首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The original GRID/PCA technique was adapted for the development of a tool potentially useful for the plan of a research strategy in rational enzyme design. The use of the MOVE directive of GRID made it possible to partially take into account protein flexibility, and the multivariate analysis was used as an instrument for focusing only on relevant information related to the differences in enzyme substrate selectivities. The comparison of two different penicillin G acylases, from Escherichia coli and from Providentia rettgeri, was used as a case study; these enzymes are very similar and their reported selectivities differ only for a couple of mutations around the active site. The "flexible" GRID/PCA method was able to correctly predict the observed selectivity differences caused not only by mutations of residues of the active site but also by long range effects on substrate selectivity due to sequence mutations on residues not directly involved in substrate recognition.  相似文献   

2.
(1) Dibucaine evokes a downward shift in the phase transition temperature of saturated phosphatidylcholines, while it also affects the pretransition. (2) The binding of dibucaine to phosphatidylcholine liposomes increases sharply when the lipid is transformed from the gel phase to the liquid-crystalline phase. (3) The activity of Naja naja phospholipase A2 towards dimyristoyl phosphatidylcholine liposomes is either stimulated or inhibited by dibucaine, depending on whether the substrate is in the gel or the liquid-crystalline state, respectively, whereas the activity of pancreatic phospholipase A2 is inhibited by the anesthetic irrespective of the physical state of the substrate. This observation is further substantiated by the results of studies on liposomes prepared from mixtures of dimyristoyl and dipalmitoyl phosphatidylcholine or dilauroyl and distearoyl phosphatidylcholine. (4) The uptake of dibucaine by positively charged liposomes composed of phosphatidylcholine and stearylamine is considerably reduced in comparison with pure phosphatidylcholine liposomes. This decrease is paralleled by a reduction of the inhibitory and stimulatory effects of dibucaine on the hydrolysis of such liposomes by pancreatic and Naja naja phospholipase, respectively. (5) The inhibitory action of dibucaine towards the pancreatic phospholipase is lowered by increasing CaCl2 concentrations. This reduction is accompanied by a decreased uptake of anesthetic by the liposomes.  相似文献   

3.
The e-NMR project is a European cooperation initiative that aims at providing the bio-NMR user community with a software platform integrating and streamlining the computational approaches necessary for the analysis of bio-NMR data. The e-NMR platform is based on a Grid computational infrastructure. A main focus of the current implementation of the e-NMR platform is on streamlining structure determination protocols. Indeed, to facilitate the use of NMR spectroscopy in the life sciences, the eNMR consortium has set out to provide protocolized services through easy-to-use web interfaces, while still retaining sufficient flexibility to handle specific requests by expert users. Various programs relevant for structural biology applications are already available through the e-NMR portal, including HADDOCK, XPLOR-NIH, CYANA and csRosetta. The implementation of these services, and in particular the distribution of calculations to the GRID infrastructure, has required the development of specific tools. However, the GRID infrastructure is maintained completely transparent to the users. With more than 150 registered users, eNMR is currently the second largest European Virtual Organization in the life sciences.  相似文献   

4.
[1-14C]Oleic and [1-14C]linoleic acids were rapidly desaturated when incubated with maize leaves from 8-day-old plants and the labeled fatty acids, and their desaturation products, were rapidly incorporated into glycerolipids. Oleic acid was desaturated to linoleate at the rate of 0.7 nmol/100 mg tissue/h and further desaturated to linolenate at about one-third this rate. The rates of linolenate formation were similar when either oleic acid or linoleic acid was the substrate although there was a 2-h lag period when oleic acid was substrate. When radioactive oleic, linoleic, and linolenic acids were substrates, phosphatidylcholine was the most extensively labeled glycerolipid followed by monogalactosyldiacylglycerol. The relative rates of incorporation of label into individual glycerolipids are consistent with a movement of labeled fatty acids from phosphatidylcholine to monogalactosyldiacylglycerol and then to diagalactosyldiacylglycerol. The rates of labeling of phosphatidylcholine oleate and of phosphatidylcholine linoleate are consistent with a precursor-product relationship in that there was a delayed accumulation of phosphatidylcholine linoleate relative to that of phosphatidylcholine oleate and phosphatidylcholine linoleate continued to accumulate while phosphatidylcholine oleate declined. Linoleate formed from oleate was widely distributed in glycerolipids but neither phosphatidylcholine linolenate nor linolenate-containing diacylglycerol was detected at short and intermediate incubation times when either oleic or linoleic acid was substrate. The kinetics of incorporation of linoleate and linolenate into monogalactosyldiacylglycerol suggest a transfer of linoleate from phosphatidylcholine. The initial rate of accumulation of labeled linolenate in monogalactosyldiacylglycerol was very similar to the rate of desaturation of linoleate and it is suggested that desaturation of linoleate occurs while associated with monogalactosyl-diacylglycerol.  相似文献   

5.
Endogenous diacylglycerol and diacylglycerol, synthesized in vitro by glycerol 3-phosphate acylation, are not mixed and represent different substrate pools for the biosynthesis of phosphatidylcholine in microsomes of rat muscle, liver and lung. Freshly isolated lung microsomes contain 12-18 nmol diacylglycerol per mg protein, and incubation with CDPcholine showed a biphasic curve for the synthesis of phosphatidylcholine as lung microsomes enriched in diacylglycerol through the glycerol phosphate pathway. With respect to the synthesis of phosphatidylcholine, a part of this endogenous diacylglycerol (0.4-0.8 nmol/mg) was comparable with diacylglycerol de novo formed in vitro by glycerol 3-phosphate acylation. An increase in the relative proportion of de novo-formed diacylglycerol in the total amount of diacylglycerol caused an increase in phosphatidylcholine synthesis by nearly the same factor. The apparent Km of the de novo-formed diacylglycerol substrate for the choline phosphotransferase was 10-times higher than the pool size of this diacylglycerol substrate in freshly isolated lung microsomes. The results supported the idea that the availability of this substrate type may be rte limiting for the de novo synthesis of phosphatidylcholine. As shown by use of the proteolytic technique measuring the mannose-6-phosphatase as lumenal control activity, the phosphatidylcholine synthesis from de novo-formed diacylglycerol and endogenous as well as exogenous diacylglycerol seems to be located on the cytoplasmic leaflet of the microsomal vesicles isolated from rat lung.  相似文献   

6.
For the first time a consistent catalytic mechanism of phospholipase C from Bacillus cereus is reported based on molecular mechanics calculations. We have identified the position of the nucleophilic water molecule, which is directly involved in the hydrolysis of the natural substrate, phosphatidylcholine, in phospholipase C. This catalytically essential water molecule, after being activated by an acidic residue (Asp55), performs the nucleophilic attack on the phosphorus atom in the substrate, leading to a trigonal bipyramidal pentacoordinated intermediate (and structurally similar transition state). The subsequent collapse of the intermediate, regeneration of the enzyme, and release of the products has to involve a not yet identified second water molecule. The catalytic mechanism reported here is based on a series of molecular mechanics calculations. First, the x-ray structure of phospholipase C from B. cereus including a docked substrate molecule was subjected to a stepwise molecular mechanics energy minimization. Second, the location of the nucleophilic water molecule in the active site of the fully relaxed enzyme–substrate complex was determined by evaluation of nonbonded interaction energies between the complex and a water molecule. The nucleophilic water molecule is positioned at a distance (3.8 Å) from the phosphorus atom in the substrate, which is in good agreement with experimentally observed distances. Finally, the stability of the complex between phospholipase C, the substrate, and the nucleophilic water molecule was verified during a 100 ps molecular dynamics simulation. During the simulation the substrate undergoes a conformational change, but retains its localization in the active site. The contacts between the enzyme, the substrate, and the nucleophilic water molecule display some fluctuations, but remain within reasonable limits, thereby confirming the stability of the enzyme–substrate–water complex. The protocol developed for energy minimization of phospholipase C containing three zinc ions located closely together at the bottom of the active site cleft is reported in detail. In order to handle the strong electrostatic interactions in the active site realistically during energy minimization, delocalization of the charges from the three zinc ions was considered. Therefore, quantum mechanics calculations on the zinc ions and the zinc-coordinating residues were carried out prior to the molecular mechanics calculations, and two different sets of partial atomic charges (MNDO-Mulliken and AM1-ESP) were applied. After careful assignment of partial atomic charges, a complete energy minimization of the protein was carried out by a stepwise procedure without explicit solvent molecules. Energy minimization with either set of charges yielded structures, which were very similar both to the x-ray structure and to each other, although using AM1-ESP partial atomic charges and a dielectric constant of 4, yielded the best protein structure. © 1997 John Wiley and Sons, Inc. Biopoly 42: 319–336, 1997  相似文献   

7.
The activity and specificity of phospholipase A2 from cobra venom (Naja naja naja) toward binary mixtures of phosphatidylcholine and phosphatidylethanolamine in mixed micelles with the nonionic surfactant Triton X-100 were examined. In mixtures containing 5–50 mol % phosphatidylcholine, the rate for phosphatidylethanolamine hydrolysis was enhanced greatly over that for phosphatidylcholine. This is in marked contrast to previous studies with individual phospholipid species in mixed micelles where phosphatidylcholine was found to be the preferred substrate and phosphatidylethanolamine was found to be a very poor substrate. Possible explanations for this specificity reversal are considered.  相似文献   

8.
Using dynamic light scattering and 31P-NMR spectroscopy methods, the reaction of solubilization of phosphatidylcholine by the ionic detergent, sodium deoxycholate, in aqueous solutions was studied. The kinetics of phosphatidylchodine hydrolysis by phospholipase C from B. cereus depending on the size and structural organization of substrate aggregates was investigated. No phosphatidylcholine hydrolysis was observed in the case of lamellar organization of the substrate, the size of lamellas not exceeding 2000-5000 A. The substrate hydrolysis rate within mixed micelles was controlled by the accessibility of the substrate on the surface of micellar aggregates. There was a decrease in the phosphatidylcholine hydrolysis rate at high detergent concentrations in the system. It was concluded that such a decrease in the hydrolysis rate can be due to two reasons, i) the decrease in mixed micelle size with a simultaneous decrease of surface concentration of the substrate, and, ii) the formation of "pure" detergent micelles capable to adsorb the enzyme by decreasing the "effective" concentration of phospholipase C.  相似文献   

9.
Adapter proteins such as Grb2 play a central role in the formation of signaling complexes through their association with multiple protein binding partners. These interactions are mediated by specialized domains such as the well-characterized Src homology SH2 and SH3 motifs. Using yeast three-hybrid technology, we have identified a novel adapter protein, expressed predominantly in T lymphocytes, that associates with the activated form of the costimulatory receptor, CD28. The protein is a member of the Grb2 family of adapter proteins and contains an SH3-SH2-SH3 domain structure. A unique glutamine/proline-rich domain (insert domain) of unknown function is situated between the SH2 and N-terminal SH3 domains. We term this protein GRID for Grb2-related protein with insert domain. GRID coimmunoprecipitates with CD28 from Jurkat cell lysates following activation of CD28. Using mutants of CD28 and GRID, we demonstrate that interaction between the proteins is dependent on phosphorylation of CD28 at tyrosine 173 and integrity of the GRID SH2 domain, although there are also subsidiary stabilizing contacts between the PXXP motifs of CD28 and the GRID C-terminal SH3 domain. In addition to CD28, GRID interacts with a number of other T cell signaling proteins, including SLP-76 (SH2 domain-containing leukocyte protein of 76 kDa), p62dok, and RACK-1 (receptor for activated protein kinase C-1). These findings suggest that GRID functions as an adapter protein in the CD28-mediated costimulatory pathway in T cells.  相似文献   

10.
Radiation-induced bystander effects have been extensively studied at low doses, since evidence of bystander induced cell killing and other effects on unirradiated cells were found to be predominant at doses up to 0.5 Gy. Therefore, few studies have examined bystander effects induced by exposure to higher doses of radiation, such as spatially fractionated radiation (GRID) treatment. In the present study, we evaluate the ability of GRID treatment to induce changes in GRID adjacent (bystander) regions, in two different murine carcinoma cell lines following exposure to a single irradiation dose of 10 Gy. Murine SCK mammary carcinoma cells and SCCVII squamous carcinoma cells were irradiated using a brass collimator to create a GRID pattern of nine circular fields 12 mm in diameter with a center-to-center distance of 18 mm. Similar to the typical clinical implementation of GRID, this is approximately a 50:50 ratio of direct and bystander exposure. We also performed experiments by irradiating separate cultures and transferring the medium to unirradiated bystander cultures. Clonogenic survival was evaluated in both cell lines to determine the occurrence of radiation-induced bystander effects. For the purpose of our study, we have defined bystander cells as GRID adjacent cells that received approximately 1 Gy scatter dose or unirradiated cells receiving conditioned medium from irradiated cells. We observed significant bystander killing of cells adjacent to the GRID irradiated regions compared to sham treated controls. We also observed bystander killing of SCK and SCCVII cells cultured in conditioned medium obtained from cells irradiated with 10 Gy. Therefore, our results confirm the occurrence of bystander effects following exposure to a high-dose of radiation and suggest that cell-to-cell contact is not required for these effects. In addition, the gene expression profile for DNA damage and cellular stress response signaling in SCCVII cells after GRID exposure was studied. The occurrence of GRID-induced bystander gene expression changes in significant numbers of DNA damage and cellular stress response signaling genes, providing molecular evidence for possible mechanisms of bystander cell killing.  相似文献   

11.
The effects of the substrate properties on the catalytic activity of lysosomal cholesteryl ester hydrolase from rat liver have been examined with three standard substrate types: vesicle, micelle and emulsion. The pH optimum of the enzyme coincided to 4.5--5.0 with the substrate types employed. The apparent Km values were 15.3, 14.3 and 7.3 microM for vesicle, micelle and emulsion substrates, respectively. In the systems used in this study reaction products, cholesterol and oleic acid, and the nonionic surfactant Tween 80 and Triton X-100 Had an inhibitory effect. The emulsifier phosphatidylcholine and the charged phospholipid phosphatidic acid stimulated the activity. The mixed micelle of sodium taurocholate and phosphatidylcholine was the most potent substrate vehicle. With dipalmitoyl phosphatidylcholine vesicles the enzyme showed maximal activity at the gel-liquid-crystalline transition temperature of the phospholipid. The possible physiological significance of the lysosomal cholesteryl ester hydrolase is discussed with special reference to the form of the substrate.  相似文献   

12.
The hydroxylation of fluorobenzene and aniline, catalyzed by the porphyrin-Fe(III)-peroxide anion with either a cysteinate- or a histidyl-type of axial ligand as well as the hydroxylation of fluorobenzene, catalyzed by porphyrin-Fe(III)-hydroperoxide with a cysteinate-type of axial ligand as catalytic intermediates, have been investigated by electronic structure calculations in local spin-density approximation. Non-repulsive potential curves are, in contrast with porphyrin-Fe(III)-hydroperoxide, obtained only in the case of porphyrin-Fe(III)-peroxide anion as catalytic intermediate. The mutual substrate-porphyrin orientation with a dihedral angle between the plane of the substrate and the porphyrin plane of 45 degrees is more favorable compared with the parallel orientation between these two planes. This orientation differs for the case of fluorobenzene hydroxylation from the corresponding one calculated by us with the ferryl-oxo-pi-cation radical complex as a catalytic intermediate. The calculated reaction profiles show also the effectiveness of the histidyl-type coordinated porphyrin-Fe(III)-peroxide involved in P450 type of hydroxylation reactions. The calculations demonstrate the predominant role of the O1-O2 moiety of the porphyrin-Fe(III)-peroxide anion in the hydroxylation process of the substrates. The results indicate that the porphyrin-Fe(III)-peroxide anion is an effective catalytic species in hydroxylation reactions. In all the studied cases irrespective of the substrate and the nature of the axial ligand, the potential curves reach minimum at approximately 130-140 pm, expressing the length of an aromatic C-O bond.  相似文献   

13.
The Lurcher mutation transforms the GRID2 receptor into a constitutively opened channel. In Lurcher heterozygous mice, cerebellar Purkinje cells are permanently depolarized, a characteristic that has been thought to be the primary cause of their death, which occurs from the second postnatal week onward. The more dramatic phenotype of Lurcher homozygotes is thought to be due to a simple gene dosage effect of the mutant allele. We have analyzed the phenotype of Lurcher/hotfoot heteroallelic mutants bearing only one copy of the Lurcher allele and no wild-type Grid2. Our results show that the absence of wild-type GRID2 receptors in these heteroallelic mutants induces an early and massive Purkinje cell death that is correlated with early signs of autophagy. This neuronal death is independent of depolarization and can be explained by the direct activation of autophagy by Lurcher GRID2 receptors through the recently discovered signaling pathway formed by GRID2, n-PIST, and Beclin1.  相似文献   

14.
The effect of lipid composition of liposomes on peroxidation induced by ferrous ion and ascorbate was examined. Temperature affects the sensitivity of liposomes; the peroxidation rate was increased with increase of the incubation temperature. With liposomes consisting of 1-palmitoyl-2-arachidonyl phosphatidylcholine (substrate) and a peroxidation-insensitive lipid, 1-palmitoyl-2-oleoyl phosphatidylcholine, peroxidation was dependent on the density of the substrate. No appreciable peroxidation was observed with liposomes containing less than 10 mol% of the substrate at 37 degrees C. When 1 mol substrate was mixed with 9 mol dimyristoyl phosphatidylcholine, peroxidation occurred below 10 degrees C, but not above 20 degrees C. Above 20 degrees C, the substrates should be located homogeneously on the membranes, whereas they should be clustered below 10 degrees C, since the gel-liquid crystalline phase transition temperature of matrix membrane of dimyristoylphosphatidylcholine was 17-21 degrees C. Peroxidation of liposomes consisting of 1-palmitoyl-2-arachidonyl phosphatidylcholine was also suppressed by cholesterol. These findings indicate that the lateral distribution as well as the density of the substrate on membranes affects the sensitivity of the substrate to peroxidation. It was also found that alpha-tocopherol is preferentially located in the 1-palmitoyl-2-arachidonyl phosphatidylcholine-rich regions of membranes consisting of mixed phospholipids, and efficiently suppresses peroxidation of liposomal lipids.  相似文献   

15.
Diacylglycerol kinase purified from pig brain cytosol could use sonication-dispersed diacylglycerol in the presence of its activator, phosphatidylcholine vesicles. However, the kinase failed to significantly use diacylglycerol cosonicated with phosphatidylcholine. Similarly, the kinase could not use diacylglycerol generated in microsomes by the back reaction of diacylglycerol choline phosphotransferase, though phospholipase C treatment of microsomes yielded effective substrate for the kinase. In order to elucidate the mechanism of these discrepant findings, we studied the activity of the purified kinase and Rhizopus arrhizus lipase utilizing dioleoylglycerol incorporated into various phospholipid vesicles. The inaccessibility of diacylglycerol contained in phospholipid vesicles was observed similarly for the two different enzymes. We considered that the apparent enzymic latency of diacylglycerol could be best accounted for by an extremely limited solubility of diacylglycerol in the outer leaflet of phospholipid bilayers. The experimental bases for this interpretation are: 1) diacylglycerol cosonicated with dihexanoyl phosphatidylcholine was exceptionally effective as substrate for the kinase; 2) the enzyme activities with cosonicated and separately sonicated lipids became similar when bile salts were present; 3) both enzymes could use diacylglycerol generated on phosphatidylcholine vesicles by a limited phospholipase C hydrolysis; and 4) phosphatidylcholine diacylglycerol vesicles at widely different molar ratios (from 1:0.014 to 1:0.2) were similarly ineffective as substrate for both enzymes.  相似文献   

16.
On the substrate specificity of rat liver phospholipase A1   总被引:1,自引:0,他引:1  
The substrate specificity of purified phospholipase A1 was studied using mixed micelles of phospholipid and Triton X-100. The kinetic analysis employed determined Vmax, Ks (a dissociation constant for the phospholipase A1-mixed micelle complex), and Km (the Michaelis constant for the catalytic step which reflects the binding of the enzyme to the substrate in the interface). The order of Vmax values was phosphatidic acid greater than phosphatidylethanolamine greater than phosphatidylcholine greater than phosphatidylserine. The order of Ks values was phosphatidylcholine greater than phosphatidylethanolamine greater than phosphatidic acid greater than phosphatidylserine; the order of Km values was phosphatidic acid greater than phosphatidylethanolamine = phosphatidylserine greater than phosphatidylcholine. When present together, phosphatidylcholine inhibited the hydrolysis of phosphatidylethanolamine but phosphatidylethanolamine did not affect the hydrolysis of phosphatidylcholine. Sphingomyelin, phosphatidylcholine plasmalogen, and phosphatidylethanolamine plasmalogen had no effect on the hydrolysis of phosphatidylethanolamine. The effects of the reaction products, lysolipids and/or fatty acids, were also considered for their influence on phosphatidylethanolamine hydrolysis catalyzed by phospholipase A1. Free fatty acid was found to inhibit, whereas lysophospholipids stimulated hydrolysis of phosphatidylethanolamine. In a mixture of 1,2- and 1,3-diacylglycerides in mixed micelles, only the acyl chain at the sn-1 position of the 1,2 compound was hydrolyzed. Surface charge did not modulate the hydrolysis of phosphatidylcholine vesicles or mixed micelles. In conclusion, it is hypothesized that steric hindrance at position 3 of the glycerol regulates substrate binding in the active site and that an acyl group in position 1 is favored over a vinyl ether linkage for binding.  相似文献   

17.
The flavin enzyme dihydroorotate dehydrogenase (DHOD; EC 1.3.99.11) catalyzes the oxidation of dihydroorotate to orotate, the fourth step in the de novo pyrimidine biosynthesis of UMP. The enzyme is a promising target for drug design in different biological and clinical applications for cancer and arthritis. The first crystal structure of the class 2 dihydroorotate dehydrogenase from rat has been determined in complex with its two inhibitors brequinar and atovaquone. These inhibitors have shown promising results as anti-proliferative, immunosuppressive, and antiparasitic agents. A unique feature of the class 2 DHODs is their N-terminal extension, which folds into a separate domain comprising two alpha-helices. This domain serves as the binding site for the two inhibitors and the respiratory quinones acting as the second substrate for the class 2 DHODs. The orientation of the first N-terminal helix is very different in the two complexes of rat DHOD (DHODR). Binding of atovaquone causes a 12 A movement of the first residue in the first alpha-helix. Based on the information from the two structures of DHODR, a model for binding of the quinone and the residues important for the interactions could be defined. His 56 and Arg 136, which are fully conserved in all class 2 DHODs, seem to play a key role in the interaction with the electron acceptor. The differences between the membrane-bound rat DHOD and membrane-associated class 2 DHODs exemplified by the Escherichia coli DHOD has been investigated by GRID computations of the hydrophobic probes predicted to interact with the membrane.  相似文献   

18.
Phospholipase A2 will act on dipalmitoyl phosphatidylcholine as substrate when the phospholipid is part of a mixed micelle with Triton X-100 at a molar ratio of Triton to phospholipid of 2:1 or greater. Kinetic studies at high molar ratios of Triton X-100 to phospholipid are reported and show that the binding of phospholipase A2 to substrate depends on the total concentration of Triton X-100 and phospholipid, but that the rate of enzymatic catalysis decreases proportionally to the Triton X-100 concentration. These results are interpreted in terms of a model involving surface dilution kinetics. The relationship of this model to that of competitive inhibition is discussed. In addition, the activity of phospholipase A2 towards dipalmitoyl phosphatidylcholine and dimyristoyl phosphatidylcholine at different temperatures is reported, and the results show a direct effect of the thermotropic phase transition of dipalmitoyl phosphatidylcholine on enzymatic activity.  相似文献   

19.
Phosphatidylcholine and phosphatidylethanolamine are the two main phospholipids in eukaryotic cells comprising ~50 and 25% of phospholipid mass, respectively. Phosphatidylcholine is synthesized almost exclusively through the CDP-choline pathway in essentially all mammalian cells. Phosphatidylethanolamine is synthesized through either the CDP-ethanolamine pathway or by the decarboxylation of phosphatidylserine, with the contribution of each pathway being cell type dependent. Two human genes, CEPT1 and CPT1, code for the total compliment of activities that directly synthesize phosphatidylcholine and phosphatidylethanolamine through the CDP-alcohol pathways. CEPT1 transfers a phosphobase from either CDP-choline or CDP-ethanolamine to diacylglycerol to synthesize both phosphatidylcholine and phosphatidylethanolamine, whereas CPT1 synthesizes phosphatidylcholine exclusively. We show through immunofluorescence that brefeldin A treatment relocalizes CPT1, but not CEPT1, implying CPT1 is found in the Golgi. A combination of coimmunofluorescence and subcellular fractionation experiments with various endoplasmic reticulum, Golgi, and nuclear markers confirmed that CPT1 was found in the Golgi and CEPT1 was found in both the endoplasmic reticulum and nuclear membranes. The rate-limiting step for phosphatidylcholine synthesis is catalyzed by the amphitropic CTP:phosphocholine cytidylyltransferase alpha, which is found in the nucleus in most cell types. CTP:phosphocholine cytidylyltransferase alpha is found immediately upstream cholinephosphotransferase, and it translocates from a soluble nuclear location to the nuclear membrane in response to activators of the CDP-choline pathway. Thus, substrate channeling of the CDP-choline produced by CTP:phosphocholine cytidylyltransferase alpha to nuclear located CEPT1 is the mechanism by which upregulation of the CDP-choline pathway increases de novo phosphatidylcholine biosynthesis. In addition, a series of CEPT1 site-directed mutants was generated that allowed for the assignment of specific amino acid residues as structural requirements that directly alter either phospholipid head group or fatty acyl composition. This pinpointed glycine 156 within the catalytic motif as being responsible for the dual CDP-alcohol specificity of CEPT1, whereas mutations within helix 214-228 allowed for the orientation of transmembrane helices surrounding the catalytic site to be definitively positioned.  相似文献   

20.
Dynamic lipidomics of the nucleus   总被引:3,自引:0,他引:3  
Once nuclear envelope membranes have been removed from isolated nuclei, around 6% of mammalian cell phospholipid is retained within the nuclear matrix, which calculations suggest may occupy 10% of the volume of this subcellular compartment. It is now acknowledged that endonuclear phospholipid, largely ignored for the past 40 years, provides substrate for lipid-mediated signaling events. However, given its abundance, it likely also has other as yet incompletely defined roles. Endonuclear phosphatidylcholine is the predominant phospholipid comprising distinct and highly saturated molecular species compared with that of the whole cell. Moreover, this unusual composition is subject to tight homeostatic maintenance even under conditions of extreme dietary manipulation, presumably reflecting a functional requirement for highly saturated endonuclear phosphatidylcholine. Recent application of new lipidomic technologies exploiting tandem electrospray ionization mass spectrometry in conjunction with deuterium stable isotope labeling have permitted us to probe not just molecular species compositions but endonuclear phospholipid acquisition and turnover with unparalleled sensitivity and specificity. What emerges is a picture of a dynamic pool of endonuclear phospholipid subject to autonomous regulation with respect to bulk cellular phospholipid metabolism. Compartmental biosynthesis de novo of endonuclear phosphatidylcholine contrasts with import of phosphatidylinositol synthesized elsewhere. However, irrespective of the precise temporal-spatial-dynamic relationships underpinning phospholipid acquisition, derangement of endonuclear lipid-mediated signaling from these parental phospholipids halts cell growth and division indicating a pivotal control point. This in turn defines the manipulation of compartmentalized endonuclear phospholipid acquisition and metabolism as intriguing potential targets for the development of future antiproliferative strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号