首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Five experiments evaluated the effects of processing, freezing and thawing techniques on post-thaw motility of equine sperm. Post-thaw motility was similar for sperm frozen using two cooling rates. Inclusion of 4% glycerol extender was superior to 2 or 6%. Thawing in 75 degrees C water for 7 sec was superior to thawing in 37 degrees C water for 30 sec. The best procedure for concentrating sperm, based on sperm motility, was diluting semen to 50 x 10(6) sperm/ml with a citrate-based centrifugation medium at 20 degrees C and centrifuging at 400 x g for 15 min. There was no difference in sperm motility between semen cooled slowly in extender with or without glycerol to 5 degrees C prior to freezing to -120 degrees C and semen cooled continuously from 20 degrees C to -120 degrees C. From these experiments, a new procedure for processing, freezing and thawing semen evolved. The new procedure involved dilution of semen to 50 x 10(6) sperm/ml in centrifugation medium and centrifugation at 400 x g for 15 min, resuspension of sperm in lactose-EDTA-egg yolk extender containing 4% glycerol, packaging in 0.5-ml polyvinyl chloride straws, freezing at 10 degrees C/min from 20 degrees C to -15 degrees C and 25 degrees C/min from -15 degrees C to -120 degrees C, storage at -196 degrees C, and thawing at 75 degrees C for 7 sec. Post-thaw motility of sperm averaged 34% for the new method as compared to 22% for the old method (P<0.01).  相似文献   

2.
The aims of this study were to evaluate the effects of cooling rate to 4 degrees C and temperature at the time of centrifugation/glycerol-addition (freezing extender: INRA82 + 2% egg yolk + 2.5% glycerol) on postcentrifugation recovery rate, post-thaw motility and per-cycle fertility. When centrifugation/glycerol-addition was performed at 4 degrees C (14 ejaculates), a moderate cooling rate (37 degrees C to 4 degrees C in I h) resulted in higher post-thaw motility (45%) than when using a slow cooling rate (37 degrees C to 4 degrees C in 4 h) (39%; P<0.05). When centrifugation/glycerol-addition was performed at 22 degrees C (37 degrees C to 22 degrees C in 10 min) (10 ejaculates), post-thaw motility was lower when spermatozoa were frozen directly from 22 degrees C (23%) than when spermatozoa were cooled to 4 degrees C (22 degrees C to 4 degrees C in 1 h) before freezing (47%; P<0.0001). When centrifugation/glycerol-addition was performed at 22 degrees C (before cooling at a moderate rate), as opposed to 4 degrees C (after cooling at a moderate rate), a significant improvement of 1) recovery of spermatozoa after centrifugation (P<0,0001), 2) post-thaw motility of spermatozoa at thawing (40% vs 36% (n < or = 291 ejaculates/group), P<0.0001) and 3) per-cycle fertility (56% vs 42% (n > or = 190 cycles/group), P<0.01) was observed. In conclusion, centrifugation/glycerol-addition at 22 degrees C followed by cooling to 4 degrees C at a moderate rate results in an improvement of post-thaw motility, spermatozoa recovery rate and per cycle fertility.  相似文献   

3.
The magnitude of damage to the viability of cryopreserved bovine spermatozoa by pre- and post-thaw thermal insults was compared. Semen collected by artificial vagina from 5 Holstein bulls was diluted in egg yolk-citrate-7% glycerol extender (EYCG) and cryopreserved in 0.5 mL French straws at a sperm concentration of 40 to 60 x 10(6) cells/mL. In Experiment 1, straws were subjected to 22, 5 or -18 degrees C static air temperature for a duration of 1, 2, 3, 4 or 5 min before or after thawing in a 37 degrees C water bath for 1 min. Control straws were thawed in a 37 degrees C water bath for 1 min without further thermal insult. In Experiment 2, straws were thawed for 1 min in a 37 (control), 20 or 5 degrees C water bath, or were loaded into an insemination gun and plunged into a 37 degrees C water bath for 3 min. In both experiments, straws were returned to a 37 degrees C water bath for incubation prior to viability analysis. Viability evaluations, conducted in triplicate, included the percentage of motile spermatozoa at 1 min and at 3 h post thermal insult and the percentage of intact acrosomal membranes at 3 h post thermal insult. In both experiments, acrosomal integrity was more sensitive than motility to thermal insult. In Experiment 1, a significant interaction was observed between timing of thermal insult (pre- or post-thaw), static air temperature and duration of straw exposure. At 22 and 5 degrees C, thermal insults applied before thawing significantly (P<0.05) reduced acrosomal integrity at > or = 2 and > or = 4 min of exposure, respectively. However, post-thaw exposure to 22 and 5 degrees C for up to 5 min had no effect on any of the sperm viability parameters evaluated. In contrast, at -18 degrees C static air temperature, post-thaw exposure for > or = 3 min decreased acrosomal integrity (P<0.05), while 5 min of pre-thaw exposure was required for alteration of acrosomal integrity. In Experiment 2, each alternative thawing method resulted in significantly (P<0.05) lower incubated acrosomal integrity relative to the controls. These findings suggest that bovine spermatozoa cryopreserved in EYCG extender are more sensitive to pre-thaw than post-thaw thermal insults and that acrosomal integrity following 3-h incubation at 37 degrees C is superior to motility evaluations for detection of damage to sperm viability due to thermal insult.  相似文献   

4.
5.
Experiments were conducted to evaluate two extenders (egg-yolk Tris and egg-yolk lactose), varying concentrations of two cryopreservatives (glycerol and dimethyl sulfoxide), and rates for cooling to 5 degrees C, cooling from 5 to -100 degrees C, and warming for canine spermatozoa packaged in 0.5-ml French straws. At optimal concentrations of glycerol, egg-yolk Tris extender was superior to egg-yolk lactose in preserving spermatozoal motility. Addition of dimethyl sulfoxide, alone or in combination with glycerol in either extender, was not beneficial to spermatozoal survival after thawing. Canine spermatozoa withstood a range of cooling and equilibration times with no detrimental effect on spermatozoal motility prior to freezing. However, there were differences in spermatozoal motility immediately after thawing; these differences were variable, resulting in a cooling time by equilibration time interaction. Spermatozoal motility after thawing was best preserved by freezing in egg-yolk Tris extender containing 2-4% glycerol, using a moderate rate of cooling from 5 to -100 degrees C (-5 degrees C/min from 5 to -15 degrees C, then -20 degrees C/min from -15 to -100 degrees C). Three of 12 bitches inseminated intravaginally with semen frozen using this protocol became pregnant.  相似文献   

6.
Optimal freeze-thaw processes for dog semen will yield a maximal number of insemination doses from an ejaculate. The objectives of this study were to compare the effects of two straw sizes (0.25- and 0.5-mL French), two freezing rates (straws suspended 3.5 and 8 cm above liquid nitrogen) and two thawing rates (in water at 37 and 70 degrees C) upon post-thaw quality of dog semen, and to determine the best treatment combination. Quality was expressed in terms of the percentage progressively motile sperm 5 and 60 min after thawing and the percentage of abnormal acrosomes 5 min after thawing. One ejaculate from each of eight dogs was frozen. Two straws from each ejaculate were exposed to each of the eight treatment combinations. Data were analyzed by means of a repeated measures factorial analysis of variance and means compared using Bonferroni's test. Dog affected each response variable (P < 0.01). Neither straw size, nor freezing rate, nor thawing rate affected motility 5 min after thawing (P > 0.05). Half-milliliter straws resulted in 5.7% more progressively motile sperm 60 min after thawing and 6.5% fewer abnormal acrosomes than 0.25-mL straws (P < 0.05, n = 64). The percentage progressively motile sperm 60 min after thawing tended to be higher for semen thawed at 70 degrees C compared to 37 degrees C (P < 0.06, n = 64). Semen thawed in water at 70 degrees C had 6.6% fewer abnormal acrosomes than semen thawed in water at 37 degrees C (P < 0.05, n = 64). Freezing rate interacted with thawing rate (P < 0.05) in their effects upon acrosomal morphology and freezing 8 cm above liquid nitrogen and thawing in water at 70 degrees C was best. Dog semen should be frozen in 0.5-mL straws, 8 cm above liquid nitrogen and thawed in water at 70 degrees C.  相似文献   

7.
The effects of different freezing and thawing rates on the post-thaw motility and membrane integrity of boar spermatozoa, processed as split samples in Maxi-straws or flat PET-plastic packages (FlatPack) were studied. A programmable freezing device was used to obtain freezing rates of either 20, 50 or 80 degrees C/min. Thawing of the samples was performed in a bath of circulating water; for 40s at 50 degrees C or 27s at 70 degrees C for Maxi-straws and 23s at 35 degrees C, 13s at 50 degrees C or 8s at 70 degrees C for the FlatPacks. Sperm motility was assessed both visually and with a computer assisted semen analysis (CASA) apparatus, while plasma membrane integrity was assessed using the fluorescent probes Calcein AM and ethidium homodimer-1. Temperature changes during freezing and thawing were monitored in both forms of packaging. Values for motile spermatozoa, sperm velocity and lateral head displacement variables were significantly (p<0.05) higher for samples frozen in FlatPacks than in Maxi-straws, with superior results at higher thawing rates. Freezing at 50 degrees C/min yielded better motility than 20 or 80 degrees C/min, although the effect was rather small. Neither freezing rate nor thawing rate had any effect on membrane integrity (p>0.05). A significant boar effect was seen for several parameters. The most striking difference in temperature courses between containers was a 4-5-fold lowering of the thawing rate, between -20 and 0 degrees C, in the center of the Maxi-straw, compared with the FlatPack. This is apparently due to the insulating effect of the thawed water in the periphery of the Maxi-straw. The improvement in sperm motility seen when using the FlatPack appears to be related to the rapid thawing throughout the sample, which decreases the risk of cell damage due to recrystallization during thawing. Since sperm motility patterns have been reported to be correlated with fertility both in vitro and in vivo it is speculated that the use of the FlatPack might improve the results when using frozen-thawed boar spermatozoa for artificial insemination.  相似文献   

8.
Three ejaculates were collected from each of five dogs. After initial evaluation, the sperm-rich fractions were diluted to 100 x 10(6) spermatozoa x mL(-1) in two steps with an egg yolk-TRIS extender containing a final concentration of 5% glycerol and 0.5% Equex STM paste. Half of the 0.5 mL straws obtained from each ejaculate were frozen on nitrogen vapours (4 cm above the liquid surface) ("rapid freezing"), while the other half was frozen in a biological freezer at a rate of 0.5 degrees C x min(-1) between 5 degrees C and -10 degrees C and of 8 degrees C x min(-1) between -10 degrees C and -60 degrees C, followed by immersion in liquid nitrogen ("slow freezing"). After an average storage of 30 days, the straws were thawed in a water-bath at 37 degrees C for 1 min. Progressive motility was subjectively estimated hourly for 8 h on semen incubated at 38 degrees C. Immediately after thawing and after 2 h of incubation, motility parameters were also measured by a motility analyser. Sperm membrane function and chromatin stability were assessed immediately post-thaw, using the hypo-osmotic swelling test and acridine orange staining, respectively. Slow freezing significantly improved total post-thaw motility, which showed a slower decline over time, although spermatozoal average path and straight line velocity were lower compared to the fast rate. Also the number of intact membrane spermatozoa was significantly higher in slow-frozen samples while the proportion of spermatozoa with single-stranded DNA was minimal after both freezing procedures.  相似文献   

9.
Two experiments were conducted to determine the effects of egg yolk (EY), glycerol, and cooling rate on the cryosurvival of red deer epididymal spermatozoa. The aim of Experiment 1 was to examine the effects of two EY types (clarified EY, CE, prepared by centrifugation, and whole EY, WE), and four EY concentrations (0, 5, 10 and 20%) on cryosurvival of red deer epididymal spermatozoa. Sperm samples were diluted to a final sperm concentration of approximately 200 x 10(6)spermatozoa/ml with a Tris-citrate-fructose-EY extender (TCF) prior to freezing. Sperm cryosurvival was judged in vitro by microscopic assessments of individual sperm motility, viability and of plasma membrane (by means of the HOS test) and acrosome (NAR) integrities. Cryopreservation of red deer epididymal spermatozoa frozen in a clarified EY extender, and with a 20% EY resulted in more vigorous post-thaw and post-incubation motilities (P<0.0001). Moreover, our results showed that regardless of the egg yolk concentration tested, the best sperm quality was obtained with the use of CE. Therefore, the objective of Experiment 2 was to explore the post-thaw effects of four clarified egg yolk concentrations (0, 5, 10 and 20%), two final glycerol concentrations (3 and 6%), and two cooling rates from 22 to 5 degrees C (slow: 0.23 degrees C/min; rapid: 4.2 degrees C/min) on red deer epididymal spermatozoa. At thawing, the effects of CE and glycerol concentrations, and cooling rate, all independently affected post-thaw sperm quality, while there were no effects of interactions on post-thawing sperm quality. Therefore, we studied each variable separately. Differences (P<0.05) for most of the semen parameters evaluated were found between the two final glycerol concentrations tested, with the high values after thawing found with the use of 6% glycerol (58.8+/-1.4 versus 46.2+/-1.4, for sperm motility). Moreover, the cooling rate did not have an effect on the semen characteristics, except for NAR (P<0.05), with the high values after thawing found with the use of the rapid protocol (64.5+/-1.4 versus 59.9+/-1.4). In conclusion, the use of 20% CE and 6% glycerol in combination with a rapid cooling rate, significantly improved red deer epididymal spermatozoa freezability.  相似文献   

10.
This study was carried out to investigate the cryoprotective efficacy of Equex STM Paste on the quality of canine post-thaw epididymal spermatozoa. Following castration, spermatozoa were flushed from the cauda epididymides. Epididymal spermatozoa from 13 of 16 dogs with a sperm motility of >70% were frozen in an egg yolk-Tris extender, supplemented with Equex STM Paste (0.5%, v/v); the extender free of Equex STM Paste served as a control cryoprotective diluent. The quality of spermatozoa, judged by its motility, plasma membrane integrity and acrosome integrity, was evaluated on four occasions, immediately after collection, after equilibration and at 0 and 2h post-thaw. Reducing the temperature to 4 degrees C for 2h prior to freezing decreased sperm motility (P=0.001), but had no effects on membrane integrity or acrosome integrity. Immediately after thawing, the percentage of acrosome-intact spermatozoa significantly decreased in samples frozen without Equex STM Paste compared to freshly collected or Equex-treated samples. After incubation at 37 degrees C for 2h post-thaw, a greater percentage of motile spermatozoa (P=0.018) and spermatozoa with intact acrosomes (P=0.001) were observed in Equex-treated samples compared with the control. The percentage of membrane-intact spermatozoa did not differ significantly between Equex-treated and control samples at any time. Supplementation with Equex STM Paste in the semen extender was effective for freezing canine epididymal spermatozoa because it protected acrosome integrity against damage induced by cryopreservation and it prolonged post-thaw sperm motility during in vitro incubation at 37 degrees C.  相似文献   

11.
Two experiments were designed to evaluate the effects of egg yolk and glycerol concentrations, freezing rate, and clarification of a lactose-EDTA-egg yolk extender on the post-thaw motility of stallion spermatozoa. In both experiments there was no influence of freezing rate (vapor vs controlled) on the percentage of progressively motile spermatozoa after thawing. Furthermore, no significant interaction among treatments was detected. In Experiment 1, clarified (centrifuged at 34,400 × g for 30 min) lactose-EDTA-egg yolk extenders containing 16 or 20% egg yolk and 3 or 4% glycerol were superior to those containing 12% egg yolk or 2% glycerol, based on the percentage of progressively motile stallion spermatozoa at 0, 30, 60, and 90 min after thawing. However, in Experiment 2, clarification of the lactose-EDTA-egg yolk extender was detrimental to the ability of the stallion spermatozoa to survive after thawing; 4% glycerol was superior to 2% glycerol. The best extender based on the percentage of progressively motile spermatozoa after thawing was nonclarified lactose-EDTA-egg yolk extender containing 20% egg yolk and 4% glycerol.  相似文献   

12.
We investigated the use of duck egg yolk (DEY), Guinea fowl egg yolk (GFEY) and Indian indigenous hen (Desi) egg yolk (IDEY) in extender for improving the post-thaw quality of buffalo (Bubalus bubalis) bull spermatozoa, and compared it with commercial hen egg yolk (CHEY; control). For this purpose, two consecutive ejaculates of semen from each of two Nili-Ravi buffalo bulls were collected on 1 day each week for 5 weeks (replicates; n=5) with artificial vagina (42 degrees C). Split pooled ejaculates, were diluted in tris-citric acid glycerol extender containing either DEY or GFEY or IDEY or CHEY at 37 degrees C. Extended semen was cooled to 4 degrees C in 2 h and equilibrated for 4 h at 4 degrees C. Cooled semen was then filled in 0.5 ml straws at 4 degrees C and frozen in programmable cell freezer. Thawing of semen was performed at 37 degrees C for 30 s. Sperm motility, plasma membrane integrity and sperm morphology (acrosome integrity, head, mid-piece and tail abnormalities) of each semen sample were assessed at 0, 3 and 6 h after thawing and incubation at 37 degrees C. Visual motility (%) and percentage of intact plasma membranes assessed at 6h post-thaw of buffalo bull spermatozoa were highest (P<0.05) due to DEY as compared to GFEY, IDEY and control. The percentage of spermatozoa with normal acrosomes at 0, 3 and 6 h post-thaw was highest (P<0.05) in DEY extender than GFEY, IDEY and CHEY. Sperm tail abnormalities (%) observed at 0, 3 and 6 h post-thaw in samples cryopreserved with freezing extender having DEY were lower (P<0.05) as compared to extender containing GFEY, IDEY and CHEY. In conclusion, DEY compared to other avian yolks in extender improves the frozen-thawed quality of buffalo bull spermatozoa.  相似文献   

13.
The objectives of the present study were to evaluate the effects of adding Equex to a TRIS-extender, diluting the semen in 1 or 2 steps, freezing according to 2 methods, thawing at 2 rates, and the interactions between these treatments, on the post-thaw survival of dog spermatozoa at 38 degrees C. Ten ejaculates were obtained from 8 dogs. Each ejaculate was centrifuged, and the seminal plasma was discarded. Each sperm pellet was diluted with 2 mL of a TRIS-glucose-egg yolk extender containing 3% glycerol (Extender 1 [Ext-1]). Ejaculates were then pooled (9 x 10(9) spermatozoa), and Ext-1 was added to obtain 200 x 10(6) spermatozoa/mL. The semen pool was carefully mixed and divided into aliquots, and processed according to a 2 x 2 x 2 x 2 factorial design to evaluate the effects of 1) adding the same volume of a second TRIS-glucose-egg yolk extender with 7% glycerol that contained (Ext-2-E) or didn't contain (Ext-2) 1% of Equex STM Paste (final concentration of spermatozoa 100 x 10(6) spermatozoa/mL, glycerol 5%, Equex 0% [Ext-2] or 0.5% [Ext-2-E]); 2) diluting the semen in 1 step (adding Ext-2 or Ext-2-E before equilibration) or in 2 steps (adding Ext-2 or Ext-2-E after equilibration, just before the freezing operation); 3) freezing the straws horizontally in a styrofoam box 4 cm above liquid nitrogen (LN2) or by lowering them vertically into a LN2 tank in 3 steps; and 4) thawing at 70 degrees C for 8 sec or at 37 degrees C for 15 sec. A total of 16 treatment combinations were evaluated. Sperm motility was evaluated after thawing and at 1-h intervals during 7 h of incubation at 38 degrees C by subjective examination and by using a CASA-system. Plasma membrane integrity and acrosomal status were evaluated simultaneously at 1, 3 and 6 h post-thaw using a triple fluorescent staining procedure and flow cytometry. The best post-thaw survival and thermoresistance of spermatozoa was obtained when Equex was present in the extender (P<0.0001); the semen dilution was performed in 2 steps instead of 1 (P<0.0001); the freezing was carried out using the box instead of the tank (P<0.05); and the straws were thawed at 70 degrees C for 8 sec instead of at 37 degrees C for 15 sec (P<0.0001).  相似文献   

14.
Tuli RK  Holtz W 《Theriogenology》1994,42(3):547-555
Forty ejaculates (20 for each of 2 experiments) were collected from 4 Boer goat bucks at weekly intervals to study the effect of glycerolization procedure and removal of seminal plasma on progressive motility, percent live spermatozoa and release of glutamic oxaloacetic transaminase (GOT) before and after the freezing of semen. Stepwise glycerolization at 37 degrees C gave higher progressive motility and percentage of live spermatozoa both before freezing and after thawing than onestep glyceroliza-tion at 37 degrees C or stepwise extension with glycerol being added after cooling to 5 degrees C. The GOT-release was reduced before freezing and after thawing of semen with stepwise glycerolization (P < 0.05). Progressive motility and the percentage of live spermatozoa were higher (P < 0.05) after the freezing of whole semen than in washed spermatozoa. The concentration of GOT in the extra-cellular fluid was lower in washed spermatozoa prior to freezing (P < 0,05); but after thawing, the washed spermatozoa released more GOT than spermatozoa in whole semen. Removal of seminal plasma prior to freezing spermatozoa in an extender containing egg yolk had an unfavorable effect on their post-thaw motility and integrity.  相似文献   

15.
The objective of this study was to evaluate the effects of thawing and processing temperatures on post-thaw sperm viability, occurrence of osmotic shock and sperm membrane functional status. The occurrence of osmotic shock, characterized by increased spermatozoa with coiled tails, eventually results in reduced sperm viability and sperm membrane integrity. The effects of different thawing temperatures were assessed by thawing frozen specimens at 37, 21 or 5 degrees C for 1 to 2-min, followed by processing at these temperatures. A subset of frozen specimens were thawed at 37 degrees C for 10 to 15-sec and transferred to a water bath at 21 or 5 degrees C for 1 to 2-min to complete thawing, followed by processing at these temperatures. Sperm processing (washing) consisted of dilution, centrifugation and resuspension to remove glycerol from the medium and to gradually return the spermatozoa to isotonic conditions. Post-thawed specimens (0.5 mL) were slowly diluted 1:1 (v/v) at a rate of 0.1 mL/min, centrifuged, and resuspended to 0.5 mL (37 degrees C). Diluted specimens were equilibrated for 1 to 2-min after dilution and for 5-min after resuspension. The specimens were then incubated for 2-h (37 degrees C) and assessed at 60-min intervals for the percentage of motility, for progressive motility (Grades 0 to 4), for the percentage of spermatozoa with coiled tails, and for the percentage of swollen spermatozoa. The percentage of swollen spermatozoa (measurement of sperm membrane integrity) was assessed by exposing spermatozoa to a modified hypoosmotic swelling (HOS) test. The results obtained seem to indicate that physiological thawing and processing temperatures (37 degrees C) are required to maintain sperm motility. However, thawing and processing at lower temperatures (< 37 degrees C) seems to prevent the occurrence of osmotic shock and to maintain sperm membrane functional integrity. In this study, thawing at 37 degrees C (10 to 15-sec) and transfer to a water bath at 21 degrees C (1-min) to complete thawing, followed by processing at 21 degrees C, yielded better results in terms of increased sperm viability, reduced occurrence of osmotic shock and higher reactivity to the HOS test.  相似文献   

16.
Semen cryopreservation of small abalone (Haliotis diversicolor supertexa)   总被引:7,自引:0,他引:7  
Gwo JC  Chen CW  Cheng HY 《Theriogenology》2002,58(8):1563-1578
Methods for cryopreserving spermatozoa and maximizing fertilization rate in Taiwan small abalone, Haliotis diversicolor supertexa, were developed. The gametes (spermatozoa and eggs) of small abalone were viable 3 h post-spawning, with fertilization, and development rate decreasing with time. A minimum of 10(2) cell/ml sperm concentration and a contact time of 2 min between gametes is recommended for artificial insemination of small abalone eggs. Eight cryoprotectants, dimethyl sulfoxide (DMSO), dimethyl acetamide (DMA), ethylene glycol (EG), propylene glycol (PG), butylene glycol (BG), polyethylene glycol, glycerol and methanol, were tested at concentrations between 5 and 25% to evaluate their effect on motility of spermatozoa exposed to cryoprotectant for up to 60 min at 25 degrees C before freezing. The least toxic cryoprotectant, 10% DMSO, was added to artificial seawater (ASW) to formulate the extender for freezing. Semen was diluted 1:1 with the extender, inserted into 1.5 ml microtubes and frozen using a cooling rate between -3.5 and -20 degrees C/min to various transition temperatures (0, -30, -60, -90 and -120 degrees C), followed by transfer and storage in liquid nitrogen (-196 degrees C). The microtubes were thawed from +45 to +145 degrees C/min. Spermatozoa, cooled to -90 degrees C at a cooling rate of -12 or -15 degrees C/min and then immersed in liquid nitrogen, had the best post-thaw motility. Post-thaw sperm motility was markedly reduced compared to fresh sperm. More frozen-thawed spermatozoa are required to achieve fertilization rates comparable to those achieved using fresh spermatozoa.  相似文献   

17.
Dog spermatozoa have better quality after thawing in water at 70-75 degrees C instead of 35-38 degrees C. The aim of Experiment 1 was to determine the time needed to thaw 0.5 mL straws in just-boiled (98 degrees C) water and that of Experiment 2 to determine whether thawing frozen dog spermatozoa in just-boiled water will result in better quality than thawing in water at 70 degrees C. Prior to freezing the straws of Experiment 1, a Type J thermocouple with wire diameters of 0.08 mm (Osiris Technical Systems, Centurion, South Africa) was placed in the center of each of ninety-three 0.5 mL straws (IMV Technologies, L'Aigle, France) filled with extender (Biladyl* with 0.5%, v/v of Equex STM paste**) and 54 filled with extender plus 200 x 10(6)spermatozoa/mL (Minitüb, Germany (*) and Nova Chemical Sales, MA (**)). Thirty straws with extender were thawed in water at 70 degrees C and the others in just-boiled water. Temperatures inside straws were recorded 10 times/s during warming. Two ejaculates were then collected from each of eight dogs and one from each of three others. Extended ejaculates from the same dog were pooled, frozen 8 cm above liquid nitrogen, and 2 straws from each of the 11 batches thawed in water at 70 degrees C for 8s and 2 in just-boiled water for 6.5s. Sperm morphology and viability were assessed on eosin-nigrosin smears made after thawing and the percentage progressively motile spermatozoa was estimated immediately, 1, 2 and 3h after thawing. The optimal submersion time in just-boiled water was 6.5s for both sperm concentrations, resulting in average temperatures of 23.6+/-1.5 degrees C (+/-S.E.M.) and 24.9+/-1.6 degrees C inside straws with extender or extender plus spermatozoa (P=0.6). The temperature inside straws thawed in water at 70 degrees C was 13.6+/-1.7 degrees C after 8s. Apart from a 1.5% higher (P<0.05) mean percentage motile sperm 2h after thawing, thawing dog spermatozoa in just-boiled (98 degrees C) water holds no benefit over thawing in water at 70 degrees C, which is easier to do.  相似文献   

18.
Cryopreservation of seabream (Sparus aurata) spermatozoa   总被引:3,自引:0,他引:3  
The aim of this research was to optimize protocols for freezing spermatozoa of seabream (Sparus aurata). All the phases of the cryopreservation procedure (sampling, choosing the cryoprotective extender, cooling, freezing, and thawing) were studied in relation to the species of spermatozoa under examination, so as to be able to restore on thawing the morphological and physiological characteristics of fresh semen. Seabream spermatozoa were collected by stripping and transported to the laboratory chilled (0-2 degrees C). Five cryoprotectants, dimethyl sulfoxide (Me(2)SO), ethylene glycol (EG), 1,2-propylene glycol (PG), glycerol, and methanol, were tested at concentrations between 5 and 15% by volume to evaluate their effect on the motility of semen exposed for up to 30 min at 26 degrees C. The less toxic cryoprotectants, 10% EG, 10% PG, and 5% Me(2)SO, respectively, were added to 1% NaCl to formulate the extenders for freezing. The semen was diluted 1:6 with the extender, inserted into 0.25-ml plastic straws by Pasteur pipette, and frozen using a cooling rate of either 10 or 15 degrees C/min to -150 degrees C followed by transfer and storage in liquid nitrogen (-196 degrees C). The straws were thawed at 15 degrees C/s. On thawing, the best motility was obtained with 5% Me(2)SO, although both 10% PG and EG showed good results; no differences were found between the two freezing gradients, although semen frozen with the 10 degrees C/min gradient showed a slightly higher and more prolonged motility.  相似文献   

19.
Electroejaculates from free-ranging, African elephants were frozen to test various seminal diluents, freezing methods and thawing media on post-thaw sperm viability and structural integrity. In Study I, each ejaculate was tested with each of 7 cryoprotective diluents. After cooling to 5 degrees C and equilibration on ice (4 degrees C) for 120 min, each aliquant was pellet frozen on solid CO2, stored in liquid nitrogen and thawed (37 degrees C) in saline or tissue culture solution. Amongst all diluents, post-thaw sperm motility, motility duration in vitro (37 degrees C) and acrosomal integrity were greatest (P less than 0.05) when diluent BF5F was used. Thawing medium had no effect on results. In Study II, the optimal diluent from Study I (BF5F) was compared with the diluent SGI. Results were not affected by a 90- or a 150-min cooling-equilibration interval in an electronic cooler (5 degrees C); however, post-thaw sperm motility rating and duration of motility in vitro were greater (P less than 0.01) with the pellet than the straw container freezing method. When the pelleting method was used, diluents BF5F and SGI provided comparable cryoprotection. Duration of post-thaw motility was enhanced 2-fold and up to 12 h by maintaining thawed semen at 21 rather than 37 degrees C (P less than 0.05). All diluents provided some protection on acrosomal integrity, but the overall proportion of intact acrosomes after thawing was markedly less in Study II, apparently as a result of the slower initial cooling rate (approximately 1.5 degrees C/min) compared to that of Study I (approximately 6.5 degrees C/min). This study demonstrates the feasibility of cryopreserving semen from free-ranging African elephants and indicates that spermatozoa must effectively survive freezing when the BF5F or SGI diluent is used in conjunction with the pelleting method.  相似文献   

20.
Cryopreservation of epididymal spermatozoa is a potentially valuable tool for preserving genetic material from individuals of endangered species that die accidentally. Improvement of sperm-freezing protocols would increase the efficacy of gene banking from endangered felids, and the domestic cat can be used as a model for the wild felids. Addition of the detergent Equex STM paste to semen freezing extenders has been found to improve post-thaw survival and longevity of spermatozoa from various species but has never been tested for cat spermatozoa. Spermatozoa from cats with a high percentage of morphologically abnormal spermatozoa are more susceptible for cold injury and osmotic stress than spermatozoa from normozoospermic cats. Therefore, the aims of this study were to investigate: (a) if addition of Equex STM paste to a semen freezing extender would improve post-thaw sperm survival, and (b) if there is a relation between the percentage of morphologically normal spermatozoa and cryopreservation induced damage in cat epididymal spermatozoa. Spermatozoa harvested from epididymides of 10 male cats were frozen in a Tris egg yolk extender with or without the addition of Equex STM paste (0.5%, v/v). Sperm motility, membrane integrity and acrosomal status were evaluated immediately after harvesting, and at 0, 2, 4 and 6 h post-thaw. Sperm membrane integrity and acrosomal status were also evaluated after cooling to 4 degrees C, just before freezing. Cooling did not cause significant damage to the spermatozoa, whereas freezing damaged sperm membranes and acrosomes. Addition of Equex to the freezing extender had a significant positive effect on the percentage of intact acrosomes immediately after thawing (P > 0.05), but had a negative effect on the longevity of the spermatozoa; the percentages of membrane intact and motile spermatozoa being significantly lower in the presence of Equex than in the controls at 6h after thawing. The percentage of morphologically normal spermatozoa was not found to be correlated with either cryopreservation induced acrosome or plasma membrane damage, or with post-thaw motility (P > 0.05). The results clearly show that addition of Equex STM paste in the freezing extender protects the acrosomes of cat epididymal spermatozoa during the freezing--thawing process, but reduces the sperm longevity during in vitro incubation at 38 degrees C. Our results also indicate that the percentage of morphologically normal epididymal spermatozoa is not correlated with cryopreservation induced sperm damage using the described freezing protocol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号