividing. It was concluded that the majority of cells in arginine-starved cultures are arrested in neither a normal G1 nor G2. It is proposed that for an exponential culture, i.e. from most positions in the cell cycle, inhibition of cell growth after arginine with withdrawal centers on the ability of cells to complete replication of their DNA.  相似文献   

2.
DNA synthesis in Epstein-Barr virus (EBV)-infected lymphocytes was inhibited by phosphonoacetic acid (PAA) as measured by [3H]thymidine incorporation. PAA, at a concentration of 200 microgram/ml, inhibited [3H]thymidine incorporation by human umbilical cord lymphocytes infected with EBV strain P94 but had little effect on DNA synthesis in mitogen-stimulated cells. Transformed cell lines did not develop from infected cord cell cultures treated with 100 microgram of PAA per ml. Cytofluorometric analysis showed marked increases in cellular nucleic acid content (RNA plus DNA) as early as 9 days after infection of cord cells in the absence of PAA and before significant enhancement of [3H]thymidine incorporation became apparent. Moreover, EBV led to increases in cellular nucleic acid even when 200 microgram of PAA per ml was added to cell cultures before infection. The apparent discrepancy between results obtained by [3H]thymidine incorporation and cytofluorometry is explained either by significant inhibition of cellular DNA polymerases by PAA or by a block at the G2 + M phase of the cell cycle. The data suggest that EBV initiates alterations in cellular nucleic acid synthesis or cell division without prior replication of viral DNA by virus-induced DNA polymerases.  相似文献   

3.
The influence of 5-amino uracil (5-AU) was investigated on the cell cycle of log growth and division-synchronized Tetrahymena pyriformis GL. The division index of log growth phase Tetrahymena was suppressed by 50% after 40 min in 8 mM 5-AU. Cells division-synthronized by one heat shock per generation were also treated with 5-AU. Cells treated either prior to the first synchronous division (80 min EH) or up to 25 min prior to the second synchronous division (after 160 min EH) were not delayed in their progress through the cell cycle. Cells treated during the S phase of the first free running cell cycle, however, were delayed 5-30 min from reaching the second synchronous division. The effect of 5-AU on DNA and RNA synthesis was also examined. Incorporation of [3H]thymidine into acid-precipitable material was reduced in the presence of 5-AU; the rate of DNA synthesis was also reduced. The depression in the rate of DNA synthesis was greater at the beginning of S than at the end of S. The size of the thymidine pool (nucleosides + nucleotides) did not change during 5-AU treatment; however, an accumulation of thymidine tri-phosphate and a decrease in the amount of thymidine nucleoside was observed. A suppression of [14C]uridine incorporation resulting from 5-AU treatment was observed throughout the cell cycle. The rate of RNA synthesis as monitored by [14C]uridine incorporation into acid precipitable material was also reduced during 5-AU treatment. No change in either the size or the composition of the pool of uridine (nucleoside + nucleotide) was detected in 5-AU treated cells as compared to controls.  相似文献   

4.
We have isolated and purified a cell surface sialoglycopeptide (SGP) from bovine cerebral cortex cells that previously was shown to be a potent inhibitor of cellular protein synthesis. The following studies were carried out to characterize the potential ability of the SGP to inhibit DNA synthesis and to arrest cell division. Treatment of exponentially proliferating Swiss 3T3 cells with the SGP inhibitor resulted in a marked inhibition of thymidine incorporation within 24 h. When the SGP was removed from inhibited cultures, a sharp rise in 3H-thymidine incorporation followed within 3-4 h that peaked well above that measured in exponentially growing cultures, suggesting that the inhibitory action of the SGP was reversible and that a significant proportion of the arrested cells was synchronized in the mitotic cycle. In addition to DNA synthesis, the inhibitory action of the SGP was monitored by direct measurement of cell number. Consistent with the thymidine incorporation data, the SGP completely inhibited 3T3 cell division 20 h after its addition to exponentially growing cultures. Upon reversal there was a delay of 15 h before cell division resumed, when the arrested cells quickly doubled. Most, if not all, of the growth-arrested cells appeared to have been synchronized by the SGP. The SGP inhibited DNA synthesis in a surprisingly wide variety of target cells, and the relative degree of their sensitivity to the inhibitor was remarkably similar. Cells sensitive to the SGP ranged from vertebrate to invertebrate cells, fibroblast and epitheliallike cells, primary cells and established cell cultures, as well as a wide range of transformed cell lines.  相似文献   

5.
Synchronous cultures of HeLa cells obtained by selective detachment of mitoses were treated with high concentrations of thymidine. The inhibitor was added soon after completion of cell division and rates of cell enlargement and accumulation of DNA, RNA and protein were compared for untreated and thymidine-treated cultures at various points of the cell cycle. It was found that concentrations of thymidine which in randomly growing cultures inhibit the rate of cell division by more than 90% allowed a considerable degree of DNA synthesis and did not affect the rate of accumulation of RNA and protein, when applied to cells in the G1 phase of synchronous culture. Treated and untreated cells enlarged at the same rate throughout their life cycle. The results show that concentrations of thymidine commonly employed to produce cell synchrony do not arrest the cells at the G1-S boundary, but allow slow progress through S in respect to DNA synthesis, and near-normal progress towards G2 as regards RNA and protein accumulation and cell enlargement.  相似文献   

6.
The rate at which the peptidoglycan of Escherichia coli is synthesized during the division cycle was studied with two methods. One method involved synchronization of E. coli MC4100 lysA cultures by centrifugal elutriation and subsequent pulse-labeling of the synchronously growing cultures with [meso-3H]diaminopimelic acid ([3H]Dap). The second method was autoradiography of cells pulse-labeled with [3H]Dap. It was found that the peptidoglycan is synthesized at a more or less exponentially increasing rate during the division cycle with a slight acceleration in this rate as the cells start to constrict. Apparently, polar cap formation requires synthesis of extra surface components, presumably to accommodate for a change in the surface-to-volume ratio. Furthermore, it was found that the pool size of Dap was constant during the division cycle. Close analysis of the topography of [3H]Dap incorporation at the constriction site revealed that constriction proceeded by synthesis of peptidoglycan at the leading edge of the invaginating cell envelope. During constriction, no reallocation of incorporation occurred, i.e., the incorporation at the leading edge remained high throughout the process of constriction. Impairment of penicillin-binding protein 3 by mutation or by the specific beta-lactam antibiotic furazlocillin did not affect [3H]Dap incorporation during initiation of constriction. However, the incorporation at the constriction site was inhibited in later stages of the constriction process. It is concluded that during division at least two peptidoglycan-synthesizing systems are operating sequentially.  相似文献   

7.
Mitochondrial DNA (mit-DNA) synthesis was compared in suspension cultures of Chinese hamster cells (line CHO) whose cell cycle events had been synchronized by isoleucine deprivation or mitotic selection. At hourly intervals during cell cycle progression, synchronized cells were exposed to tritiated thymidine ([3H]TdR), homogenized, and nuclei and mitochondria isolated by differential centrifugation. Mit-DNA and nuclear DNA were isolated and incorporation of radioisotope measured as counts per minute ([3H]TdR) per microgram DNA. Mit-DNA synthesis in cells synchronized by mitotic selection began after 4 h and continued for approximately 9 h. This time-course pattern resembled that of nuclear DNA synthesis. In contrast, mit-DNA synthesis in cells synchronized by isoleucine deprivation did not begin until 9–12 h after addition of isoleucine and virtually all [3H]TdR was incorporated during a 3-h interval. We have concluded from these results that mit-DNA synthesis is inhibited in CHO cells which are arrested in G1 because of isoleucine deprivation and that addition of isoleucine stimulates synchronous synthesis of mit-DNA. We believe this method of synchronizing mit-DNA synthesis may be of value in studies of factors which regulate synthesis of mit-DNA.  相似文献   

8.
In cultures of a murine mastocytoma, endogenous synthesis of thymidine phosphates, as determined by the incorporation of [3H]deoxyuridine into DNA, was reduced within 15 min to less than 3% of control values by the addition of amethopterin (10 µM) in combination with hypoxanthine and glycine. If [3H]thymidine and unlabeled thymidine were added simultaneously with amethopterin, the increase with time of radioactivity in cellular DNA was linear at least between 30 and 90 min, while radioactivity in the acid-soluble nucleotide fraction remained constant during this time interval, indicating that intracellular thymidine nucleotides had the same specific activity as exogenously supplied [3H]thymidine. This permitted calculation of the amount of thymidine incorporated per hour into DNA of 106 cells. In conjunction with the base composition of mouse DNA, these results were used to calculate rates of DNA synthesis. Cell proliferation rate, cell cycle time, and the duration of the S period were not affected to any appreciable extent by the addition of amethopterin and thymidine. Rates of DNA synthesis, as derived from thymidine incorporation rates, were in good agreement with those derived from the measured mean DNA content of exponentially multiplying cells and rates of cell proliferation.  相似文献   

9.
R James  J Y Haga    A B Pardee 《Journal of bacteriology》1975,122(3):1283-1292
Analysis of exponential and synchronous cultures of Escherichia coli B/r after the addition of FL1060 indicates a block point for division by this agent some 15 to 20 min before the end of the preceding cell division cycle, a time corresponding to the beginning of the C period of the cell division cycle. Morphological examination of FL1060-treated synchronous cultures of E. coli /r was consistent with inhibition by FL1060 of a very early event in the cell division cycle. This event appears to be essential for normal cell surface elongation in a rod configuration. Temporary treatment of synchronous cultures of E. coli B/r with FL1060 resulted in division delay, the extent of which was a function of the duration of exposure to FL1060. However, even after relatively long times of FL1060 treatment the delayed divisions were still synchronous. Although FL1060 had no direct effect on deoxyribonucleic acid (DNA) synthesis, the synchronous delayed division occuring after temporary treatment with FL1060 were accompanied by a delay in the attainment of resistance of cell division to inhibitors of DNA, ribonucleic acid, and protein synthesis. These results suggest aht an FL1060-sensitive event initiates at the beginning of the C period of the cell division cycle of E. coli and is responsible for normal cell elongation. This cell elongation pathway procedes independently of DNA synthesis, but there is an interaction between this pathway and termination of a round of DNA replication in which a normal rod configuration is necessary to allow a signal for cell division to be generated upon completion of DNA replication.  相似文献   

10.
1. Mouse-fibroblast cultures in the stationary phase of growth show an increased rate of [(3)H]thymidine incorporation into DNA from 12 to 44hr. after infection with polyoma virus. 2. Intracellular virus progeny is first detected at about 24hr. after infection. 3. Calculations based on the [(3)H]thymidine-incorporation data and direct measurements of the DNA content of the cell cultures indicate that the amount of the excess of DNA synthesized by the infected cell cultures corresponds to about 10% of their total DNA. 4. The mitotic index of the cell cultures at 40hr. after infection was significantly higher than that of non-infected control cells. 5. Possible interpretations of the stimulation of DNA synthesis observed in polyoma-infected cell cultures are discussed.  相似文献   

11.
Nuclear DNA (ncDNA) synthesis in Chlamydomonas reinhardtii was measured by both 32P[or-thophosphoric acid] (32P) and [14C]adenine incorporation and found to be highly synchronous. Ca. 85% of incorporation was confined to the first 6 h of the dark period of a synchronized regime consisting of an alternating light-dark period of 12 h each. In contrast, no such synchronous incorporation pattern was found for chloroplast (cp) and mitochondrial (mt) DNAs in the same cell population. These two organellar DNAs also exhibited different 32P-incorporation patterns in the cell cycle. Considerable amounts of 32P were incorporated into cpDNA throughout the light-dark synchronous cycle under both mixo- and phototrophic growth conditions, although the second 6-h light period under phototrophy showed an increase not apparent under mixotrophy. This change in growth conditions did not affect 32P incorporation into mtDNA, which was found throughout the cell cycle, with a modest peak in the first 6-h of the dark period. The pattern of [3H]thymidine incorporation into cpDNA was also determined. Under synchronous phototrophic conditions, this pattern was quite different from that obtained with 32P. Most [3H]thymidine incorporation occurred during the light period of the synchronous cycle; this period had been shown previously by density transfer experiments to be the time of cpDNA duplication. Such preferential [3H]thymidine incorporation into cpDNA in the light period was not observed under mixotrophic synchronous growth conditions; in these, [3H]thymidine incorporation was detected throughout the cell cycle. This lack of coincidence between the patterns of 32P- and of [3H]thymidine incorporation into cpDNA during the synchronous cell cycle indicates that in addition to replication, the considerably reiterated organelle-DNA molecules may also regularly undergo an extensive repair process during each cell cycle.  相似文献   

12.
A new type of temperature-sensitive deoxyribonucleic acid (DNA) synthesis mutant, which can divide without a completion of DNA replication, was isolated from a thymidine-requiring Escherichia coli strain by means of photo-bromouracil selection after nitrosoguanidine mutagenesis. In this mutant, in spite of the fact that DNA synthesis stopped immediately after the temperature shift from 30 to 41 C, cells could continue to divide, though at a reduced rate. This cell division without DNA synthesis at 41 C is further supported by the following results. (i) Cell division took place at high temperature without addition of thymidine but not at all at 30 C. The parent strain of the mutant did not divide at 41 C without thymidine. (ii) Smaller cells isolated from the culture grown at 41 C did not contain DNA. This was shown by chemical analysis of the smaller cells and on electron micrographs. Ability of cells to divide was examined according to sizes of cells. By using the culture at 30 C, cells of various sizes were separated by means of sucrose-density gradient centrifugation. It was found that all cell fractions, including the smallest one, could divide at high temperature. These results suggest that in this mutant the completion of DNA replication is not required for triggering cell division at high temperature. Heat sensitivity of a factor which links cell division with DNA replication appears to be responsible. Some possible mechanisms of the coordination between cell division and DNA replication are discussed.  相似文献   

13.
Addition of certain ribonucleosides to exponentially growing cultures of Escherichia coli increased the extent of thymidine incorporation. The prolonged uptake of thymidine was correlative with the ability of these ribonucleosides to prevent the degradation of thymidine. In addition to protecting thymidine, uridine reversed partially (70 to 80%) the inhibition of deoxyribonucleic acid (DNA) synthesis in thymineless auxotrophs by cytosine arabinoside, hydroxyurea, and nalidixic acid. This reversal was selective for auxotrophic strains since no reversal of inhibition by uridine was observed in any of the prototrophic strains examined. In the presence of uridine, the rapid assimilation of thymidine by prototrophic and auxotrophic strains was prevented and the rate of DNA synthesis became a function of the available exogenous thymidine. Under these conditions, prototrophic strains accumulated equivalent amounts of thymidine into the acid-soluble (pool) and acid-insoluble (DNA) cell fractions. In contrast, 95 to 98% of the thymidine taken up by auxotrophs was found in the acid-insoluble (DNA) cell fraction. The results suggest that different mechanisms for DNA synthesis exist in auxotrophs and prototrophs. Based on these observed differences, some possible mechanisms for the selective reversal of the inhibition of DNA synthesis in auxotrophs are discussed.  相似文献   

14.
Bacterial DNA synthesis, as measured by the incorporation of [methyl-3H] thymidine, was examined during conditions of decreasing biomass and non-growth of three heterotrophic marine bacteria. High rates of [3H] thymidine incorporation were recorded during the initial phase of starvation and two strains exhibited a net increase in DNA during the first few hours of starvation. The decreased rate of [3H] thymidine incorporation with the time of starvation, was in agreement with the decrease in the percentage of the total population that showed uptake of labelled thymidine, as seen by a combined autoradiography-epifluorescence technique. It is suggested that new rounds of replications were initiated after cells had been starved for times that well exceeded the time for replication of genomes during growing The initial increase in cell numbers upon transfer of growing cells to a starvation regime was inhibited by nalidixic acid, suggesting that DNA synthesis, rather than an excess of nuclear bodies, allow for the fragmentation process in these strains.  相似文献   

15.
The methylation of nucleic acids has been investigated during the cell cycle of an asparagine dependent strain of transformed fibroblasts (BHK 21 HS 5). The synchrony was carried out by a partial asparagine starvation of cells for 24 hours. The amino acid supply induced all cells to enter synchronously the G1 phase. Methylation and DNA synthesis were respectively measured by pulsed [methyl-14C] methionine and [methyl-3H] thymidine incorporation. DNA methylation followed a biphasic pattern with maximal methyl incorporations during both S phase and mitosis. A partial desynchronisation induced the S phase of the second cycle to proceed before all the cells have achieved their division. Hydroxyurea was used in order to inhibit the DNA synthesis of cells entering the second cell cycle, which might interfer with the mitosis of the first one. The inhibitor was added either at the first beginning of cell division or during all the G1 phase. In both conditions it suppressed 3H thymidine incorporation of the second cycle. However, mitosis took place and methylations occurred as in previous experiments. The DNA methylation of the mitotic phase in the first cell cycle could thus be dissociated from the classical post-synthetic DNA maturation and did not correspond to any DNA methylation appearing in the course of the second cell cycle.  相似文献   

16.
Lipid synthesis during the cell duplication cycle of Bacillus megaterium KM and Escherichia coli was studied by glycerol incorporation both in synchronized cultures and in unsynchronized exponentially growing populations subsequently fractionated according to size (and age). A large transient increase in the rate of incorporation per unit cell mass was observed around the time of cell division, probably reflecting the synthesis of the division septum.  相似文献   

17.
Summary In synchronous cultures of P-815 murine mastocytoma and of Chinese hamster ovary (CHO) cells, the relative contribution of exogenous thymidine to DNA synthesis was studied by comparing rates of (3H)thymidine incorporation with the rate of DNA synthesis as derived from incorporation of (3H)thymidine (10–5 m) in the presence of amethopterin. In synchronous P-815 cultures, time-dependent variations of DNA synthesis rates were in close agreement with those of (3H)thymidine incorporation rates at concentrations of the precursor ranging from 5 × 10–8 to 10–5 m. Similarly, in synchronous CHO cell cultures prepared by two different methods, time-dependent changes in DNA synthesis rate were almost identical with those of the rate of incorporation of (3H)thymidine supplied at 5 × 10–8 m. Thus, at a given thymidine concentration in the medium, the proportion of thymine residues in DNA that were derived from exogenous thymidine remained nearly constant, even though rates of cellular DNA synthesis underwent pronounced changes. This indicates that in the synchronous culture systems used, utilization of exogenous thymidine is efficiently adapted to changing rates of DNA synthesis.In partial fulfillment of the requirements for the degree of Ph.D. by G.G.M.  相似文献   

18.
Employing defined media conditions, the insulin sensitivities of mouse mammary gland epithelial cells in primary culture and MCF-7 human mammary epithelial cells were determined. Insulin stimulated the rates of (3H] uridine incorporation into RNA and [3H] leucine incorporation into protein in both primary mouse mammary gland epithelial cell cultures and MCF-7 cell cultures at concentrations approximating the dilution endpoint of the hormone (10-21 M). Insulin stimulated the rate of [3H] thymidine incorporation into DNA in primary mouse mammary gland epithelial cells at the dilution endpoint concentrations. However, MCF-7 cells required insulin concentrations 100-1000-times that necessary in mouse mammary epithelial cultures to elicit an increased rate of [3H] thymidine incorporation into DNA. Evidence is presented which suggests that the increased rates of uptake of 3H- uridine, [3H] thymidine and [3H] leucine into their respective precursor pools is not responsible for the apparent stimulation of RNA, DNA and protein synthesis.  相似文献   

19.
Populations of G1 phase 3T3 and SV40 3T3 mouse fibroblasts have been isolated from exponentially growing cultures by the technique of centrifugal elutriation. Return of the G1 phase cells to growth conditions results in their synchronous passage through the cell cycle, as determined from monitoring of cell number, [3H]thymidine ([3H]TdR) incorporation and fraction of [3H]TdR labeled nuclei. The durations of G1, S and G2 phases are consistent with values obtained by previous investigators using conventional induction techniques for synchronization. The method for isolation of the G1 phase cells is rapid, the yield is high and the process does not appear to alter the temporal aspects of the cell cycle in either cell type.  相似文献   

20.
A direct comparison of [H]thymidine incorporation with DNA synthesis was made by using an exponentially growing estuarine bacterial isolate and the naturally occurring bacterial populations in a eutrophic subtropical estuary and in oligotrophic offshore waters. Simultaneous measurements of [H]thymidine incorporation into DNA, fluorometrically determined DNA content, and direct counts were made over time. DNA synthesis estimated from thymidine incorporation values was compared with fluorometrically determined changes in DNA content. Even after isotope dilution, nonspecific macromolecular labeling, and efficiency of DNA recovery were accounted for, [H]thymidine incorporation consistently underestimated DNA synthesized by six- to eightfold. These results indicate that although the relationship of [H]thymidine incorporation to DNA synthesis appears consistent, there are significant sources of thymine bases incorporated into DNA which cannot be accounted for by standard [H]thymidine incorporation and isotope dilution assays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号