首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
M J Twery  R L Moss 《Peptides》1985,6(4):609-613
The effects of iontophoretically applied human pancreatic growth hormone-releasing factor (hpGRF), peptide histidine isoleucine (PHI-27), and somatostatin (SS) on the extracellular activity of single cells in the hypothalamus, thalamus, and cortex of the rat brain were studied in urethane-anesthetized, male rats. Neurons with membrane sensitivity to hpGRF, PHI-27, and SS were present in each brain region. Although neurons excited by these peptides were encountered in thalamus and hypothalamus, depression of neuronal firing was the predominant response observed. Overall, the neurons responding to hpGRF also possessed membrane sensitivity to PHI-27, whereas, the hpGRF sensitive neurons appeared to be more divided as to their ability to respond to SS. The results clearly demonstrate that hpGRF and PHI-27 are capable of affecting the membrane excitability of neurons in several brain regions. The distribution of neurons sensitive to hpGRF suggests that hypothalamic GRF, in addition to its well documented role in the regulation of pituitary growth hormone secretion, may subserve other physiological events in the rat central nervous system as a neurotransmitter and/or neuromodulator.  相似文献   

2.
Iontophoretic and micropressure drug application and lesion techniques were used to investigate the cellular source of rat limbic system epileptiform responses to opioid peptides [19]. Iontophoretically applied morphine, methionine enkephalin or beta-endorphin inhibited the spontaneous or glutamate-activated firing of the great majority of single neurons in medial and lateral septum, amygdala and cingulate cortex. These inhibitions in firing were antagonized by iontophoresis of naloxone. In contrast to inhibitory effects in other limbic areas, morphine and the opioid peptides predominantly excited CA1 and CA3 pyramidal neurons in a naloxone-sensitive manner, as previously reported [36]. On rare occasions, iontophoretically applied beta-endorphin evoked repetitive waveforms similar to interictal population EPSPs or spikes. Micropressure application of opiates and peptides also excited hippocampal neurons indicating such responses were not current-induced artefacts. The possible role of the excitatory cholinergic septal hippocampal pathway in the facilitatory response of hippocampal units to the opiates was tested with iontophoretically applied atropine and scopolamine, or lesions of septal nuclei. None of these manipulations reduced the opioid-induced excitations; rather, septal lesions enhanced excitatory and epileptiform responses to the opiates. These results support the hypothesis that opiate-evoked epileptiform activity in the limbic system arises from enhanced pyramidal cell activity in the hippocampal formation, probably by a non-cholinergic mechanism.  相似文献   

3.
Vasoactive intestinal polypeptide (VIP), applied iontophoretically, excited 40% of the spontaneously firing rat cortical neurons tested. No neurons were depressed by VIP. When applied simultaneously with adenosine or noradrenaline, VIP depressed the firing of cortical neurons, but this depression could be reproduced by the passage of similar positive currents through a 50 mM NaCl-containing barrel of the multiple barrelled micropipette. VIP, therefore, excited rat cortical neurons and no depressant actions were apparent when VIP was applied together with adenosine or noradrenaline. Leakage of adenosine or noradrenaline during iontophoretic applications of the peptide may account for the reported inhibitory actions of VIP.  相似文献   

4.
The effects of synthetic human calcitonin gene-related peptide (CGRP) on nociceptive response were evaluated in rats by two behavioral tests (tail-flick and hot-plate) and by electrophysiological recording of the firing of thalamic neurons evoked by peripheral noxious mechanical stimuli. CGRP was administered intracerebroventricularly (i.c.v.) and its effects were compared with that of salmon calcitonin (sCT). In the tail-flick test, CGRP (0.25, 2.5 and 5 micrograms/rat) dose-dependently increased response latencies, whereas sCT (0.125, 2.5, 5 and 10 micrograms/rat) did not. Conversely, in the hot-plate test CGRP was effective in enhancing response latencies only at the highest dose of 10 micrograms/rat, while sCT (0.125, 0.25 and 2.5 micrograms/rat) inhibited the hot-plate response dose-dependently. In electrophysiological studies, CGRP (2.5 micrograms/rat, i.c.v.) completely inhibited the evoked neuronal thalamic firing and the same dose of sCT induced only a partial reduction. Furthermore, the antinociceptive effects of CGRP in the tail-flick test and in the electrophysiological studies were not prevented by naloxone. These results demonstrate that central administration of CGRP is effective in inhibiting nociceptive responses and its action like that of sCT does not involve an opioid mechanism. The differences in the antinociceptive profiles of CGRP and sCT suggest that the inhibitory effects of these peptides may involve different neuronal pathways.  相似文献   

5.
F van Valen  E Keck  H Jürgens 《FEBS letters》1989,256(1-2):170-174
Calcitonin gene-related peptide (CGRP) receptor activity was studied in WE-68 human Ewing's sarcoma cells. 125I-human CGRP bound in a time-dependent, reversible and saturable manner. Scatchard plots were compatible with the presence of a homogenous population of CGRP receptors with high affinity (Kd = 15 pM, and Bmax = 1.9 fmol/mg protein). The potency order of unlabeled peptides in the presence of radioligand, was: human CGRP-II greater than human CGRP = chick CGRP greater than rat CGRP = rat [Tyr0]CGRP greater than human [Tyr0] CGRP much greater than salmon calcitonin (CT) greater than rat [Tyr0]CGRP-(28-37). Each peptide except CT and [Tyr0]CGRP-(28-37) stimulated cyclic AMP generation in a concentration-dependent manner, and the relative potencies paralleled their relative ability in inhibiting 125I-human CGRP binding. We conclude that WE-68 Ewing's sarcoma cells express genuine CGRP receptors which upon activation lead to stimulation of cyclic AMP formation  相似文献   

6.
We tested whether heterodimers comprised of calcitonin (CT) receptor lacking the 16-amino acid insert in intracellular domain 1 (CTR(I1-)) and receptor activity-modifying protein (RAMP) can function not only as calcitonin gene-related peptide (CGRP) receptors but also as adrenomedullin (AM) receptors. Whether transfected alone or together with RAMP, human (h)CTR(I1-) appeared mainly at the surface of HEK-293 cells. Expression of CTR(I1-) alone led to significant increases in cAMP in response to hCGRP or hAM, though both peptides remained about 100-fold less potent than hCT. However, the apparent potency of AM, like that of CGRP, approached that of CT when CTR(I1-) was co-expressed with RAMP. CGRP- or AM-evoked cAMP production was strongly inhibited by salmon CT-(8-32), a selective amylin receptor antagonist, but not by hCGRP-(8-37) or hAM-(22-52), antagonists of CGRP and AM receptors, respectively. Moreover, the inhibitory effects of CT-(8-32) were much stronger in cells co-expressing CTR(I1-) and RAMP than in cells expressing CTR(I1-) alone. Co-expression of CTR(I1-) with RAMP thus appears to produce functional CT-(8-32)-sensitive AM receptors.  相似文献   

7.
Cortistatin (CST) is an endogenous neuropeptide bearing strong structural and functional analogies with somatostatin (SST). Gene expression of CST and its putative receptor MrgX2 in dorsal root ganglia (DRG) neurons in man suggests the involvement of CST in pain transmission. In this study we have investigated the effects of CST and SST on calcitonin gene-related peptide (CGRP, the main neuropeptide mediator of pain transmission) from primary cultures of rat trigeminal neurons. Moreover, here for the first time we used organotypic cultures of rat brainstem to investigate the release of CGRP form nucleus caudalis as a model of pre-synaptic peptide release. In both experimental paradigm CGRP release was evaluated in the presence of CST or SST, with or without the addition of known secretagogues (namely high KCl concentrations, veratridine and capsaicin). We found that CST and SST do not modify basal CGRP secretion from trigeminal neurons, but both peptides were able to inhibit in a concentration-dependent manner the release of CGRP stimulated by KCl, veratridine or capsaicin. Likewise, in brainstem organotypic cultures CST and SST did not modify baseline CGRP secretion. Of the secretagogues used, capsaicin proved to be most effective compared to KCl and veratridine (8-fold vs 2-fold increase, respectively). Thereafter, CST and SST were tested on capsaicin-stimulated CGPR release only. Under these conditions, CST but not SST was able to inhibit in a significant manner pre-synaptic CGRP release from the brainstem, providing further evidence in support of a role for CST in pain transmission.  相似文献   

8.
The effects of a number of neuronally localized peptides have been ascertained on corticospinal and other unidentified neurons in the rat cerebral cortex. Motilin, somatostatin, and luteinizing hormone releasing hormone excited most of the corticospinal neurons on which they were tested. Cholecystokinin. Met-enkephalin, vasoactive intestinal peptide, and neurotensin also excited some corticospinal neurons. Many nonidentified neurons were excited by all of these peptides. Met-enkephalin had a depressant action on some (14%) corticospinal neurons. Leu-enkaphalin depressed many identified and nonidentified neurons and had an excitatory action on a few neurons. Both excitatory and inhibitory actions of the enkephalins were antagonized by naloxone. Thyrotropin-releasing hormone had predominantly depressant actions on the spontaneous firing of corticospinal and nonidentified neurons but did excite some unidentified cortical neurons. Secretin had no effect on the firing of most of the neurons tested.  相似文献   

9.
Amylin binding sites in a human hepatoblastoma cell line (HepG2) have been characterized in detail. 125I-Amylin (rat) bound to HepG2 cells with high affinity. Binding was reversible and selective, and dependent on time and temperature. Scatchard analysis revealed the presence of high (Kd = 0.11 ± 0.04 nM) and low (Kd = 1.3 ± 0.4 μM) affinity binding sites for 125I-amylin in HepG2 cells. The dissociation experiments also showed that 125I-amylin dissociated from high- and low-affinity sites. The association data, however, indicated the presence of only one binding site. Rat amylin was more potent than human amylin and rat calcitonin gene-related peptide (CGRP) in displacing 125I-amylin bound to HepG2 cells. Nonhomologous peptides did not displace 125I-amylin. Rat amylin was, however, less potent than rat CGRP in displacing 125I[Tyr0]CGRP from HepG2 cells. Pretreatment of HepG2 cells with rat amylin (10 nM) reduced the specific binding of 125I-amylin by 75%, whereas rat CGRP (10 nM) pretreatment had no effect on amylin binding. Calcitonin gene-related peptide, as well as rat and human amylin, stimulated the adenylate cyclase activity of HepG2 cell membrane preparation in a dose-dependent manner, with an order of potency of CGRP > rat amylin > human amylin. A CGRP antagonist, CGRP(8–37), significantly attenuated the stimulatory effect of both amylin and CGRP on adenylate cyclase activity. These investigations show that distinct receptors of amylin and CGRP are present in HepG2 cells and that amylin stimulates adenylate cyclase activity through CGRP receptors. This system could now be exploited for studying amylin receptors and amylin-mediated signal transduction.  相似文献   

10.
The influence of an i.v. perfusion of buspirone on the firing rate of central monoaminergic neurons was studied in rats anaesthetized with chloral hydrate. Buspirone increased the firing rate of A10 dopaminergic neurons and blocked the inhibitory effect of iontophoretically applied dopamine on these neurons. A slight attenuation of the inhibitory effect of iontophoretically applied GABA was also observed. Buspirone increased the firing rate of locus coeruleus (LC) noradrenergic neurons and induced an attenuation of the inhibitory effect of iontophoretically applied clonidine. A slight attenuation of the inhibitory effect of iontophoretically applied GABA was also observed. Furthermore buspirone was a very potent inhibitor of the firing rate of dorsal raphe (DR) serotonergic neurons. It is concluded that activation of A10 neurons by buspirone is due to blockade of dopaminergic autoreceptors and that activation of LC neurons is related to blockade of alpha-2 autoreceptors. The significance of the interaction with gabaergic inhibition is unclear. The mechanisms involved in the inhibition of DR neurons remain to be investigated.  相似文献   

11.
12.
Intravenously or iontophoretically applied diazepam potentiated the depressant action of iontophoretically applied 5'-AMP on the spontaneous firing of rat cerebral cortical neurons. This potentiation of purinergic depression may be a result of the previously reported inhibition by diazepam of uptake of adenosine into brain tissues.  相似文献   

13.
R S Jones  A A Boulton 《Life sciences》1980,27(20):1849-1856
The actions of iontophoretically applied tryptamine (T) and 5-hydroxytryptamine (5-HT) were compared on single neurones in the rat somatosensory cortex. The firing rate of the vast majority of neurones tested was depressed by T. However, 5-HT excited and depressed approximately equal numbers of neurones. Depressant effects of 5-HT could be profoundly enhanced by a very weak concurrent application of T (0–10 nA) which itself did not alter the baseline cell firing rate. Excitatory responses to 5-HT were consistently reversed into depressant responses during weak applications of T. These observations could support a modulatory role for endogenous T in 5-HT-mediated transmission in the central nervous system (CNS).  相似文献   

14.
In guinea pig pancreatic acini rat calcitonin gene-related peptide (CGRP) increased amylase release 2-fold, salmon calcitonin had an efficacy of only 44% of that of CGRP and [Tyr0]CGRP(28-37) and human calcitonin had no actions. [Tyr0]CGRP(28-37), but not human calcitonin, antagonized the actions of CGRP in pancreatic acini with an IC50 of 3 microM. [Tyr0]CGRP(28-37) produced a parallel rightward shift in the dose-response curve for CGRP-stimulated amylase secretion. The inhibition was specific for CGRP and was reversible. Studies with 125I-CGRP demonstrated that CGRP, salmon calcitonin and [Tyr0]CGRP, but not human calcitonin, interacted with CGRP receptors on pancreatic acini. These results indicate that various CGRP-related peptides demonstrate different relationships between their abilities to occupy the CGRP receptor and to affect biologic activity, with CGRP itself being a full agonist, salmon calcitonin a partial agonist, [Tyr0]CGRP(28-37) a competitive antagonist, and human calcitonin having no actions.  相似文献   

15.
Some effects of calcitonin (CT) can also be produced by calcitonin gene-related peptide (CGRP), an alternative product of the calcitonin gene. This might be mediated by interaction of CGRP at the CT-receptor site. The human breast cancer cell line T47D possesses well characterized CT-receptors (KD = 2.3 x 10(-10) M for 125I salmon CT). 50% inhibition of 125I-sCT binding was achieved with 10(-9) M sCT, 5 x 10(-6) M rat CGRP and 10(-5) M human CGRP. Half maximal cAMP production in T47D cells was seen with 6 x 10(-10) M sCT, 5 x 10(-6) M rCGRP and 10(-5) M hCGRP. Binding and displacement capacity as well as the biological activity of CT and CGRP seems to correlate well. These findings suggest that CGRP in pharmacological doses acts via the CT-receptor. This could be explained by the homology and conformational similarities between CT and CGRP.  相似文献   

16.
Abstract: To determine whether protein kinase C (PKC) mediates release of peptides from sensory neurons, we examined the effects of altering PKC activity on resting and evoked release of substance P (SP) and calcitonin gene-related peptide (CGRP). Exposing rat sensory neurons in culture to 10 or 50 n M phorbol 12,13-dibutyrate (PDBu) significantly increased SP and CGRP release at least 10-fold above resting levels, whereas the inactive 4α-PDBu analogue at 100 n M had no effect on release. Furthermore, 100 n M bradykinin increased peptide release approximately fivefold. Down-regulation of PKC significantly attenuated the release of peptides evoked by either PDBu or bradykinin. PDBu at 1 n M or 1-oleoyl-2-acetyl- sn -glycerol at 50 µ M did not alter resting release of peptides, but augmented potassium- and capsaicin-stimulated release of both SP and CGRP approximately twofold. This sensitizing action of PKC activators on peptide release was significantly reduced by PKC down-regulation or by pretreating cultures with 10 n M staurosporine. These results establish that activation of PKC is important in the regulation of peptide release from sensory neurons. The PKC-induced enhancement of peptide release may be a mechanism underlying the neuronal sensitization that produces hyperalgesia.  相似文献   

17.
The effect of intracerebroventricular injection of rat calcitonin gene-related peptide (CGRP), human calcitonin (CT) and [Asu1,7]-eel CT on the volume and acidity of gastric juice was examined in the pylorus-ligated male rats. These 3 peptides were effective in suppressing both the volume and acidity of secreted gastric juice. Their potency on a molar basis, however, was markedly different; [Asu1,7]-eel CT was most potent, followed by human CT and finally by rat CGRP. These finding suggest that CGRP could not substitute for [Asu1,7]-eel or human CT in exerting the suppressive effect of gastric acid secretion.  相似文献   

18.
Previous observations from our laboratory indicate that metiamide is a specific histamine antagonist in rat cerebral cortex. In view of the recent finding that histamine levels and L-histidine decarboxylase (EC 4.1.1.22) activity in cerebral cortex decrease following disruption of the ipsilateral medial forebrain bundle (MFB), the present investigation was undertaken to examine whether iontophoretically applied metiamide antagonizes the inhibition of deep cerebral cortical neurones produced by stimulation of the MFB. In rats anaesthetized with a mixture of methoxyflurane, nitrous oxide and oxygen, stimulation of the ipsilateral MFB or the cortical surface with iontophoretically applied histamine depressed the firing of cortical neurones. Metiamide antagonized the histamine-induced depression and reduced the duration of inhibition produced by MFB stimulation. However, it did not alter the inhibition induced by the cortical surface stimulation. These results indicate that a histaminergic pathway ascending through the MFB may inhibit rat cerebral cortical neurones.  相似文献   

19.
The electrophysiological actions of neurotensin (NT) and its analog d-Arg9NT were studied in rat cerebellar Purkinje neurons. NT applied by pressure ejection was a potent depressant of Purkinje (P) neuron firing. In contrast, iontophoretically applied NT was a weak depressant. Pressure-ejected d-Arg9NT, which is largely inactive in peripheral systems, had little effect on P neurons. The depressant effects of pressure-ejected NT were blocked by intraperitoneally administered haloperidol, iontophoretically applied magnesium or 6-OHDA pretreatment. After such treatments, locally applied NT evoked only excitations.The results of this study suggest that NT, when applied by pressure ejection, produces two effects on the Purkinje neuron. The potent inhibitory effects of locally applied NT appear to result from release of the inhibitory transmitter, norepinephrine from locus coeruleus-derived afferents. We postulate that the excitations, which appear when postsynaptic effects of norepinephrine are antagonized or release is reduced, may be the direct result of NT action at the postsynaptic P neuron membrane.  相似文献   

20.
This review focuses on the evolutionary and functional relationship of calcitonin receptor-stimulating peptide (CRSP) with calcitonin (CT)/calcitonin gene-related peptide (CGRP) in mammals. CRSP shows high sequence identity with CGRP, but distinct biological properties. CRSP genes (CRSPs) have been identified in mammals such as pigs and dogs of the Laurasiatheria, but not in primates and rodents of the Euarchontoglires or in non-placental mammals. CRSPs have genomic organizations highly similar to those of CT/CGRP genes (CT/CGRPs), which are located along with CGRPs in a locus between CYP2R1 and INSC, while the other members of the CGRP superfamily, adrenomedullin and amylin, show genomic organizations and locations distinct from CT, CGRP, and CRSP. Thus, we categorized these three peptides into the CT/CGRP/CRSP family. Non-placental mammals having one and placental mammals having multiple CT/CGRP/CRSP family genes suggests that multiplicity of CT/CGRP started at an early stage of mammalian evolution. In the placental mammals, Laurasiatheria generally possesses multiple CRSPs and only one CT/CGRP, while Euarchontoglires possesses CT/CGRP and CGRPβ but no CRSP, indicating an increase in the diversity and multiplicity of this family of genes in mammalian evolution. Phylogenetic analysis suggests that some CRSPs have been generated very recently in mammalian evolution. Taken together, the increase in the number and complexity of the CT/CGRP/CRSP family genes may have due to evolutionary pressure to facilitate adaptation during mammalian evolution. In this regard, it is important to elucidate the physiological roles of CT, CGRP and CRSP from the viewpoint of the CT/CGRP/CRSP family even in Euarchontoglires.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号