首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The large, late metaxylem (LMX) in the roots of soybean beginsdevelopment in the centre of the stele after lignification ofthe early metaxylem poles. Subsequent maturation of the firstappearing LMX elements is gradual. They were never mature inthe 8-d-old seedlings examined. In 10 to 15-d-old plants thefirst LMX matured to open vessels at a mean of 17 cm proximalto the root tip. Additional LMX vessels developed in more proximalregions of the roots and these also matured gradually. Based on calculations from relative vessel diameters, the potentialflow of xylem sap in a single central LMX vessel is 50 timesthat in the total of all the early metaxylem (EMX) vessels ofa typical primary root of soybean. There was a marked dependence of relative leaf area on the lengthof primary root with open LMX vessels. This may result fromthe predicted increased water and nutrient flow to the shoot,facilitated by the opening of the large vessels. It is suggestedthat, as in maize, the living LMX elements may function in ionaccumulation. Dicotyledonous roots, soybean, Glycine max, xylem vessels, xylem maturation, water conduction  相似文献   

2.
The effects of different temperatures on the development ofmetaxylem were studied in the primary seminal root of winterwheat (Triticum aestivum L.) seedlings. Xylem development wasstudied microscopically at different distances behind the rootapex after safranin staining to reveal lignification. Diameter of the central late metaxylem (LMX) and its proportionto the stele cross-sectional area increased in the acropetaldirection. Diameter of the LMX and stele decreased with an increasein growing temperature. Numbers of early metaxylem (EMX) wereseven, seven and six at 10, 20 and 30 C, respectively. EMXwas lignified much more rapidly than the LMX along the seminalroot axes. Lignification of xylem elements commenced furthertowards the root apex at the higher temperatures. The LMX vesselsof the roots grown at the higher temperature had thicker secondarywalls. The relative conductivity of seminal roots, calculated fromPoiseuille's equation, decreased as growing temperature increased.In a drought-prone environment where wheat plants rely heavilyon stored soil water, a lowered axial conductivity in the rootswould be advantageous. The plants would tend to conserve waterduring vegetative growth for use during the critical periodsof flowering and grain-filling. Breeders selecting wheat plants for altered LMX diameters shouldcontrol temperatures during primary root development, sectionthe roots at the same distance from the tip and be aware thatcross walls may exist in the LMX for up to 30 cm from the tip. Wheat, Triticum aestivum L., roots, xylem development, hydraulic conductivity, temperature  相似文献   

3.
Recent studies among several plant species have shown that maturationof the largest vessels in primary xylem of roots occurs muchlater than is commonly assumed. These results have importantimplications for studies of water and nutrient uptake sincethe condition of the vessels, termed late metaxylem (LMX), mighthave a large effect on the potential conductivity of the xylem.To determine whether this phenomenon occurred in common bean(Phaseolus vulgaris L.), patterns of root xylem differentiationwere studied in young bean plants. Soil bulk density was variedin one trial to determine whether differentiation of LMX wassensitive to the growing medium. Vessels of LMX lost cell contentsand-became functional conduits between 100 and 150 mm from theroot apex. Increasing soil bulk density caused the zone of maturationof LMX to shift toward the root apex, but this zone was nevercloser than 67 mm. In the region where the primary root increasedin diameter as it merged with the hypocotyl, a zone was foundwhere vessels increased in number, had a reduced diameter, andwere arranged in a ring, the normal tetrarch arrangement ofthe xylem being lost. Potential conductivity in this zone wasconsiderably less than in zones with conventional large LMXvessels, so the zone appears to present an important restrictionto water transport from the root to the shoot. Thus, while thephenomenon of late maturation of LMX occurs in common bean,its significance in transport of water from roots to shootsis unclear Phaseolus vulgaris L., common bean, metaxylem, soil compaction, roots, anatomy  相似文献   

4.
Turgor pressure was measured in cortical cells and in xylem elements of excised roots and roots of intact plants of Zea mays L. by means of a cell pressure probe. Turgor of living and hence not fully differentiated late metaxylem (range 0.6–0.8 MPa) was consistently higher than turgor of cortical cells (range 0.4–0.6 MPa) at positions between 40 and 180 mm behind the root tip. Closer to the tip, no turgor difference between the cortex and the stele was measured. The turgor difference indicated that late-metaxylem elements may function as nutrient-storage compartments within the stele. Excised roots were attached to the root pressure probe to precisely manipulate the xylem water potential. Root excision did not affect turgor of cortical cells for at least 8 h. Using the cell pressure probe, the propagation of a hydrostatic pressure change effected by the root pressure probe was recorded in mature and immature xylem elements at various positions along the root. Within seconds, the pressure change propagated along both early and late metaxylems. The half-times of the kinetics, however, were about five times smaller for the early metaxylem, indicating they are likely the major pathway of longitudinal water flow. The hydraulic signal dissipated from the source of the pressure application (cut end of the root) to the tip of the root, presumably because of radial water movement along the root axis. The results demonstrate that the water status of the growth zone and other positions apical to 20 mm is mainly uncoupled from changes of the xylem water potential in the rest of the plant.Abbreviations and Symbols CPP cell pressure probe - EMX early metaxylem - LMX Late metaxylem - Pc cell turgor - Pr root pressure - RPP root pressure probe - t1/2,c half-time of water exchange across a single cell - t1/2 half-time of water exchange across multiple cells We thank Antony Matista for his expert assistance in the construction and modification of instruments. The work was supported by grant DCB8802033 from the National Science Foundation and grant 91-37100-6671 from USDA, and by the award of a Feodor Lynen-Fellowship from the Alexander von Humboldt-Foundation (Germany) to J.F.  相似文献   

5.
M. E. McCully 《Protoplasma》1994,183(1-4):116-125
Summary Potassium concentrations have been determined by cryo-analytical scanning microscopy in vacuoles of cells of the roots of soybean and six other dicotyledons. Developing vessel elements accumulate the highest concentration of potassium in any cell type in these roots, and those of the secondary xylem have more (median 190 mM normalized to 120%) than those of either the early (median 100 mM, normalized 80%) or late metaxylem (median 110 mM, normalized 100%). Potassium concentration in these developing vessels always exceeds those of their adjacent parenchyma (60–80%), which in turn are higher than those in cells of the cortex (30–40%), including the endodermis. Potassium concentration in the vessels increases during their development until cell death and maturation when it drops dramatically (normalized 4–12%). Developing vessel elements are clearly major sites of potassium accumulation in roots and need to be considered in any models of ion uptake, accumulation, circulation, or exudation.Abbreviations EDX energy dispersive X-ray microanalysis - EMX early metaxylem - K elemental potassium - LMX late metaxylem - CSEM cryo-scanning electron microscopy - SX secondary xylem Dedicated to the memory of Professor John G. Torrey  相似文献   

6.
The previous demonstration that the large late metaxylem vessels of field-grown maize ( Zea mays L. cv. Rosella) roots do not lose their crosswalls until they are 20–30 cm from the tip, and that the presence of a soil sheath outside the root was indicative of immature vessels within, greatly strengthened the hypothesis that ion accumulation into these roots was by uptake into living xylem element vacuoles. Proposals that salt movement into the xylem was by leakage or secretion into dead vessels became much less plausible. Potassium concentration in the vacuoles of late metaxylem elements was measured by X-ray microanalysis in unetched fracture faces of bulk, frozen-hydrated pieces of sheathed roots, and found to be in the range 150–400 m M . Potassium concentration in open vessels of bare roots, measured both with the microprobe and by spectrophotometry of aspirated sap, was in the range of 5 to 25 m M . It is concluded that uptake of potassium (and possibly other ions) is into living xylem elements, and that its release to the transpiration stream occurs by the breakdown of their crosswalls and the addition of their vacuoles to the solution in the vessels above.  相似文献   

7.
LUX  A. 《Annals of botany》1986,58(4):547-550
Plastids (eoplasts) are present in meristematic cells of prospectivecentral metaxylem in the barley root. Starch starts to be formedin plastids precisely after the cessation of mitotic activityand at the beginning of endomitotic growth. During secondarywall formation, the starch is gradually lost. Cavities are formedin plastids and signs of plastid degeneration are present fromthis stage of cell development. However, some intact globularplastids without starch are present until shortly before thefinal step of ontogeny, i.e. total destruction of protoplast. Hordeum distichum L., root, xylem, plastids, endomitotic growth, starch  相似文献   

8.
Living Vessel Elements in the Late Metaxylem of Sheathed Maize Roots   总被引:6,自引:0,他引:6  
The two types of nodal roots of field-grown maize, sheathedand bare, were found to have such different water conductivitiesthat an investigation of the anatomy of their large metaxylemvessels was made. While the vessels of the bare roots were openfor scores of centimetres, those of the sheathed roots werefound to be not vessels but developing vessel elements, withcross walls at 1 mm intervals, and protoplasts. The cross wallsbetween the elements had several unique histochemical properties.Previous investigators have often failed to find the cross wallsbecause they are very easily dislodged during the usual methodsof tissue preparation. They are best identified by microdissectionof fresh xylem. The living elements persist in the late metaxylemup to 20 – 30 cm from the tip. As the roots become longerthan this both the cross walls and the soil sheaths disappearand there is a transition to a bare root with open vessels inthe proximal region. The soil sheath persists a little longerthan the cross walls. The two types are thus stages in a developmentalsequence through which all nodal roots pass. A fundamental differencebetween the two types is in their water status, since the estimatedconductive capacity of a bare root is about 100 times greaterthan that of a sheathed root. These observations point to theneed for a reassessment of the published work on transport ofions into the xylem of grass roots through a reinvestigationof the ‘maturity’ of their xylem vessels. Grass roots, dimorphic roots, ion secretion to xylem, soil sheaths, xylem vessels, xylem differentiation, water conduction, Zea mays L  相似文献   

9.
Summary Suberin lamellae and a tertiary cellulose wall in endodermal cells are deposited much closer to the tip of apple roots than of annual roots. Casparian strips and lignified thickenings differentiate in the anticlinal walls of all endodermal andphi layer cells respectively, 4–5 mm from the root tip. 16 mm from the root tip and only in the endodermis opposite the phloem poles, suberin lamellae are laid down on the inner surface of the cell walls, followed 35 mm from the root tip by an additional cellulosic layer. Coincidentally with this last development, the suberin and cellulose layers detach from the outer tangential walls and the cytoplasm fragments. 85 mm from the root tip the xylem pole endodermis (50% of the endodermis) develops similarly, but does not collapse. 100–150 mm from the root tip, the surface colour of the root changes from white to brown, a phellogen develops from the pericycle and sloughing of the cortex begins. A few secondary xylem elements are visible at this stage.Plasmodesmata traverse the suberin and cellulose layers of the endodermis, but their greater frequency in the outer tangential and radial walls of thephi layer when compared with the endodermis suggests that this layer may regulate the inflow of water and nutrients to the stele.  相似文献   

10.
The elemental composition of xylem sap has been determined by cryo-analytical microscopy in situ along vessels in the roots of maize plants frozen intact while root pressure was high. The only chemical element (including carbon) present in significant concentrations in the vessels was potassium at 11 mM and 15 mM in the late (LMX) and early (EMX) metaxylem, respectively. There was no gradient of [K] along the vessels, which each run the length of the mature proximal end of the roots. At the distal end of each vessel, in the oldest still living vessel, which each run the length of the mature proximal end of the roots. At the distal end of each vessel, in the oldest still living vessel elements, there was sharp rise in [K] to 110 mM and 130 mM in the LMX and EMX, respectively.  相似文献   

11.
Cell wall thickness of the xylem tracheary elements was measuredin the proto- and metaxylem of the Allium cepa L. adventitiousroot. Measurements were taken in root fragments of known age(1, 3, 5, 7 and 9 d) located in either the basal or medio-apicalzone. Tracheary elements in the protoxylem matured within ashorter period of time than those in the metaxylem. Final cellwall thickness was greater in metaxylem than in protoxylem components.The cell wall thickening in the tracheary elements in both proto-and metaxylem was more rapid in the basal zone of the root thanin the medio-apical zone. Additionally, cell walls of the maturetracheary elements were thicker in the basal zone than in areasfurther from the bulb. Allium cepa, onion, root, cell wall, xylem maturation  相似文献   

12.
BACKGROUND AND AIMS: The xylem plays an important role in strengthening plant bodies. Past studies on xylem formation in tension woods in poplar and also in clinorotated Prunus tree stems lead to the suggestion that changes in the gravitational conditions affect morphology and mechanical properties of xylem vessels. The aim of this study was to examine effects of hypergravity stimulus on morphology and development of primary xylem vessels and on mechanical properties of isolated secondary wall preparations in inflorescence stems of arabidopsis. METHODS: Morphology of primary xylem was examined under a light microscope on cross-sections of inflorescence stems of arabidopsis plants, which had been grown for 3-5 d after exposure to hypergravity at 300 g for 24 h. Extensibility of secondary cell wall preparation, isolated from inflorescence stems by enzyme digestion of primary cell wall components (mainly composed of metaxylem elements), was examined. Plants were treated with gadolinium chloride, a blocker of mechanoreceptors, to test the involvement of mechanoreceptors in the responses to hypergravity. KEY RESULTS: Number of metaxylem elements per xylem, apparent thickness of the secondary thickenings, and cross-section area of metaxylem elements in inflorescence stems increased in response to hypergravity. Gadolinium chloride suppressed the effect of hypergravity on the increase both in the thickness of secondary thickenings and in the cross-section area of metaxylem elements, while it did not suppress the effect of hypergravity on the increase in the number of metaxylem elements. Extensibility of secondary cell wall preparation decreased in response to hypergravity. Gadolinium chloride suppressed the effect of hypergravity on cell wall extensibility. CONCLUSIONS: Hypergravity stimulus promotes metaxylem development and decreases extensibility of secondary cell walls, and mechanoreceptors were suggested to be involved in these processes.  相似文献   

13.
Summary The structure of xylem parenchyma cells is examined in relation to transport of ions through the root. Measurement of uptake of 86Rb+ and its transport through the root at different distances from the apex show that this is a general activity along the length of the root and not confined to a limited region. Thus transport through the root is not stopped by removal of that part of the root tip containing metaxylem vessels with living contents. The structure of xylem parenchyma appears to be suitable for involvement in ion transport from the stele to the xylem. At 1 cm behind the tip, where metaxylem vessels have no living contents but ion uptake and transport are going on at high rates, xylem parenchyma cells are rich in cytoplasm with extensive rough endoplasmic reticulum and well-developed mitochondria. Their cell walls contain numerous plasmodesmata, establishing the possibility of a symplastic pathway across the stele up to the vessels. The results are discussed in relation to regulation of ion transport to the xylem vessels in roots.Dedicated to Professor O. Stocker on the occasion of his 85th birthday.  相似文献   

14.
The reorganization of vascular cylinders of pea (Pisum sativum, cv. Alaska) primary roots following the formation of vascular cavities was examined by light and electron microscopy. Cavities usually began forming ~20 mm from the root tip and were continuous to ~90 mm from the tips in roots 150 mm long, where they began filling with specialized parenchyma cells (SP cells). SP cells were usually produced by enlargement of parenchymous cells of the primary xylem at cavity margins. Depending on the extent and shape of the cavity, they were also sometimes produced by primary phloem parenchyma and early derivatives of the vascular cambium. Enlargement and some divisions of SP cells continued until a cavity was completely filled by them. SP cells proceeded through a series of cytoplasmic changes as they developed. First the cytoplasmic layer became thicker and more electron dense than surrounding cells. As SP cells enlarged there was an increase in vesicular traffic and the cytoplasm became less electron dense. Ultimately the cytoplasm thinned further, organelles degenerated, and the tonoplast sometimes broke down. SP cells did not form secondary walls. X-ray microanalysis revealed that SP cells accumulated potassium and rubidium to the same degree as cortical and xylem parenchyma cells and to a greater degree than immature secondary and late-maturing tracheary elements.  相似文献   

15.
Abstract. Xylem vessels in the apical 25 cm of barley seminal axes were examined by scanning electron microscopy of fractured freeze dried or critical point dried specimens. In the apical 11 cm, there were three cross walls cm−1 root in the central xylem vessel. The frequency then declined with distance but did not become less than 1.0 cm−1 root until the 22–25-cm zone.
Suction was applied to the proximal end of segments of seminal axes whose surfaces had been sealed with wax to prevent radial entry of water. Perfusion of the xylem with solutions of Tinopal CBS-X revealed the conductive xylem vessels by fluorescent staining of their walls. In the apical 20 cm of the axis, only a variable number of smaller xylem vessels conduct water. Beyond this zone, the much larger central vessel becomes functional.
The flow of water (Jv) in the apical zone was very much less for a given presure (△P) than in the proximal zone > 25 cm from the tip, and could be predicted by the Poiseuille equation provided the correct number of functional vessels are known. This information, together with earlier results on water uptake along the root length are used to predict the attenuation of the hydrostatic driving force for water uptake along the root length.
Estimates of K+ concentrations in stelar parenchyma and xylem vessels were made by electron microproble X-ray analysis. These results show that [K+] in the xylem vessels may be two to three times greater in the zone 1–2 cm from the root tip than in the basal zone. Such a gradient of solute potential may, to some extent, offset the decreasing influence of the leaf water potential in apical zones where xylem is not fully conductive.  相似文献   

16.
The ion relations of the halophytc Suaeda maritima are described.When plants grew in 340 mol m–3 sodium chloride (—1•76MPa) leaf solute potentials decreased, and were sustained around—2•5 MPa Inorganic ion concentration (mostly of sodiumchloride) accounted for this. Comparable shoot ion concentrationsof potassium, nitrate and sulphate occurred when plants grewon different salinity types characterized by these ions. Netsodium transport and shoot sodium concentration increased dramaticallywith increases in external sodium chloride concentration upto 85 mol m–3; thereafter, further increases in externalsodium chloride concentration had relatively little effect uponeither shoot sodium concentration or upon net transport of sodiumto the shoot. The net transport of sodium plus potassium onlydoubled when the external concentration of sodium plus potassiumincreased from 24 to 687 mol m–3 Shoot ion concentrationswere remarkably constant with time, external concentration andsalinity type. The membrane flux rates and symplasmic ion concentrations neededto sustain the observed net transport of sodium (of some 10mmol g–1 dry wt. of roots d–1) are calculated fromanatomical and stereological data for the root system of thisspecies. The minimum net sodium chloride flux to load the symplasmwould be 260 nmol m–2s–1 if the whole cortical andepidermal plasmalemmal surface area were used uniformly, butthe flux rate required would be 3000 nmol m–2s–1if uptake took place only at the root surface. A flux rate ofat least 1000 nmol m–2s–1 is needed between symplasmand xylem. The symplasmic concentration of NaCl would be atleast 80 mol m–3. It is argued (1), that both symplasmicand xylem loading are likely to be passive processes mediatedby ion channels rather than active carriers, (2), that net iontransport at 340 mol m–3 sodium chloride is close to themaximum which is physiologically sustainable and (3), that growthof this halophyte is limited by NaCl supply from the root. Key words: Suaeda maritima, halophyte, salinity, roots, radial ion transport  相似文献   

17.
Recent work in our laboratory provides evidence for a revised view of the functioning of roots of maize, and probably of all the grasses. The development of coherent soil sheaths on the distal 30-cm of these roots, and the loss of the sheaths further back, led us to investigate the differences in surface structure, anatomy, carbon exudation and microflora of the sheathed and bare zones. The significant differences are summarized. But the fact which underlies all these differences is the maturation of the late metaxylem (LMX). In the sheathed zones the LMX elements are still alive and non-conducting; only the early metaxylem (EMX) and protoxylem are open. In the bare zones they are open vessels. This leads directly to the dryness of bare zones and the wetness of sheathed zones, and indirectly to the other differences noted. Branch root junctions are shown to be structures of great significance. Besides connecting the branches to the axile systems, they serve also to connect the EMX and LMX vessels, and contain a tracheid barrier which prevents air embolisms entering the main vessels. These discoveries force us to revise the traditional view of water uptake by the root hair zone, and to suggest that much water must also enter bare roots, possibly via the laterals. There is some published evidence for this. The living LMX elements of the sheathed zone accumulate large concentrations of potassium which must joint the transpiration water at the transition to the bare zone. Calculations suggest that this may be only a tenth of the requirement of a mature plant, and that the balance may enter the bare zones with the transpiration water.  相似文献   

18.
Spermidine (Spd) treatment inhibited root cell elongation, promoted deposition of phenolics in cell walls of rhizodermis, xylem elements, and vascular parenchyma, and resulted in a higher number of cells resting in G(1) and G(2) phases in the maize (Zea mays) primary root apex. Furthermore, Spd treatment induced nuclear condensation and DNA fragmentation as well as precocious differentiation and cell death in both early metaxylem and late metaxylem precursors. Treatment with either N-prenylagmatine, a selective inhibitor of polyamine oxidase (PAO) enzyme activity, or N,N(1)-dimethylthiourea, a hydrogen peroxide (H(2)O(2)) scavenger, reverted Spd-induced autofluorescence intensification, DNA fragmentation, inhibition of root cell elongation, as well as reduction of percentage of nuclei in S phase. Transmission electron microscopy showed that N-prenylagmatine inhibited the differentiation of the secondary wall of early and late metaxylem elements, and xylem parenchymal cells. Moreover, although root growth and xylem differentiation in antisense PAO tobacco (Nicotiana tabacum) plants were unaltered, overexpression of maize PAO (S-ZmPAO) as well as down-regulation of the gene encoding S-adenosyl-l-methionine decarboxylase via RNAi in tobacco plants promoted vascular cell differentiation and induced programmed cell death in root cap cells. Furthermore, following Spd treatment in maize and ZmPAO overexpression in tobacco, the in vivo H(2)O(2) production was enhanced in xylem tissues. Overall, our results suggest that, after Spd supply or PAO overexpression, H(2)O(2) derived from polyamine catabolism behaves as a signal for secondary wall deposition and for induction of developmental programmed cell death.  相似文献   

19.
Ryser U  Keller B 《The Plant cell》1992,4(7):773-783
A polyclonal antibody was used to localize a glycine-rich cell wall protein (GRP 1.8) in French bean hypocotyls with the indirect immunogold method. GRP 1.8 could be localized mainly in the unlignified primary cell walls of the oldest protoxylem elements and also in cell corners of both proto- and metaxylem elements. In addition, GRP 1.8 was detected in phloem using tissue printing. The labeled primary walls of dead protoxylem cells showed a characteristically dispersed ultrastructure, resulting from the action of hydrolases during the final steps of cell maturation and from mechanical stress due to hypocotyl growth. Primary walls of living protoxylem and adjacent parenchyma cells were only weakly labeled. This was true also for the secondary walls of proto- and metaxylem cells, which in addition showed high background labeling. Inhibition of lignification with a specific and potent inhibitor of phenylalanine ammonia-lyase did not lead to enhanced labeling of secondary walls, showing that lignin does not mask the presence of GRP 1.8 in these walls. Dictyosomes of living proto- and metaxylem cells were not labeled, but dictyosomes of xylem parenchyma cells without secondary walls, adjacent to strongly labeled protoxylem elements, were clearly labeled. These observations suggest that GRP 1.8 is not produced by xylem vessels but by xylem parenchyma cells that export the protein to the wall of protoxylem vessels.  相似文献   

20.
Vacuolarisation, formation of autophagocytotic vacuoles and tonoplast disruption have been reported in plant cells undergoing developmentally regulated programmed cell death (PCD), but little is known about the vacuolar proteins involved. In HeLa cells, cathepsin D, a lysosomal aspartic proteinase has been shown to mediate PCD. Based on immunohistochemical staining of barley roots, we show here that the previously well characterised barley vacuolar aspartic proteinase (phytepsin), a plant homologue to cathepsin D, is highly expressed both during formation of tracheary elements and during partial autolysis of sieve cells. In serial transverse sections of the vascular cylinder, starting from the root tip, phytepsin is expressed in root cap cells, in the tracheary elements of early and late metaxylem, and in the sieve cells of the protophloem and metaphloem. Aleurain, a barley vacuolar cysteine proteinase, is expressed similarly in root cap cells but differently in the tracheary elements of protoxylem and early metaxylem. This is the first evidence that a vacuolar aspartic proteinase, in analogy to cathepsin D in animals, may play a role in the active autolysis of plant cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号