首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Zheng X  Cheng W  Wang X  Lei C 《Cryobiology》2011,63(3):164-169
Insects can increase their resistance to cold stress by prior exposure to non-lethal cold temperatures. Here, we investigated the supercooling capacity and survival of eggs, 3rd and 5th instar larvae, and pupae of Spodoptera exigua (Lepidoptera: Noctuidae) during CA, and responses to various pre-treatment protocols, including constant temperatures, thermoperiods, and RCH, RHH, RCH + RHH and RHH + RCH combined with thermoperiods. Only acclimated eggs demonstrated a significant decrease in SCP, from −20.7 ± 0.3 to −22.9 ± 0.3 °C, among all experimental groups compared to non-acclimated stages. Survival increased by 17.5% for eggs, 40.0% and 13.3% for 3rd and 5th instar larvae, and by 20.0% for pupae after CA. Compared to controls, survival of eggs under the conditions of thermoperiod (5:15 °C), thermoperiod (5:15 °C) + RHH, and thermoperiod (5:15, 10:20, and 15:25 °C) + RCH significantly increased. In addition, survival of 3rd and 5th instar larvae and pupae increased under the conditions of thermoperiod (5:15 °C) and thermoperiod (5:15 °C) + RCH, possibly due to the induction of heat shock proteins or cryoprotectants. However, the pre-treatments of thermoperiod + RCH + RHH and thermoperiod + RHH + RCH did not significantly enhance survival of any developmental stage. These adaptive responses may allow S. exigua to enhance supercooling capacity and survival in response to seasonal or unexpected diurnal decreases in environmental temperatures.  相似文献   

2.
Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) is a worldwide emerging pest of soft fruits, but its cold tolerance has not been thoroughly explored. We determined the cold tolerance strategy, low temperature thermal limits, and plasticity of cold tolerance in both male and female adult D. suzukii. We reared flies under common conditions (long days, 21 °C; control) and induced plasticity by rapid cold-hardening (RCH, 1 h at 0 °C followed by 1 h recovery), cold acclimation (CA, 5 days at 6 °C) or acclimation under fluctuating temperatures (FA). D. suzukii had supercooling points (SCPs) between −16 and −23 °C, and were chill-susceptible. 80% of control flies were killed after 1 h at −7.2 °C (males) or −7.5 °C (females); CA and FA improved survival of this temperature in both sexes, but RCH did not. 80% of control flies were killed after 70 h (male) or 92 h (female) at 0 °C, and FA shifted this to 112 h (males) and 165 h (females). FA flies entered chill coma (CTmin) at approximately −1.7 °C, which was ca. 0.5 °C colder than control flies; RCH and CA increased the CTmin compared to controls. Control and RCH flies exposed to 0 °C for 8 h took 30–40 min to recover movement, but this was reduced to <10 min in CA and FA. Flies placed outside in a field cage in London, Ontario, were all killed by a transient cold snap in December. We conclude that adult phenotypic plasticity is not sufficient to allow D. suzukii to overwinter in temperate habitats, and suggest that flies could overwinter in association with built structures, or that there may be additional cold tolerance imparted by developmental plasticity.  相似文献   

3.
We investigated the rapid cold hardening (RCH) response in the predatory mite Neoseiulus californicus (McGregor) (Acari: Phytoseiidae). On direct exposure, ≤2 % of adult females survived ?10 °C for 2 h. However, when acclimatized first at 5 °C for 1 h, 75 % of females survived. RCH could also be induced by acclimatization at 30 °C for 2 h or anoxia (oxygen-free nitrogen) for 1–2 h. All immature stages showed enhanced survival when acclimatized at 5 °C for 2 h before exposure to ?10 °C. Acclimatization at 30 °C induced RCH only in eggs and deutonymphs, and anoxia was effective for eggs, larvae, and deutonymphs. The variability among immature stages may be attributed to the cost associated with the acclimatization treatments. Our findings suggest that RCH may promote the survival of N. californicus during unexpected changes in temperatures, and can be an important feature particularly when this natural enemy is introduced to non-native environments.  相似文献   

4.
《Biological Control》2013,64(2):101-105
Eriopis connexa (Germar) (Coleoptera: Coccinellidae) is an important predator with potential for biological control of insect pests. This research evaluated the development of E. connexa larvae fed on fresh eggs of Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) without (T1) or with (T2) scales or one-day (T3) or six-month (T4) frozen, or newly-hatched larvae of S. frugiperda (T5). The percentage of E. connexa adults was higher when larvae feeding on fresh S. frugiperda eggs with or without scales, or one-day frozen eggs of this prey and lower with eggs of this Lepidoptera after frozen for six months or with newly-hatched larvae of S. frugiperda. Duration of the larval period of E. connexa was 15.7, 15.8, 16.0, 17.6, and 17.3 days, respectively, with these diets. The high survival of E. connexa fed with eggs of S. frugiperda shows the potential use of this prey in the laboratory to maintain this natural enemy.  相似文献   

5.
Spotted wing drosophila, Drosophila suzukii (Diptera: Drosophilidae), is a serious invasive pest of berries and cherries in the U.S. and Europe and has become a major phytosanitary trade barrier. In this pilot study, we explored the potential of using stand-alone ethyl formate (EF) treatment and a combinatory treatment of EF and cold temperature as postharvest control options for D. suzukii in imported blueberries. Stand-alone EF fumigations were effective against D. suzukii with LCt99% of 207.7 and 168.5 g·h·m?3 for eggs, the most tolerant life stage, at 5 and 21 °C, respectively. In a scale-up (10 m3) trial conducted at 5 °C, complete control of D. suzukii eggs placed inside and outside of blueberry boxes was achieved using 70 g·m?3 EF for 4 h with 5% blueberry loading ratio without deleterious impact on blueberry appearance such as soft spot or berry shrivel. In small scale pilot studies, 9-d stand-alone cold treatment at 5 °C was sufficient for complete control of D. suzukii eggs and larvae tested, but not pupae. The efficacy of this cold treatment appeared to be improved when D. suzukii eggs were first treated with low-dose EF (LCt50% level) prior to the cold treatment. The combination treatment resulted in complete mortality of D. suzukii eggs, larvae, and pupae tested after 7, 5, and 9 d of cold treatment, respectively. Together, these results suggest that stand-alone EF treatment, or the combination treatment of low-dose EF and cold as a systems approach may have a potential as postharvest treatments for D. suzukii in blueberries.  相似文献   

6.
The oriental fruit fly, Bactrocera dorsalis, is a serious insect pest with diverse host range. Furthermore, its invasive and polyphagous behaviors allow this species to expand its habitats. Recent climate change and increase of international trade/transportation facilitate the species expansion from subtropical to temperate regions. Low temperature during winter appears to be the major factor limiting its expansion to temperate zones in the northern hemisphere. This study reports its remarkable ability in rapid cold-hardening (RCH) along with deep supercooling capacity. A brief exposure to 9?°C significantly enhanced cold tolerance of its larvae, pupae, and adults. RCH took 1–2?h for pupae and adults, although it took 24?h for larvae. Supercooling capacity of pupae was also enhanced by RCH treatment from ?13.4?°C to ?16.6?°C. To trace genetic factors associated with RCH, calcium/calmodulin-dependent protein kinase II (Bd-CaMKII) was identified from B. dorsalis and their expression in response to RCH treatment was analyzed. Bd-CaMKII possesses three conserved domains of kinase, calmodulin, and oligomerization. Bd-CaMKII is highly homologous to CaMKII of D. melanogaster and other tephritid flies. Expression levels of Bd-CaMKII in the larvae treated with RCH were significantly increased by approximately 5.5 folds compared to those in control larvae. In addition, expression levels of HSP70 and HSP90 were also increased in response to RCH treatment. These results along with previous studies suggest that cold-hardening of B. dorsalis is functionally associated with its supercooling capacity with increased production of cryoprotectants and HSP through regulatory activity of Bd-CaMKII.  相似文献   

7.
The threats posed by climate change make it important to expand knowledge concerning cold and heat tolerance in stenothermal species from habitats potentially threatened by temperature changes. Thermal limits and basal metabolism variations were investigated in Pseudodiamesa branickii (Diptera: Chironomidae) under thermal stress between ‐20 and 37 °C. Supercooling point (SCP), lower (LLTs) and upper lethal temperatures (ULTs), and oxygen consumption rate were measured in overwintering young (1st and 2nd instar) and mature (3rd and 4th instar) larvae from an Alpine glacier‐fed stream. Both young and mature larvae were freezing tolerant (SCPs = ‐7.1 °C and ‐6.4 °C, respectively; LLT100 <SCP and > ‐20 °C) and thermotolerant (ULT50 = 31.7 ± 0.4, 32.5 ± 0.3, respectively). However, ontogenetic differences in acute tolerance were observed. The LLT50 calculated for the young larvae (= ‐7.4 °C) was almost equal to their SCP (= ‐7.1 °C) and the overlapping of the proportion of mortality curve with the CPIF curve highlighted that the young larvae are borderline between freezing tolerance and freezing avoidance. Furthermore, a lower ULT100 in the young larvae (of ca. 1 °C), suggests that they are less thermotolerant than mature larvae. Finally, young larvae exhibit a higher oxygen consumption rate (mgO2/gAFDM/h) at any temperature tested and are overall less resistant to oxygen depletion compared to mature larvae at ≥10 °C. These findings suggest that mature larvae enter into a dormant state by lowering their basal metabolism until environmental conditions improve in order to save energy for life cycle completion during stressful conditions.  相似文献   

8.
Abstract Understanding predator–prey interactions has a pivotal role in biological control programs. This study evaluated the functional response of three larval instars of the green lacewing, Chrysoperla carnea (Stephens), preying upon eggs and first instar larvae of the cotton bollworm, Helicoverpa armigera Hübner. The first and second instar larvae of C. carnea exhibited type II functional responses against both prey stages. However, the third instar larvae of C. carnea showed a type II functional response to the first instar larvae of H. armigera, but a type III functional response to the eggs. For the first instar larvae of C. carnea, the attack rate on H. armigera eggs was significantly higher than that on the larvae, whereas the attack rate of the second instar C. carnea on H. armigera larvae was significantly higher than that on the eggs. For the third instar larvae of C. carnea, the attack rate on the larvae was 1.015 ± 0.278/h, and the attack coefficient on the eggs was 0.036 ± 0.005. The handling times of the third instar larvae on larvae and eggs were 0.087 ± 0.009 and 0.071 ± 0.001 h, respectively. The highest predation rate was found for the third instar larvae of C. carnea on H. armigera eggs. Results of this study revealed that the larvae of C. carnea, especially the third instar, had a good predation potential in controlling H. armigera eggs and larvae. However, for a comprehensive estimation of the bio‐control abilities of C. carnea toward H. armigera, further field‐based studies are needed.  相似文献   

9.
The solitary endoparasitoid, Microplitis rufiventris, attacks and can develop in earlier instars of Spodoptera littoralis larvae with preference to third‐instar larvae. We used the last stadium (sixth instar), a stage which is not naturally parasitized. The newly moulted larvae (0–3 h old) of this stadium were more acceptable for parasitization by the wasp females than the older ones (24 h old). Parasitization by M. rufiventris wasp of last instar S. littoralis larvae leads to dose (no. of eggs + parasitoid factors)‐dependent effects which were more pronounced at 20°C than at 27°C. A single oviposition into a sixth instar host larva resulted in normal development of the host. However, superparasitization increased the proportions of developmentally arrested hosts and number of live wasp larvae. Development of supernumerary individuals of the parasitoid in the host larva leads to dose‐related adverse effects on host growth and development. The present study may provide interesting opportunities for studying the physiological bases of host–parasitoid interactions and parasitoid intra‐specific competition in the biological system considered.  相似文献   

10.
Insect cold tolerance is both phenotypically-plastic and evolutionarily labile, but the mechanisms underlying this variation are uncertain. Chill-susceptible insects lose ion and water homeostasis in the cold, which contributes to the development of injuries and eventually death. We thus hypothesized that more cold-tolerant insects will better maintain ion and water balance at low temperatures. We used rapid cold-hardening (RCH) and cold acclimation to improve cold tolerance of male Gryllus pennsylvanicus, and also compared this species to its cold-tolerant relative (Gryllus veletis). Cold acclimation and RCH decreased the critical thermal minimum (CTmin) and chill coma recovery time (CCR) in G. pennsylvanicus, but while cold acclimation improved survival of 0 °C, RCH did not; G. veletis was consistently more cold-tolerant (and had lower CCR and CTmin) than G. pennsylvanicus. During cold exposure, hemolymph water and Na+ migrated to the gut of warm-acclimated G. pennsylvanicus, which increased hemolymph [K+] and decreased muscle K+ equilibrium potentials. By contrast, cold-acclimated G. pennsylvanicus suffered a smaller loss of ion and water homeostasis during cold exposure, and this redistribution did not occur at all in cold-exposed G. veletis. The loss of ion and water balance was similar between RCH and warm-acclimated G. pennsylvanicus, suggesting that different mechanisms underlie decreased CCR and CTmin compared to increased survival at 0 °C. We conclude that increased tolerance of chilling is associated with improved maintenance of ion and water homeostasis in the cold, and that this is consistent for both phenotypic plasticity and evolved cold tolerance.  相似文献   

11.
Effect of rearing temperature on growth and thermal tolerance of Schizothorax (Racoma) kozlovi Nikolsky larvae and juveniles was investigated. The fish (start at 12 d post hatch) were reared for nearly 6 months at five constant temperatures of 10, 14, 18, 22 and 26 °C. Then juvenile fish being acclimated at three temperatures of 14, 18 and 22 °C were chosen to determine their critical thermal maximum (CTMax) and lethal thermal maximum (LTMax) by using the dynamic method. Growth rate of S. kozlovi larvae and juveniles was significantly influenced by temperature and fish size, exhibiting an increase with increased rearing temperature, but a decline with increased fish size. A significant ontogenetic variation in the optimal temperatures for maximum growth were estimated to be 24.7 °C and 20.6 °C for larvae and juveniles of S. kozlovi, respectively. The results also demonstrated that acclimation temperature had marked effects on their CTMax and LTMax, which ranged from 32.86 °C to 34.54 °C and from 33.79 °C to 34.80 °C, respectively. It is suggested that rearing temperature must never rise above 32 °C for its successful aquaculture. Significant temperature effects on the growth rate and thermal tolerance both exhibit a plasticity pattern. Determination of critical heat tolerance and optima temperature for maximum growth of S. kozlovi is of ecological significance in the conservation and aquaculture of this species.  相似文献   

12.
Encapsulation and development of the endoparasitoid,Microplitis croceipes (Cresson), were studied in six atypical lepidopteran host species whose usual host isHelicoverpa zea (Boddie). The candidate hosts examined were: the fall armywormSpodoptera frugiperda (J. E. Smith); the beet armyworm,Spodoptera exigua (Hübner); the cabbage looper,Trichoplusia ni (Hübner); the greater wax moth,Galleria mellonella (L.); the Indian meal moth,Plodia interpunctella (Hübner); and the diamondback moth,Plutella xylostella (L.). BothS. exigua andT. ni were completely unsuitable forM. croceipes development due to the high rate of eggs that were encapsulated within three days after parasitism. Encapsulation inS. frugiperda included mainly parasitoid eggs and was first detected six days after parasitization at 25°C and two days at 30°C. Encapsulation inG. mellonella occurred only in the larval stage of the parasitoid. InP. interpunctella, parasitoid larvae reached the 3rd stadium, but none of them pupated. OnlyS. frugiperda andG. mellonella supported successful development ofM. croceipes from egg to adult. The percentage of parasitoids reaching the adult stage in these hosts was higher at 30°C than at 25°C (13% vs. 4% inS. frugiperda, and 21% vs. 3% inG. mellonella, respectively). However, these percentages were too low to substitute them as a more economical host for rearingM. croceipes. This biological information will be useful in additional laboratory studies directed toward reducing the rate of encapsulation (e.g., manipulation of host rearing temperature) to increase production ofM. croceipes on these hosts.  相似文献   

13.
Microplitis bicoloratus Chen (Hymenoptera:Braconidae:Microgastrinae), a new species of Microplitis Förster from China, is a solitary endoparasitoid of the larvae of the cotton leafworm, Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae). This parasitoid is the first to be successfully reared and evaluated in the laboratory as a potential agent for the biological control of S. litura in China. Oviposition, immature development, and the effects of parasitism on the development of S. litura were studied. In long-term oviposition trials, females laid eggs on S. litura larvae for up to 10 days; oviposition was heavily skewed toward the first few days, with approximately one third of the eggs laid on day 1 and over 50% laid by day 3. This rapid oviposition rate increases the potential for biological suppression of host populations because the likelihood of mortality for the parasites from exposure to detrimental environmental factors or generalist predators increases with time. Immature development of the parasitoid in its host only required 7 days: eggs hatched within 24 h, the first instar larva required 2 days, the second instar larva needed 3 days, and the third instar larvae exited the host and pupated in 1 day, at 27±1°C, 60–80% relative humidity and a 12:12-h (long day) photoperiod. The development of the parasitized hosts was disrupted. When the parasitoid larvae finished development, the body weights of host larvae were significantly reduced regardless of which host instar was parasitized. Our results suggest that M. bicoloratus has considerable potential as a biological control agent for S. litura.  相似文献   

14.
15.
Effects of temperature on development of eggs, recently hatched larvae and L3 larvae of the marine parasitic nematodes Anisakis simplex sensu stricto (s.s.) and A. pegreffii were examined in vitro. The eggs of A. simplex s.s. hatched at 3–25 °C and those of A. pegreffii hatched at 3–27 °C. Days before hatching varied between 2 days at 25 °C and 35–36 days at 3 °C in A. simplex s.s. and between 2 and 3 days at 27 °C and 65 days at 3 °C in A. pegreffii. Hatching rates of A. simplex s.s. were maintained high at temperatures between 3 and 25 °C but decreased to 0% at 27 °C. In contrast, those of A. pegreffii were lowest particularly at 3 °C, but also at 27 °C. The mean 50% survivals of hatched larvae ranged from 5.3 days at 25 °C to 82.3 days at 9 °C in A. simplex s.s., while in A. pegreffii it ranged from 1.2 days at 27 °C to 77.2 days at 9 °C. L3 larvae of A. pegreffii exhibited higher survival rates and activity than those of A. simplex s.s., particularly at 20 and 25 °C. These results suggest that the early stages of A. simplex s.s. are more adapted to lower temperatures whereas those of A. pegreffii are more tolerant to warm environments, which may correspond to their distribution patterns in Japan and Europe.  相似文献   

16.
Zaprionus indianus is a fly species native to the Afrotropical biogeographic region that invaded the South American continent 20 years ago. Its southernmost record is 34°S in areas with temperate climates with cold winters. To better understand its invasion biology, we investigated physiological responses to winter-like abiotic conditions that may be relevant in Z. indianus geographic expansion. We characterized Z. indianus females reproductive traits (ovarian maturation and fertility) and survival in response to cold treatments with summer-like and winter-like photoperiods. We also compared these traits between native (Yokadouma, Africa) and invasive (Yuto, South America) range wild-derived flies. We showed that Z. indianus females have the ability to arrest ovarian maturation and maintain fertility following recovery from cold stress. The critical temperature for ovarian maturation of this species was estimated at c. 13 °C, an intermediate value between those of tropical and temperate drosophilid species. Wild-derived females from Yuto responded to winter-like photoperiod by slowing down ovarian maturation at low but permissive temperatures of 14 °C and 16 °C and also delayed the start of oviposition after cold treatment. Yuto flies also survived better and recovered 20% faster from chill coma than flies from Yokadouma. These results are consistent with a scenario of local adaptations or phenotypic plasticity in the invaded range, and suggest that photoperiod could act as modulator of ovarian arrest. Conversely, the fact that native range flies showed higher fertility after cold recovery than females from invaded range is not indicative of local adaptation. All in all, our findings report a set of physiological responses that would enable Z. indianus expansion to temperate and cold areas, but also results that are compatible with a limitation to the invasion process.  相似文献   

17.
18.
19.
Neal  Anita S.  Diaz  Rodrigo  Qureshi  Jawwad A.  Cave  Ronald D. 《Biological invasions》2021,23(12):3719-3731

Cold tolerance and potential distribution of Myllocerus undecimpustulatus undatus Marshall, a polyphagous pest in the United States, were investigated. Adult survivorship after 2 days at 0 °C and ??5 °C averaged 60% and 18%, respectively. Four days of exposure resulted in survivorship of 11% at 0 °C and 4% at ??5 °C, respectively. Summer-collected weevils at ??5 °C through repeated cold exposure of 2 h survived 3 times longer than those subjected to sustained cold period of 10 h. Leaf consumption did not differ among summer-collected weevils at constant 20 °C and repeated cold exposure treatments; weevils under sustained cold exposure consumed less than weevils in repeated cold exposure treatments. Leaf area consumed after cold exposure was 2–4 times greater in winter-collected weevils compared to summer-collected weevils. Leaf consumption by winter-collected weevils decreased as the number of repeated cold exposure periods increased. Locality data from collections in Florida during 2000–2012 were used to produce a correlative model complemented by a mechanistic model from the cold tolerance data to project the potential distribution of M. undecimpustulatus undatus in North America. The models support the hypothesis that M. undecimpustulatus undatus could spread to areas of the southeastern and western United States. The predicted northern distribution followed an isothermal line about 33° North. The niche model defined an area along the western Gulf Coast as unsuitable for the weevil, possibly because the area receives greater annual rainfall than other areas of the southeastern United States and has aquic or udic soil unlike the well-drained sandy soil of peninsular Florida.

  相似文献   

20.
Parasetigena silvestris is a univoltine, solitary, larval endoparasitoid which lays its eggs on the surface of gypsy moth larvae. Field collection of the host larvae (2nd through 5th instar) from an artificially established gypsy moth population were made to compare stage specific parasitism between larvae without and with P. silvestris tachinid eggs. The tachinid oviposition rate detected was highest in second instar larvae, and then decreased as larvae developed toward full maturity. The opposite was true for tachinid parasitoid emergence which had no emergence from second through third host instar larvae. Fourth instar gypsy moth larvae, however, experienced significantly higher parasitism by P. silvestris in the larvae with eggs than those without the eggs. The braconid wasp Cotesia melanoscelus caused significantly higher parasitism in early instar larvae with P. silvestris eggs than in those without the eggs. The tachinid prefers to lay more eggs on parasitised larvae by the braconid even though the braconid is a superior competitor to the fly during multiparasitism. Factors influencing parasitism rates by P. silvestris such as host-parasitoid synchronisation and the multiparasitism interaction with C. melanoscelus are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号