首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 699 毫秒
1.
Heterogeneities occur in various bioreactor designs including cell retention devices. Whereas in external devices changing environmental conditions cannot be prevented, cells are retained in their optimal environment in internal devices. Conventional reverse‐flow diafiltration utilizes an internal membrane device, but pulsed feeding causes temporal heterogeneities. In this study, the influence of conventional reverse‐flow diafiltration on the yeast Hansenula polymorpha is investigated. Alternating 180 s of feeding with 360 s of non‐feeding at a dilution rate of 0.2 h?1 results in an oscillating DOT signal with an amplitude of 60%. Thereby, induced short‐term oxygen limitations result in the formation of ethanol and a reduced product concentration of 25%. This effect is enforced at increased dilution rate. To overcome this cyclic problem, sequential operation of three membranes is introduced. Thus, quasi‐continuous feeding is achieved reducing the oscillation of the DOT signal to an amplitude of 20% and 40% for a dilution rate of 0.2 h?1 and 0.5 h?1, respectively. Fermentation conditions characterized by complete absence of oxygen limitation and without formation of overflow metabolites could be obtained for dilution rates from 0.1 h?1 – 0.5 h?1. Thus, sequential operation of three membranes minimizes oscillations in the DOT signal providing a nearly homogenous culture over time. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:1348–1355, 2014  相似文献   

2.
Heterogeneities occur in various bioreactor designs including cell retention devices. Whereas in external devices changing environmental conditions cannot be prevented, cells are retained in their optimal environment in internal devices. Conventional reverse-flow diafiltration utilizes an internal membrane device, but pulsed feeding causes spatial heterogeneities. In this study, the influence of conventional reverse-flow diafiltration on the yeast Hansenula polymorpha is investigated. Alternating 180 s of feeding with 360 s of non-feeding at a dilution rate of 0.2 h−1 results in an oscillating DOT signal with an amplitude of 60%. Thereby, induced short-term oxygen limitations result in the formation of ethanol and a reduced product concentration of 25%. This effect is enforced at increased dilution rate. To overcome this cyclic problem, sequential operation of three membranes is introduced. Thus, quasi-continuous feeding is achieved reducing the oscillation of the DOT signal to an amplitude of 20% and 40% for a dilution rate of 0.2 h−1 and 0.5 h−1, respectively. Fermentation conditions characterized by complete absence of oxygen limitation and without formation of overflow metabolites could be obtained for dilution rates from 0.1 h−1 to 0.5 h−1. Thus, sequential operation of three membranes minimizes oscillations in the DOT signal providing a nearly homogenous culture over time.  相似文献   

3.
Fermentations were performed in an external recycle bioreactor using CO2 and d-glucose at feed concentrations of 20 and 40 g L−1. Severe biofilm formation prevented kinetic analysis of suspended cell (‘chemostat’) fermentation, while perlite packing enhanced the volumetric productivity by increasing the amount of immobilised cells. The highest productivity of 6.35 g L−1 h−1 was achieved at a dilution rate of 0.56 h−1. A constant succinic acid yield of 0.69 ± 0.02 g/(g of glucose consumed) was obtained and found to be independent of the dilution rate, transient state and extent of biofilm build-up – approximately 56% of the carbon that formed phosphoenolpyruvate ended up as succinate. Byproduct analysis indicated that pyruvate oxidation proceeded solely via the formate-lyase pathway. Cell growth and corresponding biofilm formation were rapid at dilution rates higher than 0.35 h−1 when the product concentrations were low (succinic acid < 10 g L−1), while minimal growth was observed at succinic acid concentrations above this threshold.  相似文献   

4.
Amongst four carriers used, rice-straw was found to be superior in terms of ethanol production. The maximum productivity (17.84 gl−1 h−1) corresponded to a dilution rate of 0.39 h−1, the ethanol concentration being 45.80 gl−1. A multistage rhomboidal bioreactor was found to partially overcome the disruption effect caused by the generation of a large volume of carbon dioxide in the column. Increases in productivity of about 12.55% and 3.6%, respectively, were achieved using rhomboidal and tapered bioreactors as compared to the cylindrical bioreactor. It was observed that the generation time of cells, in both the immobilized and free states, was around 2.5 h. The ethanol yield (Yp/s) in the lower part of the reactor was less in comparison with other zones, where the substrate utilization efficiency was relatively higher.  相似文献   

5.
A new method of continuous culture with selective bleeding of mycelia using 9-mesh screen was developed to improve the production rate of peroxidase (POD) by Arthromyces ramosus. At the dilution rate of 0.05 h−1 with the mycelium leakage rate of 60%, a high production rate (average value was 1.67 U·ml−1·h−1) was maintained for over 100 h: the rate was 3.2 times that in a glucose-fed batch culture. At the same dilution rate, the volumetric and specific production rates of POD in the continuous culture without the screen were lower than those in the first continuous culture and decreased gradually in the later phase of the culture. In the continuous culture with low mycelium leakage rate of 1.6%, the POD production rate was not improved further, although the mycelial concentration (43 g·l−1) increased 2.9 times. It is suggested that the high agitation rate required to meet the oxygen demand is unfavorable for the POD production.  相似文献   

6.
A two-phase membrane bioreactor was developed to continuously produce enantiopure epoxides using the epoxide hydrolase activity of Rhodotorula glutinis. An aqueous/organic cascade, hydrophilic, hollow-fiber membrane bioreactor was used: (1) to carry out large-scale resolution of epoxides, (2) to continuously extract residual enantiopure epoxides from the aqueous phase, and (3) to separate inhibitory formed diol from the yeast cells contained in the aqueous phase. Dodecane was employed to dissolve-feed epoxide as well as to extract residual epoxide. 1,2-Epoxyhexane was used as a model substrate. By use of this membrane bioreactor, enantiopure (S)-1,2-epoxyhexane (>98% enantiomeric excess) was obtained with a volumetric productivity of 3.8 g l−1 h−1. The continuous-production system was operated for 12 days and resulted in 38 g enantiopure (S)-1,2-epoxyhexane. Received: 14 February 2000 / Received revision: 15 June 2000 / Accepted: 18 June 2000  相似文献   

7.
Conventional acetone–butanol–ethanol (ABE) fermentation is severely limited by low solvent titer and productivities. Thus, this study aims at developing an improved Clostridium acetobutylicum strain possessing enhanced ABE production capability followed by process optimization for high ABE productivity. Random mutagenesis of C. acetobutylicum PJC4BK was performed by screening cells on fluoroacetate plates to isolate a mutant strain, BKM19, which exhibited the total solvent production capability 30.5% higher than the parent strain. The BKM19 produced 32.5 g L?1 of ABE (17.6 g L?1 butanol, 10.5 g L?1 ethanol, and 4.4 g L?1 acetone) from 85.2 g L?1 glucose in batch fermentation. A high cell density continuous ABE fermentation of the BKM19 in membrane cell‐recycle bioreactor was studied and optimized for improved solvent volumetric productivity. Different dilution rates were examined to find the optimal condition giving highest butanol and ABE productivities. The maximum butanol and ABE productivities of 9.6 and 20.0 g L?1 h?1, respectively, could be achieved at the dilution rate of 0.85 h?1. Further cell recycling experiments were carried out with controlled cell‐bleeding at two different bleeding rates. The maximum solvent productivities were obtained when the fermenter was operated at a dilution rate of 0.86 h?1 with the bleeding rate of 0.04 h?1. Under the optimal operational condition, butanol and ABE could be produced with the volumetric productivities of 10.7 and 21.1 g L?1 h?1, and the yields of 0.17 and 0.34 g g?1, respectively. The obtained butanol and ABE volumetric productivities are the highest reported productivities obtained from all known‐processes. Biotechnol. Bioeng. 2013; 110: 1646–1653. © 2013 Wiley Periodicals, Inc.  相似文献   

8.
《Process Biochemistry》2004,39(8):995-1000
The performance of a horizontal rotating tubular bioreactor (HRTB) was investigated with a biological system under non-sterile conditions. A spontaneously developed microbial culture was cultivated in a simple glucose/yeast extract medium. A fermentative bioconversion was examined by different combinations of process parameters (bioreactor rotation speed 5–30 min−1 and medium inflow rate 1–10 l h−1). Bioconversion dynamics in HRTB was monitored by withdrawing the samples from five positions along the bioreactor. Investigation in HRTB showed a rapid and an efficient glucose conversion into different products of metabolism. Glucose consumption rate along the HRTB depended on medium inflow rate, while bioreactor rotation speed did not have a significant influence. Complete glucose conversion in HRTB was observed at inflow rates of up to 6.5 l h−1. The pH gradient along the HRTB was detected at higher medium inflow rates (6.5 and 10 l h−1), but did not significantly influence substrate conversion efficiency. A discussion of its potential use and a comparison of HRTB with other bioreactors are also presented.  相似文献   

9.
Continuous ethanol fermentation by immobilized whole cells ofZymomonas mobilis was investigated in an expanded bed bioreactor and in a continuous stirred tank reactor at glucose concentrations of 100, 150 and 200 g L–1. The effect of different dilution rates on ethanol production by immobilized whole cells ofZymomonas mobilis was studied in both reactors. The maximum ethanol productivity attained was 21 g L–1 h–1 at a dilution rate of 0.36 h–1 with 150 g glucose L–1 in the continuous expanded bed bioreactor. The conversion of glucose to ethanol was independent of the glucose concentration in both reactors.  相似文献   

10.
Factors affecting the rates of plasmid transfer were investigated using Escherichia coli LC102 bearing a conjugative plasmid R100-1 and E. coli DH1. The rate constant of transconjugant increase, kti, was used for presenting the degree of plasmid transmissibility instead of the plasmid transfer efficiency (pte). The rate constant was defined as the specific rate of transconjugant increase (srti, the number of transconjugants per donor per h) divided by the recipient cell concentration. The kti values ranged between 10−10 and 10−15 ml cells−1 h−1, when estimated under various conditions. Moderate liquid agitation had a favorable effect on ktf but agitation rates higher than 33 s−1 (intergrated shear force) greatly decreased the value of kti. The transconjugant-forming activity of the cells growing in continuous culture did not significantly change with the dilution rate, except those growing at dilution rates less than 0.1 h−1. The rate constant kti at temperatures of 10–15°C was as low as the detection limit (10−15 ml cells−1 h−1).  相似文献   

11.
《Biomass》1990,21(3):189-206
Vertical and near-horizontal (15° angle) packed-bed columns were compared for continuous ethanol fermentation using an alcohol- and glucose-tolerant Saccharomyces cerevisiae strain immobilized on to channeled alumina beads (5·0 × 109 cells g−1 beads). Spaces between beads (1·0–6·5 mm) and angle (15°) of near-horizontal reactor columns (with six ports in each) efficiently removed CO2 and increased ethanol productivity. Malt-glucose-yeast-extract broth containing 16·7% glucose at 35°C fed at a dilution rate of 3· h−1 to thw two horizontal columns (in series) yielded maximum ethanol productivity of 40·0 g liter−1 h−1. Feedstock flow rate and other factors (temperature, pH, nutrients, and glucose levels) affected productivities. The immobilized-cell system showed operational stability for >3 months without plugging, and could be stored for at least one year with no loss of bioreactor performance. Scanning electron micrographs of the beads revealed large numbers of yeast-cells attached on to internal and external surfaces of beads.  相似文献   

12.
The performance of a continuous bioreactor containing Clostridium beijerinckii BA101 adsorbed onto clay brick was examined for the fermentation of acetone, butanol, and ethanol (ABE). Dilution rates from 0.3 to 2.5 h–1 were investigated with the highest solvent productivity of 15.8 g l–1 h–1 being obtained at 2.0 h–1. The solvent yield at this dilution rate was found to be 0.38 g g–1 and total solvent concentration was 7.9 g l–1. The solvent yield was maximum at 0.45 at a dilution rate of 0.3 h–1. The maximum solvent productivity obtained was found to be 2.5 times greater than most other immobilized continuous and cell recycle systems previously reported for ABE fermentation. A higher dilution rate (above 2.0 h–1) resulted in acid production rather than solvent production. This reactor was found to be stable for over 550 h. Scanning electron micrographs (SEM) demonstrated that a large amount of C. beijerinckii cells were adsorbed onto the brick support.  相似文献   

13.
《Process Biochemistry》1999,34(3):281-288
A novel hybrid bioreactor was designed to remove volatile organic compounds from wastewater and its performance was investigated. The bioreactor was composed of a biofilter section and a bubble column bioreactor section. Benzene was used as a model compound and the influent benzene was removed by immobilized cells in a bubble column bioreactor. Gas phase benzene stripped by air injection was removed in a biofilter. When the superficial air flow rate was 21.1 m h−1 (0.76 min of residence time in a biofilter), up to 2.2 ppm of benzene in gas phase was removed completely in a biofilter and the maximum removal rate was 4.71 mg day−1 cm−3. The concentration profile of benzene along the biofilter column was dependent on the superficial air flow rate and the degree of microbial adaptation. Air flow rate and residence time were found to be the most important operation parameters for the hybrid bioreactor. By manipulating these operational parameters, the removal efficiency and capacity of the hybrid bioreactor could be enhanced. The organic load on the hybrid bioreactor could be shared by the biofilter and bubble column bioreactors and the fluctuation of load on the hybrid bioreactor could be absorbed by changing the distribution of benzene between biofilter and bubble column bioreactors. The maximum removal capacity of the hybrid bioreactor in the experimental range was obtained when the biofilter took 50.3% of influent benzene while 100% of removal efficiency was achieved when the biofilter took 72.3% of influent benzene.  相似文献   

14.
Long‐term primary cultures of hepatocytes are essential for bioartificial liver (BAL) devices and to reduce and replace animal tests in lead candidate optimization in drug discovery and toxicology tests. The aim of this work was to improve bioreactor cultures of hepatocyte spheroids by adding a more physiological perfusion feeding regime to these bioreactor systems. A continuous perfusion feeding was compared with 50% medium replacement (routinely used for in vitro tests) at the same dilution rate, 0.125 day−1, for three operative weeks. Perfusion feeding led to a 10‐fold improvement in albumin synthesis in bioreactors containing non‐encapsulated hepatocyte spheroids; no significant improvement was observed in phase I drug metabolizing activity. When ultra high viscous alginate encapsulated spheroids were cultured in perfusion, urea synthesis, phase I drug metabolizing activity and oxygen consumption had a threefold improvement over the 50% medium replacement regime; albumin production was the same for both feeding regimes. The effective diffusion of albumin in the alginate capsules was 7.75.10−9 cm2 s−1 and no diffusion limitation for this protein was observed using these alginate capsules under our operational conditions. In conclusion, perfusion feeding coupled with alginate encapsulation of hepatocyte spheroids showed a synergistic effect with a threefold improvement in three independent liver‐specific functions of long‐term hepatocyte spheroid cultures. Biotechnol. Bioeng. 2011; 108:41–49. © 2010 Wiley Periodicals, Inc.  相似文献   

15.
Oxygen supply and light irradiation exhibited significant influence on the production of anthocyanin (red pigments) by suspended cultures of Perilla frutescens cells in a 2.6-l aerated and agitated bioreactor with a six-flat-bladed turbine. When the initial volumetric oxygen transfer coefficient (kLa) value was below 10 h−1 and light was not irradiated, the anthocyanin production was never over 0.6 g/l. By modification of a gas sparger, the oxygen supply capability of the bioreactor was remarkably improved, and 1.65 g/l of anthocyanin was obtained at an enhanced kLa value of 15.4 h−1. Moreover, it was found that anthocyanin accumulation at a 0.2 vvm aeration rate was higher than that at 0.1 or 0.4 vvm in the modified bioreactor, with the other cultivation conditions kept the same. Light irradiation also significantly increased anthocyanin accumulation in the stirred reactor at a low kLa value, i.e. 9.9 h−1. However, a combination of irradiation with a higher oxygen supply reduced the production of anthocyanin in the bioreactor.  相似文献   

16.
Lactobacillus casei NRRL-B-1922 was used to ferment whole fruit juice of Punica granatum. P. granatum which is also known as pomegranate could support the growth of L. casei even without nutrient supplementation. This can be seen from the maximum specific growth rate of the strain in shake flasks (0.08 h−1) and stirred tank bioreactor (0.11 h−1). Quercetin-3-glucoside was detected as the most abundant compound in the juice and its concentration increased up to 7.0 g/L at the maximum bacterial growth after 27-hs of fermentation in bioreactor. The results showed that the probioticated juice could have more than 80 % inhibition in dipeptidyl peptidase-4 (DPP4) assay. The glucose and fructose content were steadily reduced with the consumption rate of 0.51 g/L/h and 0.37 g/L/h, respectively in bioreactor. Therefore, the biotransformation of P. granatum juice by L. casei could increase the juice functionality by improving its inhibitory activity against DPP4.  相似文献   

17.
The hybridoma 192 was used to produce a monoclonal antibody (MAb) against 17‐hydroxyprogesterone (17‐OHP), for possible use in screening for congenital adrenal hyperplasia (CAH). The factors influencing the MAb production were screened and optimized in a 2 L stirred bioreactor. The production was then scaled up to a 20 L bioreactor. All of the screened factors (aeration rate, stirring speed, dissolved oxygen concentration, pH, and temperature) were found to significantly affect production. Optimization using the response surface methodology identified the following optimal production conditions: 36.8°C, pH 7.4, stirring speed of 100 rpm, 30% dissolved oxygen concentration, and an aeration rate of 0.09 vvm. Under these conditions, the maximum viable cell density achieved was 1.34 ± 0.21 × 106 cells mL?1 and the specific growth rate was 0.036 ± 0.004 h?1. The maximum MAb titer was 11.94 ± 4.81 μg mL?1 with an average specific MAb production rate of 0.273 ± 0.135 pg cell?1 h?1. A constant impeller tip speed criterion was used for the scale‐up. The specific growth rate (0.040 h?1) and the maximum viable cell density (1.89 × 106 cells mL?1) at the larger scale were better than the values achieved at the small scale, but the MAb titer in the 20 L bioreactor was 18% lower than in the smaller bioreactor. A change in the culture environment from the static conditions of a T‐flask to the stirred bioreactor culture did not affect the specificity of the MAb toward its antigen (17‐OHP) and did not compromise the structural integrity of the MAb. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2013  相似文献   

18.
Polyhydroxyalkanoates (PHAs) are a replacement of conventional single-use plastics. Bioprocess conditions of the extreme halophilic archaeon Halogeometricum borinquense strain RM-G1 were selected resulting in the synthesis of 66.80 ± 1.69 % PHA (of cell dry mass) in 72 h using glycerol and tryptone as carbon and nitrogen sources respectively, yielding volumetric productivity of 0.206 ± 0.006 gL−1 h−1 in a repeated batch process in a small-scale bioreactor where 20 % of the production medium was used as the inoculum for the subsequent batch. The purified PHA was characterized as poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with 10.21 mol% 3-hydroxyvalerate content possessing glass transition temperature -12.6 °C, degradation temperature 285 °C, number average molecular weight 156,899 Da, weight average molecular weight 288,723 Da, polydispersity index 1.8 and melting temperatures 139.1 °C and 152.5 °C. Maximum (21.7 ± 0.6 L m-2 h−1) and average (17.2 ± 0.6 L m-2 h−1) flux values were their respective highest and crystallization time was its least (3.0 ± 0.16 h) when ΔT was 90 °C and polytetrafluoroethylene membrane was applied for desalination of the bioreactor effluent by Direct Contact Membrane Distillation. While using polyvinylidene fluoride membrane, maximum 25.5 ± 0.5 L m-2 h−1 and average 18.6 ± 0.2 L m-2 h−1 fluxes were obtained and crystallization time decreased (3.25 ± 0.16 h) even when ΔT was lowered by 20 °C.  相似文献   

19.
Extracellular lipase of the yeast Candida rugosa was produced via high cell density fed-batch fermentations using palm oil as the sole source of carbon and energy. Feeding strategies consisted of a pH-stat operation, foaming-dependent control and specific growth rate control in different experiments. Compared to foaming-dependent feeding and the pH-stat operation, the specific growth rate control of feeding proved to be the most successful. At the specific growth rate control set at 0.05 h−1, the final lipase activity in the culture broth was the highest at ∼700 U L−1. This was 2.6-fold higher than the final enzyme activity obtained at a specific growth rate control set at 0.15 h−1. The peak enzyme concentration achieved using the best foaming-dependent control of feeding was around 28% of the peak activity attained using the specific growth rate control of feeding at 0.05 h−1. Similarly, the peak enzyme concentration attained using the pH-stat feeding operation was a mere 9% of the peak activity attained by specific growth rate control of feeding at a set-point of 0.05 h−1. Fed-batch fermentations were performed in a 2 L stirred-tank bioreactor (30 °C, pH 7) with the dissolved oxygen level controlled at 30% of air saturation.  相似文献   

20.
Batch and continuous production of high fructose syrup from Jerusalem artichoke tubers has been studied using yeast cells immobilized in open pore gelatin matrix. In a batch reactor, the hydrolysis was 93% (d-fructose/d-glucose = 90/10) and 42 mg d-fructose per ml was produced from the artichoke tuber extract by immobilized cells in 3 h. The same immobilized cells were recycled and used repeatedly for 10 batch cycles starting with fresh juice at the beginning of each cycle. It was found that immobilized cells were extremely stable and the percent hydrolysis was almost constant for all 10 batch cycles. In a continuous reactor using an immobilized cell concentration of 65.7 g (dry wt) l?1 of total working bioreactor volume, the percent hydrolysis was found to remain constant at ~100% at dilution rates <1.26 h?1, but beyond that it decreased. Volumetric productivity attained its maximum value at D = 2.08 h?1 and was found to be 100 g l?1 h?1. This was achieved at a feed sugar conversion of 80%. At 90% conversion and D = 1.66 h?1, the productivity was found to be 90 g l?1 h?1. Continuous operation of the immobilized cell bioreactor at a constant dilution rate of 1.65 h?1 for 240 h resulted in only 2% loss of original activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号