首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cadherins have been identified as receptors of Bacillus thuringiensis (Bt) Cry1A toxins in several lepidopteran insects including the cotton bollworm, Helicoverpa armigera. Disruption of the cadherin gene HaCad has been genetically linked to resistance to Bt toxin Cry1Ac in H. armigera. By using the CRISPR/Cas9 genome editing system (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein 9), HaCad from the Cry1Ac-susceptible SCD strain of H. armigera was successfully knocked out. A single positive CRISPR event with a frame shift deletion of 4 nucleotides was identified and made homozygous to create a knockout line named SCD-Cad. Western blotting confirmed that HaCad was no longer expressed in the SCD-Cad line while an intact HaCad of 210 kDa was present in the parental SCD strain. Insecticide bioassays were used to show that SCD-Cad exhibited 549-fold resistance to Cry1Ac compared with SCD, but no significant change in susceptibility to Cry2Ab. Our results not only provide strong reverse genetics evidence for HaCad as a functional receptor of Cry1Ac, but also demonstrate that the CRISPR/Cas9 technique can act as a powerful and efficient genome editing tool to study gene function in a global agricultural pest, H. armigera.  相似文献   

2.
Enormous advances in genome editing technology have been achieved in recent decades. Among newly born genome editing technologies, CRISPR/Cas9 is considered revolutionary because it is easy to use and highly precise for editing genes in target organisms. CRISPR/Cas9 technology has also been applied for removing unfavorable target genes. In this study, we used CRISPR/Cas9 technology to reduce ethyl carbamate (EC), a potential carcinogen, which was formed during the ethanol fermentation process by yeast. Because the yeast CAR1 gene encoding arginase is the key gene to form ethyl carbamate, we inactivated the yeast CAR1 gene by the complete deletion of the gene or the introduction of a nonsense mutation in the CAR1 locus using CRISPR/Cas9 technology. The engineered yeast strain showed a 98 % decrease in specific activity of arginase while displaying a comparable ethanol fermentation performance. In addition, the CAR1-inactivated mutants showed reduced formation of EC and urea, as compared to the parental yeast strain. Importantly, CRISPR/Cas9 technology enabled generation of a CAR1-inactivated yeast strains without leaving remnants of heterologous genes from a vector, suggesting that the engineered yeast by CRISPR/Cas9 technology might sidestep GMO regulation.  相似文献   

3.
Recently established, custom-designed nuclease technologies such as the clustered regularly interspaced short palindromic repeat (CRISPR)-associated system provide attractive genome editing tools. Targeted gene mutagenesis using the CRISPR/Cas9 system has been achieved in several orders of insects. However, outside of studies on Drosophila melanogaster and the lepidopteron model insect Bombyx mori, little success has been reported, which is largely due to a lack of effective genetic manipulation tools that can be used in other insect orders. To create a simple and effective method of gene knockout analysis, especially for dissecting gene functioning during insect embryogenesis, we performed a functional analysis of the Bombyx Wnt1 (BmWnt1) gene using Cas9/sgRNA-mediated gene mutagenesis. The Wnt1 gene is required for embryonic patterning in various organisms, and its crucial roles during embryogenesis have been demonstrated in several insect orders. Direct injection of Cas9 mRNA and BmWnt1-specific sgRNA into Bombyx embryos induced a typical Wnt-deficient phenotype: injected embryos could not hatch and exhibited severe defects in body segmentation and pigmentation in a dose-dependent manner. Quantitative real-time PCR (qRT-PCR) analysis revealed that Hox genes were down-regulated after BmWnt1 depletion. Furthermore, large deletion, up to 18 Kb, ware generated. The current study demonstrates that using the CRISPR/Cas9 system is a promising approach to achieve targeted gene mutagenesis during insect embryogenesis.  相似文献   

4.
The clustered regularly interspaced short palindromic repeats(CRISPR)/CRISPR-related nuclease 9(Cas9) system enables precise, simple editing of genes in many animals and plants.However, this system has not been applied to rose(Rosa hybrida) due to the genomic complexity and lack of an efficient transformation technology for this plant. Here, we established a platform for screening single-guide RNAs(sgRNAs) with high editing efficiency for CRISPR/Cas9-mediated gene editing in rose using suspensio...  相似文献   

5.
CRISPR/Cas9系统已广泛用于各种生物体的基因编辑和代谢工程。本文综述了CRISPR/Cas9在酿酒酵母中的基本原理和实际应用。首先总结了CRISPR/Cas9技术的发展历史、酿酒酵母基因组中基因缺失和多DNA片段插入的成功案例。这一先进的系统减少了劳动力,增强了对分子遗传学的理解,加速了微生物工程的发展。其次总结了基于CRISPR/Cas9的系统在生产高附加值化学品和提高酿酒酵母耐应激性方面的研究进展。该综述对酿酒酵母的遗传和合成生物学研究具有重要的参考价值。  相似文献   

6.
The occurrence of accidental mutations or deletions caused by genome editing with CRISPR/Cas9 system remains a critical unsolved problem of the technology. Blocking excess or prolonged Cas9 activity in cells is considered as one means of solving this problem. Here, we report the development of an inhibitory DNA aptamer against Cas9 by means of in vitro selection (systematic evolution of ligands by exponential enrichment) and subsequent screening with an in vitro cleavage assay. The inhibitory aptamer could bind to Cas9 at low nanomolar affinity and partially form a duplex with CRISPR RNA, contributing to its inhibitory activity. We also demonstrated that improving the inhibitory aptamer with locked nucleic acids efficiently suppressed Cas9-directed genome editing in cells and reduced off-target genome editing. The findings presented here might enable the development of safer and controllable genome editing for biomedical research and gene therapy.  相似文献   

7.
基因编辑技术是通过核酸内切酶对基因组DNA进行定向改造的技术,可以实现对特定DNA碱基的缺失、替换等,常用的四种基因编辑工具分别是:巨型核酸酶、锌指核酸酶、转录激活因子样效应物核酸酶以及CRISPR/Cas9系统。其中CRISPR/Cas9系统作为一种新型的基因组编辑技术具有组成简单、特异性好、切割效率高的优点。该文对CRISPR/Cas9系统的结构组成和功能机制,动植物基因靶向编辑和人类在遗传性疾病、病毒感染性疾病以及肿瘤方面进行综述,旨在对CRISPR/Cas9系统的现状和发展进行总结和展望。  相似文献   

8.
Genome editing using engineered nucleases has rapidly transformed from a niche technology to a mainstream method used in various host cells. Its widespread adoption has been largely developed by the emergence of the clustered regularly interspaced short palindromic repeats (CRISPR) system, which uses an easily customizable specificity RNA-guided DNA endonuclease, such as Cas9. Recently, CRISPR/Cas9 mediated genome engineering has been widely applied to model organisms, including Bacillus subtilis, enabling facile, rapid high-fidelity modification of endogenous native genes. Here, we reviewed the recent progress in B. subtilis gene editing using CRISPR/Cas9 based tools, and highlighted state-of-the-art strategies for design of CRISPR/Cas9 system. Finally, future perspectives on the use of CRISPR/Cas9 genome engineering for sequence-specific genome editing in B. subtilis are provided.  相似文献   

9.
Alkaliphiles are considered more suitable chassis than traditional neutrophiles due to their excellent resistance to microbial contamination. Alkaliphilic Bacillus sp. N16-5, an industrially interesting strain with great potential for the production of lactic acid and alkaline polysaccharide hydrolases, can only be engineered genetically by the laborious and time-consuming homologous recombination. In this study, we reported the successful development of a CRISPR/Cas9-based genome editing system with high efficiency for single-gene deletion, large gene fragment deletion and exogenous DNA chromosomal insertion. Moreover, based on a catalytically dead variant of Cas9 (dCas9), we also developed a CRISPRi system to efficiently regulate gene expression. Finally, this efficient genome editing system was successfully applied to engineer the xylose metabolic pathway for the efficient bioproduction of D -lactic acid. Compared with the wild-type Bacillus sp. N16-5, the final engineered strain with XylR deletion and AraE overexpression achieved 34.3% and 27.7% increases in xylose consumption and D -lactic acid production respectively. To our knowledge, this is the first report on the development and application of CRISPR/Cas9-based genome editing system in alkaliphilic Bacillus, and this study will significantly facilitate functional genomic studies and genome manipulation in alkaliphilic Bacillus, laying a foundation for the development of more robust microbial chassis.  相似文献   

10.
Yarrowia lipolytica is an important oleaginous yeast currently used in the production of specialty chemicals and has a great potential for further applications in lipid biotechnology. Harnessing the full potential of Y. lipolytica is, however, limited by its inherent recalcitrance to genetic manipulation. In contrast to Saccharomyces cerevisiae, Y. lipolytica is poor in homology-mediated DNA repair and thus in homologous recombination, which limits site-specific gene editing in this yeast. Recently developed CRISPR/Cas9-based methods using tRNA-sgRNA fusions succeeded in editing some genomic loci in Y. lipolytica. Nonetheless, the majority of other tested loci either failed editing or editing was achieved but at very low efficiency using these methods. Using tools of secondary RNA structure prediction, we were able to improve the design of the tRNA-sgRNA fusions used for the expression of single guide RNA (sgRNA) in such methods. This resulted in high efficiency CRISPR/cas9 gene editing at chromosomal loci that failed gene editing or were edited at very low efficiencies with previous methods. In addition, we characterized the gene editing performance of our newly designed tRNA-sgRNA fusions for both chromosomal gene integration and deletion. As such, this study presents an efficient CRISPR/Cas9-mediated gene-editing tool for efficient genetic engineering of Yarrowia lipolytica.  相似文献   

11.
CRISPR/Cas9基因组编辑技术是一项对基因组进行精准修饰的技术,可实现对靶标基因的碱基插入、缺失或DNA片段替换。随着人们对CRISPR/Cas9系统的了解逐渐加深,其在科研、农业和医疗等领域的应用也越来越广泛。该文简要介绍了CRISPR/Cas9基因组编辑技术的发展以及工作原理,总结了近几年对该技术进行优化与改进的研究进展,包括基因组编辑效率的提升、基因组编辑范围的扩展、单碱基精准编辑以及多基因同时编辑、基因组编辑安全性的提升以及基因片段替换与基因靶向转录调控,以期为深入开展这一领域的研究提供参考。  相似文献   

12.
CRISPR/Cas9基因组编辑技术是一项对基因组进行精准修饰的技术, 可实现对靶标基因的碱基插入、缺失或DNA片段替换。随着人们对CRISPR/Cas9系统的了解逐渐加深, 其在科研、农业和医疗等领域的应用也越来越广泛。该文简要介绍了CRISPR/Cas9基因组编辑技术的发展以及工作原理, 总结了近几年对该技术进行优化与改进的研究进展, 包括基因组编辑效率的提升、基因组编辑范围的扩展、单碱基精准编辑以及多基因同时编辑、基因组编辑安全性的提升以及基因片段替换与基因靶向转录调控, 以期为深入开展这一领域的研究提供参考。  相似文献   

13.
在CRISPR/Cas9系统介导的基因编辑中,借助于双链DNA (double-stranded DNA,dsDNA)供体模板的重组效应能够实现对目标基因组靶位点的精确编辑和基因敲入,然而高等真核生物细胞中同源重组的低效性限制了该基因编辑策略的发展和应用。为提高CRISPR/Cas9系统介导dsDNA供体模板的同源重组效率,本研究利用大肠杆菌(Escherichia coli)乳糖操纵子阻遏蛋白LacI与操纵序列LacO特异性结合的特点,通过重组DNA技术将密码子人源化优化的阻遏蛋白基因LacI分别与脓链球菌(Streptococcus pyogenes)源的SpCas9和路邓葡萄球菌(Staphylococcus lugdunensis)源的SlugCas9-HF融合表达,通过PCR将操纵序列LacO与dsDNA供体嵌合,构建了新型的CRISPR/Cas9-hLacI供体适配系统(donor adapting system,DAS)。首先在报告载体水平上对Cas9核酸酶活性、DAS介导的同源引导修复(homology-directed repair,HDR)效率进行了验证和优化,其次在基因组水平对其介导的基因精确编辑进行了检测,并最终利用CRISPR/SlugCas9-hLacI DAS在HEK293T细胞中实现了VEGFA位点的精确编辑,效率高达30.5%,显著高于野生型。综上所述,本研究开发了新型的CRISPR/Cas9-hLacI供体适配基因编辑系统,丰富了CRISPR/Cas9基因编辑技术种类,为以后的基因编辑及分子设计育种研究提供了新的工具。  相似文献   

14.
Studies of gene function in non-model animals have been limited by the approaches available for eliminating gene function. The CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR associated) system has recently become a powerful tool for targeted genome editing. Here, we report the use of the CRISPR/Cas9 system to disrupt selected genes, including nanos2, nanos3, dmrt1, and foxl2, with efficiencies as high as 95%. In addition, mutations in dmrt1 and foxl2 induced by CRISPR/Cas9 were efficiently transmitted through the germline to F1. Obvious phenotypes were observed in the G0 generation after mutation of germ cell or somatic cell-specific genes. For example, loss of Nanos2 and Nanos3 in XY and XX fish resulted in germ cell-deficient gonads as demonstrated by GFP labeling and Vasa staining, respectively, while masculinization of somatic cells in both XY and XX gonads was demonstrated by Dmrt1 and Cyp11b2 immunohistochemistry and by up-regulation of serum androgen levels. Our data demonstrate that targeted, heritable gene editing can be achieved in tilapia, providing a convenient and effective approach for generating loss-of-function mutants. Furthermore, our study shows the utility of the CRISPR/Cas9 system for genetic engineering in non-model species like tilapia and potentially in many other teleost species.  相似文献   

15.
Helicoverpa armigera, cotton bollworm, is one of the most disastrous pests worldwide, threatening various food and economic crops. Functional genomic tools may provide efficient approaches for its management. The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system, dependent on a single guide RNA (sgRNA), has been used to induce indels for targeted mutagenesis in cotton bollworm. However, genomic deletions may be more desirable to disrupt the function of noncoding genes or regulatory sequences. By injecting two sgRNAs with Cas9 protein targeting different exons, we obtained predictable genomic deletions of several hundred bases. We achieved this type of modification with different combinations of sgRNA pairs, including HaCad and HaABCC2. Our finding indicated that CRISPR/Cas9 can be used as an efficient tool to engineer genomes with chromosomal deletion in H. armigera.  相似文献   

16.
Large chromosomal modifications have been performed in natural and laboratory evolution studies and hold tremendous potential for use in foundational research, medicine, and biotechnology applications. Recently, the type II bacterial Clustered Regularly Interspaced Short Palindromic Repeat and CRISPR-associated (CRISPR/Cas9) system has emerged as a powerful tool for genome editing in various organisms. In this study, we applied the CRISPR/Cas9 system to preform large fragment deletions in Saccharomyces cerevisiae and compared the performance activity to that of a traditional method that uses the Latour system. Here we report in S. Cerevisiae the CRIPR/Cas9 system has been used to delete fragments exceeding 30 kb. The use of the CRISPR/Cas9 system for generating chromosomal segment excision showed some potential advantages over the Latour system. All the results indicated that CRISPR/Cas9 system was a rapid, efficient, low-cost, and versatile method for genome editing and that it can be applied in further studies in the fields of biology, agriculture, and medicine.  相似文献   

17.
CRISPR/Cas9 has been widely used for genome editing in many organisms, including important crops like wheat. Despite the tractability in designing CRISPR/Cas9, efficacy in the application of this powerful genome editing tool also depends on DNA delivery methods. In wheat, the biolistics based transformation is the most used method for delivery of the CRISPR/Cas9 complex. Due to the high frequency of gene silencing associated with co‐transferred plasmid backbone and low edit rate in wheat, a large T0 transgenic plant population are required for recovery of desired mutations, which poses a bottleneck for many genome editing projects. Here, we report an Agrobacterium‐delivered CRISPR/Cas9 system in wheat, which includes a wheat codon optimized Cas9 driven by a maize ubiquitin gene promoter and a guide RNA cassette driven by wheat U6 promoters in a single binary vector. Using this CRISPR/Cas9 system, we have developed 68 edit mutants for four grain‐regulatory genes, TaCKX2‐1, TaGLW7, TaGW2, and TaGW8, in T0, T1, and T2 generation plants at an average edit rate of 10% without detecting off‐target mutations in the most Cas9‐active plants. Homozygous mutations can be recovered from a large population in a single generation. Different from most plant species, deletions over 10 bp are the dominant mutation types in wheat. Plants homozygous of 1160‐bp deletion in TaCKX2‐D1 significantly increased grain number per spikelet. In conclusion, our Agrobacterium‐delivered CRISPR/Cas9 system provides an alternative option for wheat genome editing, which requires a small number of transformation events because CRISPR/Cas9 remains active for novel mutations through generations.  相似文献   

18.
刘改改  李爽  韦余达  张永贤  丁秋蓉 《遗传》2015,37(11):1167-1173
CRISPR/Cas9技术提供了一个全新的基因组编辑体系。本文利用CRISPR/Cas9平台,在人胚胎干细胞株中对选取的一段特定基因组区域进行了多种基因组编辑:通过在基因编码框中引入移码突变进行基因敲除;通过单链DNA提供外源模板经由同源重组定点敲入FLAG序列;通过同时靶向多个位点诱导基因组大片段删除。研究结果表明CRISPR/Cas9可以对多能干细胞进行高效基因编辑,获得的突变干细胞株有助于对基因和基因组区域的功能进行分析和干细胞疾病模型的建立。  相似文献   

19.
Herein we describe, to our knowledge for the first time the use of the clustered regularly interspaced short palindromic repeats/CRISPR-associated gene 9 (CRISPR/Cas9) system for genome editing of Neospora caninum, an apicomplexan parasite considered one of the main causes of abortion in cattle worldwide. By using plasmids containing the CRISPR/Cas9 components adapted to the closely related parasite Toxoplasma gondii, we successfully knocked out a green fluorescent protein (GFP) in an Nc-1 GFP-expressing strain, and efficiently disrupted the NcGRA7 gene in the Nc-Spain7 isolate by insertion of a pyrimethamine resistance cassette. The successful use of this technology in N. caninum lays the foundation for an efficient, targeted gene modification tool in this parasite.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号