首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
2.
3.
4.
The development of next generation sequencing techniques has facilitated the detection of mutations at an unprecedented rate. These efficient tools have been particularly beneficial for extremely heterogeneous disorders such as autosomal recessive non-syndromic hearing loss, the most common form of genetic deafness. GJB2 mutations are the most common cause of hereditary hearing loss. Amongst them the NM_004004.5: c.506G > A (p.Cys169Tyr) mutation has been associated with varying severity of hearing loss with unclear segregation patterns. In this study, we report a large consanguineous Emirati family with severe to profound hearing loss fully segregating the GJB2 missense mutation p.Cys169Tyr. Whole exome sequencing (WES), in silico, splicing and expression analyses ruled out the implication of any other variants and confirmed the implication of the p.Cys169Tyr mutation in this deafness family. We also show preliminary murine expression analysis that suggests a link between the TMEM59 gene and the hearing process. The present study improves our understanding of the molecular pathogenesis of hearing loss. It also emphasizes the significance of combining next generation sequencing approaches and segregation analyses especially in the diagnosis of disorders characterized by complex genetic heterogeneity.  相似文献   

5.
Lysosomes are specialized organelles with an acidic pH that act as recycling hubs for intracellular and extracellular components. They harbour numerous different hydrolytic enzymes to degrade substrates like proteins, peptides, and glycolipids. Reduced catalytic activity of lysosomal enzymes can cause the accumulation of these substrates and loss of lysosomal integrity, resulting in lysosomal dysfunction and lysosomal storage disorders (LSDs). Post-mitotic cells, such as neurons, seem to be highly sensitive to damages induced by lysosomal dysfunction, thus LSDs often manifest with neurological symptoms. Interestingly, some LSDs and Parkinson’s disease (PD) share common cellular pathomechanisms, suggesting convergence of aetiology of the two disease types. This is further underlined by genetic associations of several lysosomal genes involved in LSDs with PD. The increasing number of lysosome-associated genetic risk factors for PD makes it necessary to understand functions and interactions of lysosomal proteins/enzymes both in health and disease, thereby holding the potential to identify new therapeutic targets. In this review, we highlight genetic and mechanistic interactions between the complex lysosomal network, LSDs and PD, and elaborate on methodical challenges in lysosomal research.  相似文献   

6.
The natural populations of Dactylorhiza hatagirea have been greatly affected due to incessant exploitation. As such, studies on its population attributes together with habitat suitability and environmental factors affecting its distribution are needed to be undertaken for its conservation in nature. Present study aimed at accessing an impact of anthropogenic pressure on population structure and locate suitable habitats for the conservation of this critically endangered orchid. Considerable changes in the phytosociological attributes were observed on account of the changing magnitude and extent of anthropogenic threat in their natural abode. The distribution pattern of species indicated that more than 90% of the populations exhibit substantially aggregated spatial distribution. Maximum Entropy (MaxEnt) distribution modelling algorithm was used to predict suitable habitat and potential area for its cultivation and reintroduction. Twenty-seven occurrence records, nineteen bioclimatic variables, altitude, and slope were used. MaxEnt map output gave the habitat suitability for this species and predicted its distribution in the North-Western Himalayas of India for approximately 616 km2. Jackknifing indicated that maximum temperature of warmest month, annual mean temperature, mean temperature of the driest quarter, and mean temperature of the wettest quarter were the governing factors for its distribution and hence, presented a higher gain with respect to other variables. According to permutation importance, precipitation seasonality and mean temperature of wettest quarter shows the prominent impact on the habitat distribution. Results of AUC (area under curve) were statistically significant (0.940) and the line of predicted omission falls very close to an omission on training samples, validating a better run of the model. Response curves revealed a probable increase in the occurrence of D. hatagirea with an increase in mean temperature of the wettest quarter and maximum temperature of the warmest month contributed more than 50% to predicted habitat suitability. Direct field observations concurrent with predicted habitat suitability and google-earth images represent greater model thresholds for successful inception of the species. Together, the study proposes that the species can be conserved in or near its present-day natural habitats and is equally effective in determining the possible habitats for its cultivation and reintroduction.  相似文献   

7.
The anaerobic Gram-negative bacterium Porphyromonas gingivalis is considered the keystone of periodontitis diseases, a set of inflammatory conditions that affects the tissues surrounding the teeth. In the recent years, the major virulence factors exploited by P. gingivalis have been identified and characterized, including a cocktail of toxins, mainly proteases called gingipains, which promote gingival tissue invasion. These effectors use the Sec pathway to cross the inner membrane and are then recruited and transported across the outer membrane by the type IX secretion system (T9SS). In P. gingivalis, most secreted effectors are attached to anionic lipopolysaccharides (A-LPS), and hence form a virulence coat at the cell surface. P. gingivalis produces additional virulence factors to evade host immune responses, such as capsular polysaccharide, fimbriae and outer membrane vesicles. In addition to periodontitis, it is proposed that this broad repertoire of virulence factors enable P. gingivalis to be involved in diverse human diseases such as rheumatoid arthritis, and neurodegenerative, Alzheimer, and cardiovascular disorders. Here, we review the major virulence determinants of P. gingivalis and discuss future directions to better understand their mechanisms of action.  相似文献   

8.
9.
10.
Sunflower occupies the fourth position among oilseed crops the around the world. Eceriferum (CER) is an important gene family that plays critical role in very-long-chain fatty acids elongation and biosynthesis of epicuticular waxes under both biotic and abiotic stress conditions. The aim of present study was to investigate the effect of sunflower CER genes during drought stress condition. Thus, comparative analysis was undertaken for sunflower CER genes with Arabidopsis genome to determine phylogenetic relationship, chromosomal mapping, gene structures, gene ontology and conserved motifs. Furthermore, we subjected the sunflower cultivars under drought stress and used qRT-PCR analysis to explore the expression pattern of CER genes during drought conditions. We identified thirty-seven unevenly distributed CER genes in the sunflower genome. The phylogenetic analysis revealed that CER genes were grouped into seven clades in Arabidopsis, Helianthus annuus, and Gossypium hirsutum. Expression analysis showed that genes CER10 and CER60 were upregulated in sunflower during drought conditions, indicating that these genes are activated during drought stress. The results obtained will serve to characterize the CER gene family in sunflower and exploit the role of these genes in wax biosynthesis under limited water conditions.Key messageCuticular waxes protect the plants from drought stress, so we observed the expression of wax bio synthesis genes in recently sequences genome of Helianthus annuus. We observed that expression of wax biosynthesis genes CER10 and CER60 was upregulated when the plants were subjected to drought stress.  相似文献   

11.
12.
《Journal of Asia》2023,26(1):102023
Endosymbionts have gained prominence as a potential tool for biological control strategies in reducing vector-borne diseases. This study aimed to evaluate the presence of Arsenophonus, Spiroplasma, and Rickettsia endosymbionts in wild specimens of phlebotomine sand flies, as well as in culicids collected in different regions of Colombia. Analyses were conducted through conventional PCR, Sanger sequencing of the 16S rRNA gene, and phylogenetic analyses. Individuals from among 946 phlebotomine sand flies and 143 mosquitoes were selected for taxonomic identification confirmed through the analysis of the cytochrome oxidase subunit I gene sequences. Results showed the presence of Arsenophonus bacteria in samples of Lutzomyia longipalpis, Psychodopygus panamensis, and Pintomyia evansi. Arsenophonus sequences associated with Lu. longipalpis and Ps. panamensis are phylogenetically located near to sequences of louse flies, with K2P genetic distances of 0.006. In contrast, sequences obtained from Pi. evansi are phylogenetically located near Arsenophonus nasoniae (K2P 0.001–0.014). Other sequences of endosymbionts similar to Arsenophonus with high K2P genetic distances (0.056–0.097), when compared to different reference strains of this endosymbiont, were also found in other samples of Lu. longipalpis and Ae. aegypti. To the best of our knowledge, this is the first successful attempt to detect and elucidate the phylogenetic relationship of Arsenophonus in phlebotomine sand flies, yet its role within these insect vectors remains to be fully determined; therefore, the importance of entomological surveys that help better understand its behavior and potential use as a control agent is required to enable the proactive reduction of sand fly populations.  相似文献   

13.
14.
Novel treatment in multiple myeloma represented by proteasome inhibitors, immunomodulatory drugs and monoclonal antibodies have produced a deep response. However, relapses are possible, and all classes of drugs are refractory to patients. Next-generation sequencing has improved our understanding of the multiple myeloma genome related to drug resistance and has discovered many genomic variants. Therefore, this study was conducted to investigate new variants associated with drug resistance in MM patients who relapsed and refractory to bortezomib regimen and daratumumab treatment using next-generation sequencing for whole-exome sequencing. Peripheral blood samples were collected in EDTA tubes from six patients; four were in relapsed and refractory to bortezomib regimens and daratumumab; two patients responded to bortezomib regimens. Whole-exome sequencing was performed by the MGI-DNBSEQ-G400 instrument. We identified 21 variants in multiple myeloma patients. Seventeen variants were found in relapsed and refractory multiple myeloma in 11 genes (GNAQ, PMS1, CREB1, NSUNS2, PIK3CG, ROS1, PMS2, FIT4, KDM5A, STK11 and ZFHX3). And four variants were identified in two patients with response to bortezomib regimens in 4 genes (RAF1, CREB1, ZFHX3 and INSR). We have observed several genetic variants in many genes that may have been associated with the poor prognosis and poor response to treatment in these patients. These values should be further confirmed in large sample studies using the RNA-seq technique to identify genome expression.  相似文献   

15.
Breast cancer accounts for nearly half of all cancer-related deaths in women worldwide. However, the molecular mechanisms that lead to tumour development and progression remain poorly understood and there is a need to identify candidate genes associated with primary and metastatic breast cancer progression and prognosis. In this study, candidate genes associated with prognosis of primary and metastatic breast cancer were explored through a novel bioinformatics approach. Primary and metastatic breast cancer tissues and adjacent normal breast tissues were evaluated to identify biomarkers characteristic of primary and metastatic breast cancer. The Cancer Genome Atlas-breast invasive carcinoma (TCGA-BRCA) dataset (ID: HS-01619) was downloaded using the mRNASeq platform. Genevestigator 8.3.2 was used to analyse TCGA-BRCA gene expression profiles between the sample groups and identify the differentially-expressed genes (DEGs) in each group. For each group, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were used to determine the function of DEGs. Networks of protein–protein interactions were constructed to identify the top hub genes with the highest degree of interaction. Additionally, the top hub genes were validated based on overall survival and immunohistochemistry using The Human Protein Atlas. Of the top 20 hub genes identified, four (KRT14, KIT, RAD51, and TTK) were considered as prognostic risk factors based on overall survival. KRT14 and KIT expression levels were upregulated while those of RAD51 and TTK were downregulated in patients with breast cancer. The four proposed candidate hub genes might aid in further understanding the molecular changes that distinguish primary breast tumours from metastatic tumours as well as help in developing novel therapeutics. Furthermore, they may serve as effective prognostic risk markers based on the strong correlation between their expression and patient overall survival.  相似文献   

16.
DNA glycosylases remove damaged or modified nucleobases by cleaving the N-glycosyl bond and the correct nucleotide is restored through subsequent base excision repair. In addition to excising threatening lesions, DNA glycosylases contribute to epigenetic regulation by mediating DNA demethylation and perform other important functions. However, the catalytic mechanism remains poorly defined for many glycosylases, including MBD4 (methyl-CpG binding domain IV), a member of the helix-hairpin-helix (HhH) superfamily. MBD4 excises thymine from G·T mispairs, suppressing mutations caused by deamination of 5-methylcytosine, and it removes uracil and modified uracils (e.g., 5-hydroxymethyluracil) mispaired with guanine. To investigate the mechanism of MBD4 we solved high-resolution structures of enzyme-DNA complexes at three stages of catalysis. Using a non-cleavable substrate analog, 2′-deoxy-pseudouridine, we determined the first structure of an enzyme-substrate complex for wild-type MBD4, which confirms interactions that mediate lesion recognition and suggests that a catalytic Asp, highly conserved in HhH enzymes, binds the putative nucleophilic water molecule and stabilizes the transition state. Observation that mutating the Asp (to Gly) reduces activity by 2700-fold indicates an important role in catalysis, but probably not one as the nucleophile in a double-displacement reaction, as previously suggested. Consistent with direct-displacement hydrolysis, a structure of the enzyme-product complex indicates a reaction leading to inversion of configuration. A structure with DNA containing 1-azadeoxyribose models a potential oxacarbenium-ion intermediate and suggests the Asp could facilitate migration of the electrophile towards the nucleophilic water. Finally, the structures provide detailed snapshots of the HhH motif, informing how these ubiquitous metal-binding elements mediate DNA binding.  相似文献   

17.
《Journal of Asia》2022,25(3):101950
The terpene, terpinen-4-ol (T4ol), exhibits contact toxicity in Tribolium castaneum. However, the molecular mechanisms underlying this toxicity have not been elucidated. This study examined changes in the expression of four classic enzymes after exposure of T. castaneum to T4ol. Acetylcholinesterase and glutathione S-transferase activities were markedly inhibited after exposure to T4ol, while that of the detoxifying enzyme cytochrome oxidase P450 increased markedly. Carboxylesterase activity did not show significant changes. Furthermore, RNA sequencing revealed 260 differentially expressed genes (DEG) between the T4ol-treated and control samples, and qRT-PCR was used to validate the RNA-Seq data. The Gene Ontology analysis classified the DEGs into 36 functional groups, including the immune system processes, response to stimulus, and developmental processes. T4ol altered the response to stimulus and the immune system process of beetles by inducing the expression of the genes Stabilin-1, Attacin 1, and Defensin 1. Furthermore, the DEGs receptor tyrosine kinase Torso-like protein (RTKTsl), Frizzled 4 (Fz4), Protein Wnt-5b, Ecdysone-induced protein 78C (E78), Zinc finger protein GLIS1 (ZFPGLIS1) were classified as participating in beetle development, and Fz4 and Protein Wnt-5b also mapped to the Wnt signaling pathway. This indicated that pathways associated with development are inhibited after exposure to T4ol. T4ol also induced CYP9Z6/GSTs7 overexpression, and RNAi targeting these genes significantly increased larvae mortality on T4ol exposure, supporting the participation of CYP9Z6/GSTs7 in the response to T4ol in T. castaneum. The results of this study will facilitate understanding of the toxic mechanisms of T4ol and provide a basis for controlling the pests of stored products.  相似文献   

18.
19.
Parkinson’s disease (PD) is the second most common neurodegenerative disorder after Alzheimer’s disease, and its prevalence is increasing with age. A wealth of genetic evidence indicates that the endo-lysosomal system is a major pathway driving PD pathogenesis with a growing number of genes encoding endo-lysosomal proteins identified as risk factors for PD, making it a promising target for therapeutic intervention. However, detailed knowledge and understanding of the molecular mechanisms linking these genes to the disease are available for only a handful of them (e.g. LRRK2, GBA1, VPS35). Taking on the challenge of studying poorly characterized genes and proteins can be daunting, due to the limited availability of tools and knowledge from previous literature. This review aims at providing a valuable source of molecular and cellular insights into the biology of lesser-studied PD-linked endo-lysosomal genes, to help and encourage researchers in filling the knowledge gap around these less popular genetic players. Specific endo-lysosomal pathways discussed range from endocytosis, sorting, and vesicular trafficking to the regulation of membrane lipids of these membrane-bound organelles and the specific enzymatic activities they contain. We also provide perspectives on future challenges that the community needs to tackle and propose approaches to move forward in our understanding of these poorly studied endo-lysosomal genes. This will help harness their potential in designing innovative and efficient treatments to ultimately re-establish neuronal homeostasis in PD but also other diseases involving endo-lysosomal dysfunction.  相似文献   

20.
A pigment-protein highly dominant in Spirulina is known as C-Phycocyanin. Earlier, in vitro studies has shown that C-phycocyanin is having many biological activities like antioxidant and anti-inflammatory activities, antiplatelet, hepatoprotective, and cholesterol-lowering properties. Interestingly, there are scanty in vivo experimental findings on the immunomodulatory and antioxidant effects of C-phycocyanin. This work is aimed at in vivo evaluation of the effects of C-phycocyanin on immunomodulation and antioxidant potential in Balb/c mice. Our results of in vivo toxicity, immunomodulatory and antioxidant effects of C-Phycocyanin suggests that C-phycocyanin is very safe for consumption and having substantial antioxidant potential and also possess immunomodulatory activities in Balb/c mice in a dosage dependent manner. C-phycocyanin doesn’t cause acute and subacute toxicity in the animal model (male, Balb/c mice) studied. We have reported that C-phycocyanin exhibited in vivo immunomodulation performance in this animal model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号