首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Hen erythrocyte chromatin was digested with staphylococcal nuclease and fractionated by electrophoresis in polyacrylamide gels. Instead of the three bands described for mouse carcinoma chromatin, four main discrete components (MN1, MN2, MN2E and MN3) were resolved in the mononucleosome fraction of erythrocyte chromatin. MN2 contained all five histones and a DNA fragment of 165–180 base pairs. MN2E comprised four nucleosomal histones plus histone H5 (but not H1) and a DNA fragment of 170–190 base pairs. The relatively nuclease resistant MN3 fraction of erythrocyte nucleosomes contained H1 but no H5 histone. A more accurate analysis of the MN2 fraction in mouse carcinoma nucleosomes revealed some additional microheterogeneity depending on the presence of two different subfractions of H1.  相似文献   

2.
Summary The action of micrococcal nuclease, DNase I and DNase II on mouse TLT hepatoma chromatin revealing the periodicity of its structure as visualized by denaturing and nondenaturing gel electrophoresis, was consistent with the action of these enzymes on other chromatins. Micrococcal nuclease showed a complex subnucleosome fragment pattern based on multiples of 10 base pairs with a prominant couplet at 140/160 base pairs and the absence of the 80 base pair fragment. This couplet of the core and minimal nucleosome fragments was conspicuously present in the mononucleosomes found in the 11S fractions of a glycerol gradient centrifugation. DNase I and II produced a fairly even distribution of a 10 base pair increasing series of fragments to about 180 base pairs, a pattern also repeated in the DNA of nucleosome glycerol-gradient fractions. In limited digestions by these nucleases multinucleosomic DNA fragments are pronounced. These fragment lengths are multiples of an estimated average repeat length of nucleosome DNA of 180 base pairs. The action of the endogenous Mg/Ca-stimulated endonuclease produced only limited cuts in the hepatoma chromatin resulting primarily in multi-nucleosommc DNA fragment lengths and only upon lengthy digestion limited subnucleosomic, 10-base-pair multiple fragments are produced. The putative euchromatin-enriched fractions (50–75S) of the glycerol gradient centrifugation of autodigested chromatin, similarly, contained primarily the multinucleosomic DNA fragment lengths. These results are consistent with our previous electron microscopic demonstration that autodigested chromatin as well as the putative euchromatin-enriched fractions were composed of multinucleosomic chromatin segments containing a full complement of histones.  相似文献   

3.
Structure of nucleosomes and organization of internucleosomal DNA in chromatin   总被引:16,自引:0,他引:16  
We have compared the mononucleosomal pattern produced by micrococcal nuclease digestion of condensed and unfolded chromatin and chromatin in nuclei from various sources with the repeat length varying from 165 to 240 base-pairs (bp). Upon digestion of isolated H1-containing chromatin of every tested type in a low ionic strength solution (unfolded chromatin), a standard series of mononucleosomes (MN) was formed: the core particle, MN145, and H1-containing, MN165, MN175, MN185, MN195, MN205 and MN215 (the indexes give an approximate length of the nucleosomal DNA that differs in these particles by an integral number of 10 bp). In addition to the pattern of unfolded chromatin, digestion of whole nuclei or condensed chromatin (high ionic strength of Ca2+) gave rise to nuclei-specific, H1-lacking MN155. Digestion of H1-lacking chromatin produced only MN145, MN155 and MN165 particles, indicating that the histone octamer can organize up to 165 bp of nucleosomal DNA. Although digestion of isolated sea urchin sperm chromatin (repeat length of about 240 bp) at a low ionic strength gave a typical "unfolded chromatin pattern", digests of spermal nuclei contained primarily MN145, MN155, MN235 and MN245 particles. A linear arrangement of histones along DNA (primary organization) of the core particle was found to be preserved in the mononucleosomes, with the spacer DNA length from 10 to 90 bp on one (in MN155) or both sides of core DNA being a multiple of about 10 bp. In MN235, the core particle occupies preferentially a central position with the length of the spacer DNA on both sides of the core DNA being usually about 30 + 60 or 40 + 50 bp. Histone H1 is localized at the ends of these particles, i.e. close to the centre of the spacer DNA. The finding that globular part of histones H3 and sea urchin sperm H2B can covalently bind to spacer DNA suggests their involvement in the organization of chromatin superstructure. Our data indicate that decondensation of chromatin is accompanied by rearrangement of histone H1 on the spacer DNA sites adjacent to the core particle and thus support a solenoid model for the chromatin superstructure in nuclei in which the core DNA together with the spacer DNA form a continuous superhelix.  相似文献   

4.
Rat-liver chromatin was digested with micrococcal nuclease at low ionic strength in the presence of a low concentration of CaCl2. The nuclease digest was successfully separated into three fractions, P1, P2, and P3, by gel filtration on a column of Sepharose 2B. P1 fraction was shown to be a mixture of long fragments of partially digested chromatin by the sedimentation profile or by electrophoresis of DNA. P2 fraction contained four histones H2A, H2B, H3, and H4 in almost equal amounts, together with nonhistone protein of low molecular weight. The DNA was composed of three or four fragments less than 300 base pairs long. From the Kav value of the P2 fraction, the average size was estimated to be about 240 base pairs. On analytical ultracentrifugation, this fraction exhibited a monophasic boundary and a sedimentation value of 13.7S. P3 fraction contained nonhistone proteins which showed a molecular weight larger than that of H1 histone. The size of DNA was estimated to be less than 50 base pairs from the Kav value. Based on these results, the P2 fraction was concluded to consist of nucleosome monomer enriched in nonhistone proteins. The P3 fraction is presumably the nuclease-sensitive or internucleosome portion, which contains small amounts of nonhistone proteins.  相似文献   

5.
Electrophoresis methods used to study the fragments of chromatin revealed under the effect of Ca,Mg-dependent endonuclease on it have permitted establishing that stability of chromatin to the nucleosome level increases with aging. Changes in the compactness of the chromatin structure with aging make the accessibility of the linker DNA to nuclease lower the size of DNA fragments corresponding to mononucleosomes increasing from 192 +/- 5 pairs of bases to 209 +/- 5 pairs. Stabilization of the chromatin structure begins from certain nucleosomes which become more compact with the age. When analyzing basic proteins of chromatin by electrophoresis in different systems no qualitative changes were found in the subfraction composition of histones with aging, that permits supposing nonhistone proteins of chromatin and histone H1 to participate in the change of the chromatin structure compactness with the age.  相似文献   

6.
7.
Composition and structural properties of pigeon brain hemisphere neuron chromatin have been studied. In these cells nucleosomal DNA repeat length is about 165 nucleotide pairs. The content of H1 and H2A histones was found to decrease by 18 and 30% respectively in comparison with the chromatin possessing the normal quantity of those histones. At the same time the content of protein uH2A (A-24), being the conjugate of H2A histone and ubiquitine, is increased. Mononucleosomes isolated from neuron chromatin was found to have relatively low electrophoretic mobility in polyacrylamide gel taking into account the size of their DNA fragment. Circular dichroism spectra of nucleosome particles show that the neuron mononucleosomes are more unfolded than the rat thymus ones. Data obtained allow to suggest that the short DNA repeat and accumulation of protein uH2A in neurons are the factors influencing the compactization of neuron chromatin.  相似文献   

8.
Heterogeneity of chromatin subunits in vitro and location of histone H1.   总被引:74,自引:40,他引:34       下载免费PDF全文
Chromatin subunits ("nucleosomes") which were purified by sucrose gradient centrifugation of a staphylococcal nuclease digest of chromatin have been studied. We found that such a preparation contains nucleosomes of two discrete types which can be separated from each other by polyacrylamide gel electrophoresis. Nucleosome of the first type contains all five histones and a DNA segment of approximately 200 base pairs long, whereas nucleosome of the second type lacks histone H1 and its DNA segment is approximately 170 base pairs long, i.e., about 30 base pairs shorter than the DNA segment of the nucleosome of the first type. Purified dimer of the nucleosome also can be fractionated by gel electrophoresis into three discrete bands which correspond to dinucleosomes containing two molecules of histone H1, one and no H1. These and related findings strongly suggest that the H1 molecule is bound to a short (approximately 30 base pairs) terminal stretch of the nucleosomal DNA segment which can be removed by nuclease (possibly in the form of H1-DNA complex) without any significant disturbance of main structural features of the nucleosome.  相似文献   

9.
Micrococcal nuclease-sensitive (SP) and nuclease-resistant (PP) chromatin fractions from Kirkman-Robbins hepatoma and hamster liver were obtained. The molecular distribution of three non-histone proteins (NHCP1, NHCP2 and NHCP3), histones, and chromatin-bound protease activity between SP and PP fractions of both tissues was compared. Differences, mainly of quantitative nature, among non-histone proteins of neoplastic and normal tissue were observed. Moreover, it was found that polypeptides with mol. wt 81 000 (NHCP1), 39 000 (NHCP2) and 21 000, 35 000, 37 000 (NHCP1), 70 000, 112 000, 141 000, 157 000 (NHCP2), 30 000–33 000 (NHCP3) were associated only with the nuclease-sensitive part of chromatin of hepatoma and normal tissue, respectively. A major difference in histone compostion of hamster hepatoma and liver concerns histones H2A and H1. Furthermore, an enrichment of high mobility group proteins as well as other soluble non-histone proteins in an acid extract of the SP fraction was observed. Apparently chromatin-bound protease activity can be found in both fractions of chromatin.  相似文献   

10.
A series of mono- and dinucleosomal DNAs characterized by an about ten-base periodicity in the size were revealed in the micrococcal nuclease digests of Drosophila chromatin which have 180 +/- 5 base pair (bp) nucleosomal repeat. 20, 30, and 40 bp spacers were found to be predominant in chromatin by trimming DNA in dinucleosomes to the core position. Among several identified mononucleosomes (MN), MN170, MN180 and MN190 were isolated from different sources (the figures indicate the DNA length in bp). The presence of the 10, 20, and 30 bp long spacers was shown in these mononucleosomes by crosslinking experiments. The interaction of histone H3 with the spacer in the Drosophila MN180 particle was also shown by the crosslinking /5/. We conclude from these results that the 10 n bp long intercore DNA (n = 2, 3 and 4) is organized by histone H3, in particular, and together with the core DNA forms a continuous superhelix. Taken together, these data suggest that Drosophila chromatin consists of the regularly aligned and tightly packed MN180, as a repeating unit, containing 10 and 20 bp spacers at the ends of 180 bp DNA. Within the asymmetric and randomly oriented in chromatin MN180, the cores occupy two alternative positions spaced by 10 bp.  相似文献   

11.
Nucleosomes and subnucleosomes: heterogeneity and composition   总被引:1,自引:0,他引:1  
Previous studies (Varshavsky, Bakayev and Georgiev, 1976a) have shown that chromatin subunits (mononucleosomes) and their oligomers in a mild staphylococcal nuclease digest of chromatin display a heterogeneous content of histone H1. We now report that a mild staphylococcal nuclease digest of either chromatin or nuclei from mouse Ehrlich tumor cells contains mononucleosomes of three discrete kinds. The smallest mononucleosome (MN1) contains all histones except H1 and a DNA fragment 140 base pairs (bp) long. The intermediate mononucleosome (MN2) contains all five histones and a DNA fragment 170 bp long. The third mononucleosome (MN3) also contains all five histones, but its DNA fragment is longer and more heterogeneous in size (180–200 bp). Most of the MN3 particles are rapidly converted by nuclease into mononucleosomes MN1 and MN2 There exists, however, a relatively nuclease-resistant subpopulation of the MN3 mononucleosomes. These 200 bp MN1 particles contain not only histones but also nonhistone proteins, and are significantly more resistant to nuclease than the bulk of MN3 particles and the smaller mononucleosomes MN1 and MN2.There are eight major kinds of staphylococcal nuclease-produced soluble subnucleosomes (SN). The SN1 is a set of naked double-stranded DNA fragments ~20 bp long. The SN2 is a complex of a specific basic nonhistone protein (molecular weight ~16,000 daltons) and a DNA fragment ~27 bp long. The SN3 contains histone H4, the above-mentioned specific nonhistone protein and a DNA fragment ~27 bp long. The SN4 contains histones H2a, H2b, H4 and a DNA fragment ~45 bp long. The SN5 contains histones H2a, H2b, H3 and a DNA fragment ~55 bp long. The SN6 is a complex of histone H1 and a DNA fragment ~35 bp long. Subnucleosomes SN7 and SN8 each contain all the histones except H1, and DNA fragments ~100 and ~120 bp long, respectively.Nuclease digestion of isolated mono- or dinucleosomes does not produce some of the subnucleosomes. These and related findings indicate that the cleavage required to generate these subnucleosomes result from some aspect of chromatin structure which is lost upon digestion to mono- and dinucleosomes.  相似文献   

12.
The susceptibility of the DNA in chromatin to single strand-specific nucleases was examined using nuclease P1, mung bean nuclease, and venom phosphodiesterase. A stage in the reaction exists where the size range of the solubilized products is similar for each of the three nucleases and is nearly independent of incubation time. During this stage, the chromatin fragments sediment in the range of 30 to 100 S and contain duplex DNA ranging from 1 to 10 million daltons. Starting with chromatin depleted of histones H1 and H5 similar fragments are generated. In both cases these nucleoprotein fragments are reduced to nucleosomes and their multimers by micrococcal nuclease. Thus, chromatin contains a limited number of DNA sites which are susceptible to single strand-specific nucleases. These sites occur at intervals of 8 to 80 nucleosomes and are distributed throughout the chromatin. Nucleosome monomers, dimers, or trimers were not observed at any stage of single strand-specific nuclease digestion of nuclei, H1- and H5-depleted chromatin, or micrococcal nuclease-generated oligonucleosomes. Each of the three nucleases converted mononucleosomes (approximately 160 base pairs) to nucleosome cores (approximately 140 base pairs) probably by exonucleolytic action that was facilitated by the prior removal of H1 and H5. The minichromosome of SV40 is highly resistant to digestion by nuclease P1.  相似文献   

13.
1. Non-histone chromatin protein fractions NHCP1 and NHCP2 eluted from hydroxyapatite with 50 and 100 mM phosphate buffer (pH 6.8) from nuclei of Kirkman-Robbins hepatoma from 4th, 7th and 9th day of growth were analysed by one- and two-dimensional gel electrophoresis as well as Western blot technique in the presence of antibodies elicited against NHCP1, NHCP2 and dehistonized chromatin of hamster hepatoma and liver. 2. The presence of electrophoretically and immunologically specific components among NHCP1 and NHCP2 fractions during Kirkman-Robbins hepatoma growth was stated.  相似文献   

14.
Mononucleosomes released from Dictyostelium discoideum chromatin by micrococcal nuclease contained two distinctive DNA sizes (166-180 and 146 bp). Two dimensional gel electrophoresis suggested a lysine-rich protein protected the larger mononucleosomes from nuclease digestion. This was confirmed by stripping the protein from chromatin with Dowex resin. Subsequently, only the 146 bp mononucleosome was produced by nuclease digestion. Reconstitution of the stripped chromatin with the purified lysine-rich protein resulted in the reappearance of the larger mononucleosomes. Two-dimensional gel electrophoresis showed the protein was associated with mononucleosomes. Hence, the protein functions as an H1 histone in bringing the two DNA strands together at their exit point from the nucleosome. Trypsin digestion of the lysine-rich protein in nuclei resulted in a limiting peptide of approx. 10 kilodaltons. Trypsin concentrations which degraded the protein to peptides of 12-14 kilodaltons and partially degraded the core histones did not change the DNA digestion patterns obtained with micrococcal nuclease. Thus, the trypsin-resistant domain of the lysine-rich protein is able to maintain chromatosome structure.  相似文献   

15.
Photochemical cross-linking of histones to DNA nucleosomes.   总被引:10,自引:5,他引:5       下载免费PDF全文
Ultraviolet (UV)-induced cross-linking was utilized in order to identify histone-DNA interacting regions in the chromatin repeating unit. Fractionated mononucleosomes which contained 185 base pairs of DNA and a full complement of the histones, including histone H1, were irradiated with light of lambda greater than 290nm in the presence of a photosensitizer. Equimolar amounts of histones H2A and H2B were found, by two independent labeling experiments, to be cross-linked to the DNA. Based on previous finding that the UV irradiation specifically cross-links residues which are in close proximity, irrespective of the nature of the amino acid side chain or the nucleotide involved, our results indicate that the four core histones are not positioned equivalently with respect to the DNA. This arrangement allows histones H2A and H2B to preferentially cross-link to the DNA. A water soluble covalent complex of DNA and histones was isolated. This complex was partially resistant to mild nuclease digestion, it exhibited a CD spectrum similar to that of chromatin, and was found to contain histone H1. These results are compatible with a model which suggests that histone H1, though anchored to the linker, is bound to the DNA at additional sites. By doing so it spans the whole length of the nucleosome and clamps together the DNA fold around the histone core.  相似文献   

16.
Assembly of active chromatin   总被引:3,自引:0,他引:3  
S Kumar  M Leffak 《Biochemistry》1986,25(8):2055-2060
  相似文献   

17.
The specificity of Kirkman-Robbins hepatoma and hamster liver non-histone chromatin proteins has been studied by comparing polypeptide patterns in polyacrylamide gel electrophoresis and by their immunological activity in the complement fixation test. Non-histone proteins were separated from DNA with a polyethylene glycol-dextran mixture and fractionated by hydroxylapatite chromatography into three classes named NHCP1, NHCP2, and NHCP3. Electrophoretic analysis indicated that among the non-histone proteins of Kirkman-Robbins hepatoma and hamster liver differences mainly of a quantitative nature can be observed. However, the polypeptides with molecular weight 25 000, 31 000, 36 000, 73 000 in NHCP1; 20 000, 40 000 in NHCP2 and 20 000, 23 000, 32 000, 38 000, 44 000, 75 000, 80 000 in NHCP3 were found to be specific for hepatoma chromatin. Application of antibodies against NHCP1, NHCP2 and dehistonized chromatin of Kirkman-Robbins hepatoma revealed that the highest specificity of NHCP2 eluted from hydroxylapatite with 100 mM phosphate buffer at pH 6.8. The NHCP1 of hepatoma shares some common antigenic determinants with analogous proteins of liver. On the other hand non-histone proteins specific for hepatoma dehistonized chromatin can be localized in the NHCP3 and partially in the NHCP1 fractions.  相似文献   

18.
The ability of high molecular weight chicken erythrocyte chromatin to spontaneously self-assemble into native-like material, after dissociation by high ionic strength and reassociation by salt gradient dialysis, was critically examined. The native conformational state of the reassembled nucleoprotein complex was regenerated to the extent reflected by circular dichroism spectra and thermally induced helix--coil transition of the nucleoprotein DNA. However, internucleosomal packing of approximately 205 base pairs of DNA per repeating unit, as probed by digestion with micrococcal nuclease, was not regenerated upon reassembly and was replaced by a packing of approximately 160 base pairs per repeating unit. Thus, high molecular weight chromatin containing only lysine-rich histones (H1 and H5) and core histones (H2A, H2B, H3, and H4) is not a true self-assembling system in vitro using the salt gradient dialysis system used herein. Circular dichroism and thermal denaturation studies on core chromatin (lysine-rich histones removed) showed that core histones alone are not capable of reassembling high molecular weight DNA into native-like core particles at low temperature (4 degree C). Reassembly at 21 degree C restored the circular dichroism but not the thermal denaturation properties to those characteristic of undissociated core chromatin. Nonetheless, micrococcal nuclease digestions of both reassembled core chromatin products were identical with undissociated native core chromatin. Ressembly in the presence of the complete complement of histones, followed by removal of the lysine-rich histones, did regenerate the thermal denaturation properties of undissociated native core particles. These results indicated multiple functions of the lysine-rich histones in the in vitro assembly of high molecular weight chromatin.  相似文献   

19.
The binding of isolated high mobility group proteins HMG (1+2) with nucleosomes was studied using gel electrophoresis. The interaction of HMG (1+2) with mononucleosomes could be detected as a new discrete electrophoretic band with a decreased mobility only after cross-linking of HMG (1+2)-nucleosome complex by formaldehyde. Approximately two molecules of the large HMG proteins were bound per nucleosomal particle of a DNA length of 185 base pairs, lacking histones H1 and H5. Using the same techniques, no binding was observed with core particles of a DNA length of 145 base pairs.  相似文献   

20.
We have examined the nature of the nuclear antigen recognized by certain natural human antibodies that react specifically with both cell nuclei and plasma membranes from many species. Partial purification of these antibodies, called X-ANA, is achieved by binding to and rapid elution from the surface of viable human leukocytes. Chicken erythrocyte chromatin was solubilized by digestion with staphylococcal nuclease and fractionated into a 0.15 M NaCl soluble fraction that consisted of core mononucleosomes lacking H1/H5, and a 0.15 M NaCl insoluble fraction composed of polynucleosomes with H1/H5 present. No proteins other than histones were detected. Native and reconstituted mononucleosomes displaced IgG of the leukocyte eluates from nuclei of frozen mouse kidney sections and from the walls of plastic tubes coated with polynucleosomes. The reconstituted core mononucleosomes were 4- 10-fold less efficient inhibitors than native mononucleosomes. Trypsin digested mononucleosomes, free high m.w. DNA, and free histones displayed no or very weak inhibitory activity. The data indicate that X-ANA recognize a complex consisting of the core histones H2A, H2B, H3, H4, and DNA of 140 to 200 base pairs in length.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号