首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In view of the antioxidant properties of melatonin, the effects of melatonin on the oxidative-antioxidative status of tissues affected by diabetes, e.g. liver, heart and kidneys, were investigated in streptozotocin (STZ)-induced diabetic rats in the present study. Concentrations of malondialdehyde (MDA) and reduced glutathione (GSH), and activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in the tissues were compared in three groups of 10 rats each (control non-diabetic rats (group I), untreated diabetic rats (group II) and diabetic rats treated with melatonin (group III)). In the study groups, diabetes developed 3 days after intraperitoneal (i.p.) administration of a single 60 mg kg(-1) dose of STZ. Thereafter, while the rats in group II received no treatment, the rats in group III began to receive a 10 mg kg(-1) i.p. dose of melatonin per day. After 6 weeks, the rats in groups II and III had significantly lower body weights and higher blood glucose levels than the rats in group I (p < 0.001 and p < 0.001, respectively). MDA levels in the liver, kidney and heart of group II rats were higher than that of the control group (p < 0.01, p < 0.05, p < 0.01, respectively) and diabetic rats treated with melatonin (p < 0.05). The GSH, GSH-Px and SOD levels increased in diabetic rats. Treatment with melatonin changed them to near control values. Our results confirm that diabetes increases oxidative stress in many organs such as liver, kidney and heart and indicate the role of melatonin in combating the oxidative stress via its free radical-scavenging and antioxidant properties.  相似文献   

2.
Diabetic retinopathy (DR) is a microvascular complication of diabetes. Hyperglycemic/hypoxic microenvironment concurs to aberrant angiogenesis characterizing the pathology and activates many downstream target genes including inflammatory cytokines and vasoactive peptides, such as interleukin-1β (IL-1β) and vascular endothelial growth factor (VEGF).It has been largely demonstrated that pituitary adenylate cyclase-activating peptide (PACAP) plays a protective effect in DR. In the present study, we investigated the role of PACAP to protect retinal tissue through IL-1β and VEGF expression. Diabetes was induced in rats by streptozotocin (STZ) injection, and one week later a single intravitreal injection of 100 μM PACAP was administrated. Analyses of IL-1β and VEGF levels were performed three weeks after diabetes induction.The results demonstrated that a single intraocular administration of PACAP significantly reduced the expression of IL-1β in diabetic animals. Moreover, it affects VEGF and its receptors (VEGFRs) levels and interferes with their retinal layers distribution as showed by confocal microscopy analysis. In particular, PACAP treatment downregulates VEGF and VEGFRs that are increasingly expressed in STZ-treated animals as compared to controls. These results indicate that PACAP plays an important role to attenuate the early phase of DR.  相似文献   

3.
Oxidative stress is considered to be the main cause of diabetic complications. In the current study, we investigated the effect of selenium–vitamin E combination and melatonin on lipid peroxidation (LPO) and scavenging enzyme activity in the blood of streptozocin (STZ)-induced diabetic pregnant rats. Forty female Wistar rats were randomly divided into five groups. The first and second groups were used as the non-pregnant control and pregnant control groups, respectively. The third group was the pregnant diabetic group. Vitamin E plus selenium and melatonin were administered to the diabetic pregnant rats consisting fourth and fifth groups, respectively. Diabetes was induced on day 0 of the study by STZ. Blood samples were taken from all animals on the 20th day of pregnancy. LPO level was higher in diabetic pregnant rats than in control, although superoxide dismutase, catalase, and glutathione peroxidase activities were lower in diabetic pregnant animals than in control. LPO levels were lower both in the two treatment groups than in the diabetic pregnant rats, whereas selenium–vitamin E combination and melatonin caused a significant increase in the activities of these antioxidant enzymes (p < 0.01). In conclusion, vitamin E plus selenium seems to be a more potent antioxidant compared to melatonin in diabetic pregnant rats. Melatonin did not significantly affect the elevated glucose concentration of diabetic pregnant treated with melatonin group. Vitamin E plus selenium may play a role in preventing diabetes-related diseases of pregnant subjects.  相似文献   

4.
《Chronobiology international》2013,30(9):1174-1180
Disturbances in circadian rhythms are commonly observed in the development of several medical conditions and may also be involved in the pathophysiology of sepsis. Melatonin, with its antioxidative and anti-inflammatory effects, is known to modulate the response to endotoxemia. In this paper, we investigated the circadian variation with or without melatonin administration in an experimental endotoxemia model based on lipopolysaccharide (LPS). Sixty male Sprague-Dawley rats were assigned to six groups receiving an intraperitoneal injection of either LPS (5?mg/kg), LPS?+?melatonin (1?mg/kg), or LPS?+?melatonin (10?mg/kg) at either daytime or nighttime. Superoxide dismutase (SOD) was analyzed in liver samples collected after decapitation. Furthermore, inflammatory plasma markers (cytokines interleukin [IL]-6, IL-10) and oxidative plasma markers (ascorbic acid [AA], dehydroascorbic acid [DHA], and malondialdehyde [MDA]) were analyzed before and 5?h after the onset of endotoxemia. There were significant higher levels of SOD (p?<?0.05), IL-6 (p?<?0.01), and IL-10 (p?<?0.05) during nighttime endotoxemia compared with daytime. At daytime, melatonin 1 and 10?mg reduced the levels of MDA and increased SOD, IL-6, IL-10, and DHA (p?<?0.05). At nighttime, melatonin reduced the levels of MDA and increased DHA (p?<?0.05). Additionally, 10?mg melatonin resulted in lower levels of AA during daytime (p?<?0.05). No dose relationship of melatonin was observed. The results showed that the response induced by experimental endotoxemia was dependent on time of day. Melatonin administration modulated the inflammatory and oxidative stress responses induced by endotoxemia and also resulted in higher levels of antioxidants during daytime. The effect of circadian time on the endotoxemia response and possible modulatory effects of melatonin need further investigations in a human endotoxemia model.  相似文献   

5.
The aim of this study was designed to investigate the possible beneficial effects of the thymoquinone (TQ) in streptozotocine (STZ)-induced diabetes in rats. The rats were randomly allotted into one of three experimental groups: A (control), B (diabetic untreated), and C (diabetic treated with TQ); each group contain ten animals. B and C groups received STZ. Diabetes was induced in two groups by a single intra-peritoneal (i.p) injection of STZ (50 mg/kg, freshly dissolved in 5 mmol/l citrate buffer, pH 4.5). Two days after STZ treatment, development of diabetes in two experimental groups was confirmed by measuring blood glucose levels in a tail vein blood samples. Rats with blood glucose levels of 250 mg/dl or higher were considered to be diabetic. The rats in TQ treated groups were given TQ (50 mg/kg body weight) once a day orally by using intra gastric intubation for 12 weeks starting 2 days after STZ injection. Treatment of TQ reduced the glomerular size, thickening of capsular, glomerular and tubular basement membranes, increased amounts of mesangial matrix and tubular dilatation and renal function as compared with diabetics untreated. We conclude that TQ therapy causes renal morphologic and functional improvement after STZ-induced diabetes in rats. We believe that further preclinical research into the utility of TQ treatment may indicate its usefulness as a potential treatment in diabetic nephropathy.  相似文献   

6.
Oxytocin (OXY) plays a crucial role in reproduction. The aim of this study is to investigate the therapeutic and protective effects of oxytocin treatment on streptozotocin (STZ) induced diabetes in testicular tissue. The rats were randomly divided into four experimental groups: (I) Control Group, (II) STZ induced Diabetic Group (STZ Group), (III) STZ induced Diabetic Group with Pre-Oxytocin treatment (Pre-OXY Group) and (IV) STZ induced Diabetic Group with Post-Oxytocin treatment (Post-OXY Group); each group contains six animals. The rats whose blood glucose levels were more than 200 mg/dl were included to the experiment. At the end of the 4th week, testes tissue samples were taken to be processed for light microscopy and transmission electron microscopy. Malondialdehyde (MDA), Glutathione (GSH) and Advanced Oxidation Protein Products (AOPP) levels were determined biochemically in blood samples. Testicular tissue samples stained with Hematoxylin and Eosin (H&E) and Periodic acid-Schiff (PAS) reaction were evaluated under light microscope. The histopathological damage score of testicular tissue, which was significantly increased in STZ group, was decreased by oxytocin treatment. According to biochemical data, MDA and AOPP levels have been increased in the blood of STZ Group compared to the Control Group whereas they decreased significantly in Oxytocin-treated Groups compared to STZ Group. GSH levels were significantly decreased in the blood of STZ Group and increased in the blood of Oxytocin-treated Groups compared to STZ Group. In conclusion, oxytocin has a potential protective effect on the testes tissue of STZ-induced diabetic rats.  相似文献   

7.
Kolaviron, a biflavonoid isolated from the edible seeds of Garcinia kola, lowers blood glucose in experimental models of diabetes; however, the underlying mechanisms are not yet fully elucidated. The objective of the current study was to assess the effects of kolaviron on islet dynamics in streptozotocin-induced diabetic rats. Using double immunolabeling of glucagon and insulin, we identified insulin-producing β- and glucagon-producing α-cells in the islets of diabetic and control rats and determined the fractional β-cell area, α-cell area and islet number. STZ challenged rats presented with islet hypoplasia and reduced β-cell area concomitant with an increase in α-cell area. Kolaviron restored some islet architecture in diabetic rats through the increased β-cell area. Overall, kolaviron-treated diabetic rats presented a significant (p < 0.05) increase in the number of large and very large islets compared to diabetic control but no difference in islet number and α-cell area. The β-cell replenishment potential of kolaviron and its overall positive effects on glycemic control suggest that it may be a viable target for diabetes treatment.  相似文献   

8.
Momordica dioica Roxb. Commonly known as “Kakora” in Telugu, is used in the Indian traditional system of medicine for the treatment of diabetes. The aim of this study was to investigate the antidiabetic activity of methanolic extract of M. dioica seeds (MEMD) in streptozotocin (STZ) induced diabetic rats. The in vitro α-amylase inhibitory activity of the MEMD was done by spectrophotometric method. Diabetes was induced by STZ (45 mg/kg; i.p), MEMD (100 & 200 mg/kg; b.wt) and standard drug metformin (50 mg/kg; b.wt) were administered to the diabetic rats. Blood glucose was estimated on the 11th day and the level of MDA, SOD and CAT was estimated in the liver tissue homogenate after the 15 days of experimental period. MEMD showed significant inhibition of alpha amylase activity and the IC50 was found to be 48 μg/ml. Oral administration of MEMD significantly reduced blood glucose level (P < 0.05), diminished the MDA level and refurbished depleted antioxidant enzymes and Insulin level to normalcy. These findings revealed that M. dioica seeds possess antihyperglycemic, antioxidant and anti lipid peroxidative activity and thus mitigate STZ-induced oxidative damage.  相似文献   

9.
This study is to assess the glucose lowering activity of sakuranin in diabetes induced rats by streptozotocin (STZ) and nicotinamide (NA). Diabetic rats were treated sakuranin for 45 days (20, 40, 80 mg/kg) by orally. Sakuranin (80 mg/kg body weight) was normalized the changes of abnormal blood glucose plasma glucose and plasma insulin levels. Hence, we have continued the further research with this active dose of 80 mg/kg sakuranin. The plasma glucose and glycosylated hemoglobin (HbA1c) reduced and insulin, glycogen and hemoglobin levels increased by Sakuranin administration in diabetic rats. Additionally, hexokinase and glucose-6-phophate dehydrogenase activities increased and glucose-6-phosphatase and fructose-1,6-bisphosphatase activities decreased in diabetic condition while administration of treated compound. In this observed result signified that sakuranin may have potential role of diabetic condition rats by evidenced with reducing glucose and increasing insulin and also protect the carbohydrate metabolic changes.  相似文献   

10.
Oxidative stress-mediated damage to liver tissue underlies the pathological alterations in liver morphology and function that are observed in diabetes. We examined the effects of the antioxidant action of melatonin against necrosis-inducing DNA damage in hepatocytes of streptozotocin (STZ)-induced diabetic rats. Daily administration of melatonin (0.2 mg/kg) was initiated 3 days before diabetes induction and maintained for 4 weeks. Melatonin-treated diabetic rats exhibited improved markers of liver injury (P?<?0.05), alkaline phosphatase, and alanine and aspartate aminotransferases. Melatonin prevented the diabetes-related morphological deterioration of hepatocytes, DNA damage (P?<?0.05), and hepatocellular necrosis. The improvement was due to containment of the pronecrotic oxygen radical load, observed as inhibition (P?<?0.05) of the diabetes-induced rise in lipid peroxidation and hydrogen peroxide increase in the liver. This was accompanied by improved necrotic markers of cellular damage: a significant reduction in cleavage of the DNA repair enzyme poly(ADP-ribose) polymerase 1 (PARP-1) into necrotic 55- and 62-kDa fragments, and inhibition of nucleus-to-cytoplasm translocation and accumulation in the serum of the high-mobility group box 1 (HMGB1) protein. We conclude that melatonin is hepatoprotective in diabetes. It reduces extensive DNA damage and resulting necrotic processes. Melatonin application could thus present a viable therapeutic option in the management of diabetes-induced liver injury.  相似文献   

11.
《Phytomedicine》2014,21(14):1785-1793
Diabetic nephropathy is a complex disease that involves increased production of free radicals which is a strong stimulus for the release of pro-inflammatory factors. We evaluated the renal protective effect of kolaviron (KV) – a Garcinia kola seed extract containing a mixture of 5 flavonoids, in diabetes-induced nephrotoxic rats. Male Wistar rats were divided into 4 groups: untreated controls (C); normal rats treated with kolaviron (C + KV); untreated diabetic rats (D); kolaviron treated diabetic rats (D + KV). A single intraperitoneal injection of streptozotocin (STZ, 50 mg/kg) was used for the induction of diabetes. Renal function parameters were estimated in a clinical chemistry analyzer. Markers of oxidative stress in the kidney homogenate were analyzed in a Multiskan Spectrum plate reader and Bio-plex Promagnetic bead-based assays was used for the analysis of inflammatory markers. The effect of kolaviron on diabetes-induced apoptosis was assessed by TUNEL assay. In the diabetic rats, alterations in antioxidant defenses such as an increase in lipid peroxidation, glutathione peroxidase (GPX) activity and a decrease in catalase (CAT) activity, glutathione (GSH) levels and oxygen radical absorbance capacity (ORAC) were observed. There was no difference in superoxide dismutase (SOD) activity. Diabetes induction increased apoptotic cell death and the levels of interleukin (IL)-1β and tumor necrosis factor (TNF)-α with no effect on IL-10. Kolaviron treatment of diabetic rats restored the activities of antioxidant enzymes, reduced lipid peroxidation and increased ORAC and GSH concentration in renal tissues. Kolaviron treatment of diabetic rats also suppressed renal IL-1β. The beneficial effects of kolaviron on diabetes-induced kidney injury may be due to its inhibitory action on oxidative stress, IL-1β production and apoptosis.  相似文献   

12.
目的:观察有氧运动和褪黑素对Ⅱ型糖尿病大鼠骨质疏松的影响。方法:6周龄的成年雌性SD大鼠60只,随机分为安静对照组(N组)10只和Ⅱ型糖尿病模型组50只,N组大鼠不加任何干预,Ⅱ型糖尿病模型组大鼠一次性腹腔注射35 mg/kg链脲佐菌素(STZ),1周后检测大鼠血糖大于16.7 mmol/L为Ⅱ型糖尿病造模成功,将40只成模大鼠随机分为糖尿病对照组(D)、糖尿病+有氧运动组(DE)、糖尿病+褪黑素组(DM)、糖尿病+有氧运动+褪黑素组(DEM),每组10只;DE组和DEM组大鼠采用20 min的递增负荷的方式进行跑台有氧运动,训练持续6周,DM组和DEM组大鼠每天灌胃40 mg/kg褪黑素,观察各组大鼠体重、脊椎骨以及左右股骨骨密度(BMD)、观察大鼠血糖、血清丙二醛(MDA)、超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH-Px)、血清总钙(Ca)、无机磷(P)和甲状旁腺素(PTH)的变化。结果:与N组相比,D组大鼠体重、血清SOD、GSH-Px水平、血Ca、腰椎和左右股骨BMD显著降低(P < 0.05,P < 0.01),血糖、血清MDA和血PTH水平显著升高(P < 0.01),血P无明显变化(P > 0.05);与D组比较,DE组、DM组大鼠大鼠体重、血清SOD、GSH-Px水平、血Ca、腰椎和左右股骨BMD显著升高(P < 0.05,P <0.01),血糖、血清MDA和血PTH水平显著降低(P < 0.05,P < 0.01),血P无明显变化(P > 0.05),有氧运动和褪黑素同时干预效果更好。结论:有氧运动和褪黑素均能改善糖尿病骨质疏松,且两者联合干预的效果更加显著,其可能与通过提高糖尿病大鼠的抗氧化应激能力,调节糖的代谢从而有效地降低血钙和PTH,改善BMD来缓解骨质疏松有关。  相似文献   

13.
Abstract

We examined using immunohistochemistry the distribution of leptin in kidney tissues of melatonin treated, streptozotocin (STZ) diabetic rats. The animals were divided into five groups: control, sham, melatonin-treated, diabetic and melatonin-treated diabetic. Kidney sections were prepared and stained with hematoxylin and eosin, and Crossman's triple staining for histological examination. The immunohistochemical localization of leptin in the kidney tissue was determined using the streptavidin-biotin-peroxidase method. We determined that on days 7 and 14, the leptin immunoreactivity of the diabetic and melatonin-treated diabetic groups was weaker than for the other groups. Weak immunoreactivity was found in the proximal and distal tubules of the kidney in the diabetic and melatonin-treated diabetic groups on days 7 and 14, and strong immunoreactivity was found in the control, sham and melatonin groups. Melatonin application had no significant effect on leptin production in the kidney tissues of diabetic rats.  相似文献   

14.
There is only limited literature studies on the activities of inflammation and matrix accumulation in the renal tissues of rats induced with diabetes through Streptozotocin. The present the investigation involves the examination of the protective actions of Myrcene (MYN), a monoterpene on the oxidative stress, inflammation, and matrix accumulation. For this purpose an experimental setup was created which involves injecting MYN 50 mg/kg for about 45 days in the STZ diabetic rats. Modifications in the enzymes, collagens, growth factor B1 and Kappa factor P65 were identified and tracked. The levels of the inflammatory markers like TF-α1, ICAM-1, VCAM-1, MCP-1 were tracked and noted. The current experimental results showed an alteration in the glucose metabolism and enhanced condition. Also an increased level of TGF-β-1 and Nuclear factor-kB expression was seen in the renal tissues. MYN was found to reduce glucose oxidative stress and exhibit an anti-inflammatory effect via inhibiting NF-kB signalling. The conclusion of the current study reveals that MYN regulates the inflammatory activities and matrix accumulation by inhibiting the activities of inflammatory cytokine, pro-inflammatory signalling.  相似文献   

15.
Epidemiological studies have demonstrated that the diabetes mellitus is a serious health burden for both governments and healthcare providers. The present study was hypothesized to evaluate the antihyperglycemic potential of fraxetin by determining the activities of key enzymes of carbohydrate metabolism in streptozotocin (STZ) – induced diabetic rats. Diabetes was induced in male albino Wistar rats by intraperitoneal administration of STZ (40 mg/kg b.w). Fraxetin was administered to diabetic rats intra gastrically at 20, 40, 80 mg/kg b.w for 30 days. The dose 80 mg/kg b.w, significantly reduced the levels of blood glucose and glycosylated hemoglobin (HbA1c) and increased plasma insulin level. The altered activities of the key enzymes of carbohydrate metabolism such as glucokinase, glucose-6-phosphate dehydrogenase, glucose-6-phosphatase, fructose-1,6-bisphosphatase and hepatic enzymes (aspartate transaminase (AST), alanine transaminase (ALT) and alkaline phosphatase (ALP)) in the liver tissues of diabetic rats were significantly reverted to near normal levels by the administration of fraxetin. Further, fraxetin administration to diabetic rats improved body weight and hepatic glycogen content demonstrated its antihyperglycemic potential. The present findings suggest that fraxetin may be useful in the treatment of diabetes even though clinical studies to evaluate this possibility may be warranted.  相似文献   

16.
Diabetic retinopathy (DR) occurs in untreated diabetic patients due to the strong influence of oxidative stress. Bioflavonoids are well known for their antioxidant property. Morin, a bioflavonoid, has been demonstrated for its antioxidant as well as antidiabetic activity. Thus, this research work intended to determine the ameliorative impact of morin in DR rats using STZ-induced type 1 diabetic model. To induce type 1 diabetic in rats STZ (60 mg/kg) was administered intraperitoneally. Grouping of animals was done as described below (n = 6), where, group I – normal control, group II – diabetic control, group III – morin (25 mg/kg), group IV – morin (50 mg/kg), and group V – metformin (350 mg/kg) were used. All the animals underwent treatment for 60 days as given above. It was observed that supplementation of morin (25 and 50 mg/kg) showed a noteworthy decline in elevated serum glucose level. Moreover, decrease in the level of LPO and improved activity of endogenous antioxidants (GPx, CAT, and SOD) was observed in morin treated groups. It also notably drops the concentration of TNF-α, IL-1β, and VEGF in the tissue homogenate of the retina. Furthermore, it increased the retinal thickness and cell count in the ganglion cell layer of the retina in diabetic animals. Hence, we can conclude that morin encumbers the progression of DR in diabetic animals, which may be via antioxidant property and suppression of TNF-α, IL-1β, and VEGF.  相似文献   

17.
《Phytomedicine》2014,21(10):1154-1161
Costus igneus, has been prescribed for the treatment of diabetic mellitus in India for several years. The aim of this study is to investigate the effects of plant derived diosgenin on cardiovascular risk, insulin secretion, and pancreatic composition through electron microscopical studies of normal and diabetic rats. Diosgenin at a dose of 5 or 10 mg/kg per body weight (bw) was orally administered as a single dose per day to diabetic induced rats for a period of 30 days. The effect of diosgenin on blood glucose, HbA1c, PT, APTT, Oxy-LDL, serum lipid profile, electron microscopical studies of pancreas, antioxidant enzymes (in liver, kidney, pancreas) and hepatoprotective enzymes in plasma and liver were measured in normal and diabetic rats. The results showed that fasting blood glucose, PT, APTT, Oxy-LDL, TC, TG, LDL, ALT, AST, ALP, glucose-6-phosphatase, fructose-1,6-bisphosphatase and LPO levels were significantly (p < 0.05) increased, whereas HDL, SOD, CAT, GSH and the glycolytic enzyme glucokinase levels were significantly (p < 0.05) decreased in the diabetes induced rats and these levels were significantly (p < 0.05) reversed back to normal in diabetes induced rats after 30 days of treatment with diosgenin. Electron microscopical studies of the pancreas revealed that the number of beta cells and insulin granules were increased in streptozotocin (STZ) induced diabetic rats after 30 days of treatment with diosgenin. In conclusion, the data obtained from the present study strongly indicate that diosgenin has potential effects on cardiovascular risk, insulin secretion and beta cell regeneration in STZ induced diabetic rats, these results could be useful for new drug development to fight diabetes and its related cardiovascular diseases.  相似文献   

18.
This study examined the cardiac anti-cardiomyopathy (DC) protective effect of urolithin A in streptozotocin (STZ)-treated rats and investigated if this protection involves activation of SIRT1 signaling. Diabetes was induced first STZ (65 mg/kg, i.p.) before starting the experiments. Adult male rats (n = 8/group) were treated for 8 weeks as control (non-diabetic), control + urolithin A (2.5 mg/kg/i.p.), STZ, STZ + urolithin A, and STZ + urolithin A + Ex-527 (1 mg/kg/i.p.) (a SIRT1 inhibitor). With no effect on fasting glucose and insulin levels, urolithin A improved left ventricular (LV) function and structure and reduced heart weight and serum levels of cardiac markers in STZ-treated rats. Also, it prevented collagen deposition, reduced mRNA levels of Bax, cleaved caspaspe3, collagen 1A1, transforming growth factor-β1 (TGF-β1), and Smad3 but enhanced those of Bcl2 in the LVs of diabetic rats. However, urolithin A suppressed the generation of reactive oxygen species (ROS), activated the nuclear factor erythroid 2–related factor 2 (Nrf2), and increased the levels of manganese superoxide dismutase (MnSOD) and total glutathione (GSH) in the LVs of the non-diabetic and diabetic rats, In parallel, it suppressed the cardiac activity of NF-nuclear factor-kappa beta p65 (κB p65) and reduced levels of tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6). Coincided with these events, urolithin A promoted higher activity, mRNA, and total/nuclear protein levels of SIRT1 and lowered the levels of acetyl-FOXO1, Nrf2, NF-κB, and p53. All these benefits of urolithin A were prevented by Ex-527. In conclusion, urolithin A protects against DC by activating SIRT signaling.  相似文献   

19.
Oxidative stress-mediated activation of NLRP3 inflammasome in microglia is critical in the development of neurodegerative diseases such as Alzheimer's disease (AD), Parkinson disease (PD). However, the mechanism underlying oxidative stress activates NLRP3 inflammasome remains exclusive. Here we demonstrated cathepsin B (CTSB) as a regulator of the activation of NLRP3 inflammasome by H2O2·H2O2 induced IL-1β secretion in NLRP3 inflammasome-dependent manner·H2O2 treatment increased CTSB activity, which in turn activated NLRP3 inflammasome, and subsequently processed pro-caspase-1 cleavage into caspase-1, resulting in IL-1 β secretion. Genetic inhibition or pharmacological inhibition of CTSB blocked the cleavage of pro-caspase-1 into caspase-1 and subsequent IL-1 β secretion induced by H2O2. Importantly, CTSB activity, IL-1β levels and malondialdehyde (MDA) were remarkably elevated in plasma of AD patients compared to healthy controls, while glutathione was significantly lower than healthy controls. Correlation analyses showed that CTSB activity was positively correlated with IL-1β and MDA levels, but negatively correlated with GSH levels in plasma of AD patients. Taken together, our results indicate that oxidative stress activates NLRP3 through upregulating CTSB activity. Our results identify an important biological function of CTSB in neuroinflammation, suggesting that CTSB is a potential target in AD therapy.  相似文献   

20.
The present study was designated to assess oxidative damage and its effect on germ cell apoptosis in testes of streptozotocin (STZ)-induced diabetic rats. The role of antioxidant supplementation with a mixture of vitamins E and C and alpha lipoic acid for protection against such damage was also evaluated. Forty-five adult male rats were randomly divided into three groups: group I, control, non-diabetic rats; group II, STZ-induced, untreated diabetic rats; group III, STZ-induced diabetic rats supplemented with a mixture of vitamins E and C and alpha lipoic acid. Glycated hemoglobin (HbA1C), glucose, and insulin levels were estimated in blood samples. Malondialdehyde (MDA), the activities of the enzymes superoxide dismutase (SOD), glutathione peroxidase (GPx), and caspase-3 in addition to testosterone (T) level were all determined in testicular tissues. Histopathological studies using H&E stain, as well as, immunohistochemical detection of apoptosis using (TUNEL) method were also performed. Blood glucose and HbA1c were significantly increased while insulin was significantly decreased in STZ-induced diabetic rats as compared with controls. In rat testicular tissues, MDA, and caspase-3 activity were significantly elevated while SOD and GPx enzymatic activities as well as T level were significantly decreased in diabetic rats as compared with control group. Antioxidant supplementation to diabetic rats restored the testicular enzymatic activities of SOD and GPx to almost control levels, in addition, MDA and caspase-3 activity decrease while T increase significantly as compared with untreated diabetic group. Prominent reduction of germ cell apoptosis was found in diabetic rats supplemented with antioxidants. An important role of testicular oxidative damage and germ cell apoptosis in diabetes-induced infertility could be suggested, treatment with antioxidants has a protective effect by restoring SOD and GPx antioxidant enzymatic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号